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Abstract. In this paper, we study nonparametric estimation of the Lévy density for pure
jump Lévy processes. We consider n discrete time observations with step ∆. The asymptotic
framework is: n tends to infinity, ∆ = ∆n tends to zero while n∆n tends to infinity. First, we use
a Fourier approach (“frequency domain”): this allows to construct an adaptive nonparametric
estimator and to provide a bound for the global L

2-risk. Second, we use a direct approach (“time
domain”) which allows to construct an estimator on a given compact interval. We provide a
bound for L

2-risk restricted to the compact interval. We discuss rates of convergence and give
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1. Introduction

Let (Lt, t ≥ 0) be a real-valued Lévy process, i.e. a process with stationary independent
increments. We assume that the characteristic function of Lt has the form:

(1) ψt(u) = E(exp iuLt) = exp (t

∫

R

(eiux − 1)n(x)dx),

where the Lévy density n(.) satisfies
∫

R
|x| ∧ 1 n(x)dx < ∞. Under these assumptions, the

process (Lt) is of pure jump type, with no drift component, has finite variation on compacts
(see e.g. Bertoin, 1996, Chap. 1). The distribution of (Lt) is therefore completely specified by
the knowledge of n(.) which describes the jumps behavior.

In this paper, we consider the nonparametric estimation of n(.) based on a discrete observation
of the sample path with sampling interval ∆. Our estimation procedure is therefore based
on the random variables (Zk = Z∆

k = Lk∆ − L(k−1)∆, k = 1, . . . , n) which are independent,
identically distributed, with common characteristic function ψ∆(u). Since the problem reduces to
estimation from an i.i.d. sample, statistical inference for discrete observations of Lévy processes
may appear standard. However, difficulties arise due to specific features. First, the exact
distribution of the increment Zk is most often hardly tractable. Second, one is interested in
the Lévy density n(.) and the relationship between n(.) and the distribution of the r.v.’s Zk is
not straightforward (see examples, below). This is why statistical approaches often rely on the
simple link between n(.) and the characteristic function ψ∆. Illustrations of this approach can
be found in Watteel and Kulperger (2003), Jongbloed and van der Meulen (2006), Neumann and
Reiss (2007), Jongbloed et al. (2005) for the related problem of Lévy-driven Ornstein-Uhlenbeck
processes or Comte and Genon-Catalot (2008).

For what concerns the sampling interval, it is now classical in statistical inference for discretely
observed continuous time processes to distinguish two points of view. In the low frequency
point of view, it is assumed that the sampling interval ∆ is kept fixed while the number n of
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observations tends to infinity. This is the assumption done in the above references. On the other
hand, the high frequency data point of view is naturally well fitted when the underlying model
is continuous in time. It consists in assuming that the sampling interval ∆ = ∆n tends to 0 as
n tends to infinity. This is the point of view adopted in this paper. Moreover, in order to make
our results comparable to those obtained for low frequency data, we also assume that the total
length time of observation, n∆n, tends to infinity with n.

As in Comte and Genon-Catalot (2008), we strengthen the assumption on n(.) into:

(H1)

∫

R

|x|n(x)dx <∞,

and focus on the estimation of the function

g(x) = xn(x).

By (H1), derivating ψ∆ yields:

(2) g∗(u) =

∫

eiuxg(x)dx = −i ψ
′
∆(u)

∆ψ∆(u)
.

In the framework of low frequency data, this relation suggests to estimate g∗ by using empirical
estimators of ψ′

∆(u)/∆ and ψ−1
∆ (u). Then, g can be recovered adaptively by Fourier methods.

The fact that the denominator ψ∆(u) has to be estimated makes the study difficult (see Comte
and Genon-Catalot, 2008). Now, for high frequency data, the above relation is written as:

(3) −iψ
′
∆(u)

∆
= g∗(u) + g∗(u)(ψ∆(u) − 1) =

1

∆
E(Zke

iuZk).

Since ψ∆(u) − 1 tends to 0 as ∆ tends to 0, ψ∆(u) needs not be estimated and g∗(u) may be
estimated by the empirical estimator

(4) θ̂∆(u)/∆ = ĝ∗(u) :=
1

n∆

n
∑

k=1

Zke
iuZk ,

As a basic consequence of (3), under (H1), the empirical measure

(5) µ̂n(dx) =
1

n∆

n
∑

k=1

ZkδZk
(dx)

is a consistent estimator of the measure g(x)dx (δz denotes the Dirac measure at z). This allows
to study the nonparametric estimation of g by two approaches. On the one hand, using (4), we
proceed to Fourier inversion, introducing a cutoff parameter that is adaptively selected. This
construction yields a global estimator. On the other hand, relying directly on the property of
(5), we are able to apply the penalized projection method classically used to estimate densities
(see Massart (2007)). In this way, we obtain an estimator of g on a compact set. Note that the
penalized projection method is applied in Figueroa-Lopez and Houdré (2006) to estimate the
Lévy density n(.) from a continuous time observation of the sample path (Lt) throughout a time
interval [0, T ]. They obtain theoretical results on the rates of convergence on which we can rely
as a benchmark of comparison. Since we build our estimators on discrete data, our results have
the advantage of giving concrete estimators that can be easily implemented.

In Section 2, we give our assumptions and preliminary results concerning empirical estimators
based on (Zk). The rate of convergence

√
n∆ is obtained under the condition n∆3 = o(1) on

the sampling interval. For the nonparametric estimation of g, we assume that g belongs also to
L

2(R). Section 3 is devoted to estimation of g by Fourier methods. We construct a collection
(ĝm,m = 1, . . . ,mn) of estimators using the frequency domain. The bound for the L

2-risk of
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an estimator ĝm (Proposition 3.1) allows to deduce rates of convergence in Sobolev classes of
regularity (Proposition 3.2). Afterwards, we define a penalty in order to select adaptively the
best estimator of the collection (Theorem 3.1). In Section 4, we construct another collection
of estimators (g̃m) by using projection subspaces of L

2(A) where A is a compact subset of R.
We follow the same scheme. First, we study the risk bound of an estimator g̃m before selection
(Proposition 4.2). Then, we define a penalty and obtain the risk bound for the adaptive estimator
(Theorem 4.1). We deduce the rate of convergence on Besov classes of regularity (Corollary 4.1).
For both methods, as it is usual for high frequency data, constraints on the sampling interval
appear and are discussed. Section 5 discusses rates on examples. Section 6 illustrates and
compares the methods through simulations. Section 7 contains some conclusions and possible
extensions. Proofs (not given in the main text) are gathered in the Appendix.

2. Preliminary results.

2.1. Framework. Recall that the Lévy process (Lt) satisfying (1) is observed at n discrete
instants tk = k∆, k = 1, . . . , n, with regular sampling interval and our estimation procedure is
based on the random variables (Zk = Z∆

k = Lk∆−L(k−1)∆, k = 1, . . . , n) which are independent,
identically distributed, with common characteristic function ψ∆(u). We assume that, as n
tends to infinity, ∆ = ∆n tends to 0 and n∆n tends to infinity so that the observations are
(Zk = Zn

k = Z∆n

k , k = 1, . . . , n). Nevertheless, to avoid cumbersome notations, we omit the sub-
or super-script n everywhere.
For the estimation of g(x) = xn(x), (H1) and the following additional assumptions are required.

(H2)(p) For p integer,
∫

R
|x|p−1|g(x)|dx <∞.

(H3) The function g belongs to L
2(R).

(H4) M2 :=
∫

x2g2(x)dx < +∞.

Assumptions (H1) and (H2)(p) are moment assumptions for Z1 (see Proposition 2.2 below).
Under (H1), (H2)(p) for p > 1 implies (H2)(k) for k ≤ p. The required value of p is given in
each proposition or theorem.

Noting that

‖g‖2
1 := (

∫

|g(x)|dx)2 ≤
∫

(1 + |x|)2g2(x)dx

∫

dx

(1 + |x|)2 ,

we see that (H3) and (H4) imply (H1). If g is decreasing, the distribution of Z1 is self-
decomposable and g is called the canonical function (see Barndorff-Nielsen and Shephard (2001)
and Sato (1999, chap.3.15 p.90)).

Under (H1), let us introduce (see (2)-(3))

(6) θ∆(u) = E(Z1e
iuZ1) = −iψ′

∆(u) = ∆g∗(u)ψ∆(u).

and

θ̂∆(u) =
1

n

n
∑

k=1

Zke
iuZk .

As θ∆(u)/∆ = g∗(u) + g∗(u)(ψ∆(u) − 1) and ψ∆(u) = 1 +O(∆), a simple estimator of g∗(u) is
given by (4). We first state a proposition useful for the sequel.

Proposition 2.1. Denote by P∆ the distribution of Z1 and define µ∆(dx) = ∆−1xP∆(dx) and
µ(dx) = g(x)dx. Under (H1), the distribution µ∆ has a density h∆ given by

h∆(x) =

∫

g(x − y)P∆(dy) = Eg(x− Z1).
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And µ∆ weakly converges to µ as ∆ tends to 0.

Proof. Note that
∫

E|g(x− Z1)|dx = E

∫

|g(x− Z1)|dx =

∫

|g(x)|dx < +∞.

Thus E|g(x− Z1)| < +∞ a.e. (dx), which implies that E(g(x− Z1)) is a.e. well defined.
Equation (6) states that

µ∗∆ = µ∗P ∗
∆.

Hence, µ∆ = µ ? P∆ where ? denotes the convolution product. This gives the result. �

Note that, although P∆ may have no density, under (H1), µ∆ always has. Note also that the
Lévy measure can always be obtained as a limit: for every fixed a > 0, (1/∆)P∆(dx) converges
vaguely on |x| > a as ∆ → 0 to n(x)dx, see e.g. Bertoin (1996, p. 39, ex. 5.1). Assumption
(H1) ensures the stronger result of Proposition 2.1.

2.2. Limit theorems and inequalities. In this section, we study some properties illustrating
the framework of high frequency in the context of pure jump Lévy processes. In particular, a
condition on the sampling interval is exhibited.

First, we give some properties of the moments of Z1 and of empirical moments associated
with the observations: Proposition 2.2 shows that the moments of Z1 have all the same rate of
convergence with respect to ∆; Theorem 2.1 gives inequalities and a central limit theorem for
empirical moments.

Proposition 2.2. Let p ≥ 1 integer. Under (H2)(p), E|Z1|p <∞. For 1 ≤ ` ≤ p,

E(Z`
1) = ∆ m` + o(∆)

where

(7) m` =

∫

R

x`−1g(x)dx =

∫

R

x`n(x)dx.

More precisely, if p ≥ 2, E(Z1) = ∆m1, E(Z2
1 ) = ∆m2 + ∆2m2

1. And more generally, if p ≥ `,

E(Z`
1) = ∆m` +

∑̀

j=2

∆jcj,

where the cj ’ are explicitly expressed as functions of the mj , j ≤ `.
Moreover, under (H1), E(|Z1|) ≤ 2∆‖g‖1.

Proof. By the assumption, the exponent of the exponential in (1) is p times differentiable and,
for ` = 1, . . . , p,

(8)
d`

du`
(

∫

R

(eiux − 1)n(x)dx)) = i`
∫

R

x`−1eiuxg(x)dx).

By differentiating ψ∆ and using an elementary induction, we get the result.
Using the classical decomposition Z1 = Z+

1 + Z−
1 , we compute E(Z+

1 ). By Proposition (2.1),

E(Z+
1 ) = ∆

∫ +∞

0
E(g(z − Z1))dz = ∆E(

∫ +∞

−Z1

g(x)dx) ≤ ∆‖g‖1.

The computation of E(Z−
1 ) is analogous, and the result follows from |Z1| = Z+

1 + Z−
1 . �
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Theorem 2.1. • If p` is even, (H2)(p`) and (H2)(2`) hold,

(9) E

(∣

∣

∣

∣

∣

1

n∆

n
∑

k=1

Z`
k − E(Z`

1)

∣

∣

∣

∣

∣

p)

≤ Cp

(

1

(n∆)p−1
+

1

(n∆)p/2

)

.

• Assume (H2)(4`). If n tends to infinity and ∆ tends to 0 in such a way that n∆ tends
to infinity and n∆3 tends to 0, then

√
n∆

(

1

n∆

n
∑

k=1

Z`
k −m`

)

→ N (0,m2`)

in distribution.

Then, we give inequalities useful to evaluate bias and variance terms for the sequel and a
result concerning the behavior of θ̂∆(u)/∆ as a pointwise estimator.

Proposition 2.3. Under (H1), we have:

(10) |ψ∆(u) − 1| ≤ |u|∆‖g‖1,

(11) |∆−1θ∆(u) − g∗(u)| ≤ |u|∆‖g‖2
1,

Under (H1) and (H2)(2p), for p ≥ 1,

(12) ∆−2p
E(|θ̂∆(u) − θ∆(u)|2p) ≤ Cp

(n∆)p
.

Note that for p = 1, (12) is a simple variance inequality:

(13) ∆−2
E(|θ̂∆(u) − θ∆(u)|2) ≤ 1

n∆
(m2 + ∆m2

1) =
1

n∆2
E(Z2

1 ).

Theorem 2.2. Under (H1) and (H2)(2), if n∆3 = o(1),
√
n∆(θ̂∆(u)/∆ − g∗(u)) converges in

finite-dimensional distributions to the process X(u) =
∫

eiuxx
√

n(x)dB(x), u ∈ R, where B is a
Brownian motion indexed by R.

It would be interesting to develop this study further and obtain a stronger form of Central
Limit Theorem (CLT) for the process

√
n∆(θ̂∆(u)/∆− g∗(u)). Note that, in the context of low

frequency data, Jongbloed and van der Meulen (2006) build a parametric minimum distance
estimator relying on a strong CLT for the empirical characteristic function.

3. Estimation of g by Fourier methods

Recall that u∗ is the Fourier transform of the function u defined as u∗(y) =
∫

eiyxu(x)dx, and
denote by ‖u‖, < u, v >, u ? v the quantities

‖u‖2 =

∫

|u(x)|2dx,

< u, v >=

∫

u(x)v(x)dx with zz = |z|2 and u ? v(x) =

∫

u(y)v̄(x− y)dy.

Moreover, for any integrable and square-integrable functions u, u1, u2, the following holds:

(14) (u∗)∗(x) = 2πu(−x) and 〈u1, u2〉 = (2π)−1〈u∗1, u∗2〉.
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3.1. Definition of a collection of estimators. In this paragraph, we present a collection of
estimators (ĝm), indexed by a positive parameter m that will below be subject to constraints
for adaptiveness results. Three distinct constructions give rise to this class of estimators, each
having its own interest for interpretation, implementation or theoretical aspects. We start with
the simple cutoff approach. We have at our disposal an estimator of g∗ given by (4). For taking

the inverse Fourier transform of θ̂∆/∆, since this function is not integrable, we are led to set:

(15) ĝm(x) =
1

2π

∫ πm

−πm
e−ixu θ̂∆(u)

∆
du,

for a positive cutoff parameter m. In other words, ĝ∗m = (θ̂∆/∆)1I[−πm,πm]. Introducing

(16) ϕ(x) =
sin(πx)

πx
(with ϕ(0) = 1),

a simple integration leads to

ĝm(x) =
m

n∆

n
∑

k=1

Zkϕ(m(Zk − x)).

Therefore ĝm may be interpreted as a kernel estimator with kernel ϕ and bandwidth 1/m.
Formula (15) allows to study the L

2-risk of ĝm for all m. We need to introduce

gm(x) =
1

2π

∫ πm

−πm
e−iuxg∗(u)du,

which is such that g∗m = g∗1I[−πm,πm].

Proposition 3.1. Assume that (H2)(2)- (H3)-(H4) hold, then for all positive m,

E(‖g − ĝm‖2) ≤ ‖g − gm‖2 + 2[E(Z2
1/∆)]

m

n∆
+

‖g‖2
1

π
∆2

∫ πm

−πm
u2|g∗(u)|2du.

Proof. We have ‖ĝm − g‖2 = ‖ĝ∗m − g∗‖2/(2π), and thus (see (4) and (6)),

‖ĝm − g‖2 =
1

2π
[‖( θ̂∆

∆
− θ∆

∆
)1I[−πm,πm] + (

θ∆
∆

− g∗)1I[−πm,πm] − g∗1I[−πm,π,m]c‖2]

≤ 1

π
(‖( θ̂∆

∆
− θ∆

∆
)1I[−πm,πm]‖2 + ‖(θ∆

∆
− g∗)1I[−πm,πm]‖2)

+
1

2π
‖g∗1I[−πm,π,m]c‖2.

The last term is exactly ‖g − gm‖2. For the second term, using (3) and (10), we have

‖(θ∆
∆

− g∗)1I[−πm,πm]‖2 = ‖(ψ∆ − 1)g∗1I[−πm,πm]‖2 ≤ ∆2‖g‖2
1

∫ πm

−πm
u2|g∗(u)|2du.

Lastly, (13) yields

E(‖( θ̂∆
∆

− θ∆
∆

)1I[−πm,πm]‖2) =

∫ πm

−πm
∆−2

E(|θ̂∆(u) − θ∆(u)|2)du ≤ 2πmE(Z2
1 )

n∆2
.

By gathering the three bounds, we obtain the result. �
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3.2. Rates of convergence. Let us study the rates implied by Proposition 3.1. For that
purpose, consider classical classes of regularity for g, defined by

C(a,L) =

{

g ∈ (L1 ∩ L
2)(R),

∫

(1 + u2)a|g∗(u)|2du ≤ L

}

.

We obtain the following result:

Proposition 3.2. Assume that (H2)(2)-(H3)-(H4) hold and that g belongs to C(a,L). If n →
+∞, ∆ → 0 and n∆2 ≤ 1, we have

E(‖g − ĝm‖2) ≤ O((n∆)−2a/(2a+1)).

If a ≥ 1, then it is enough to have n∆3 = O(1) (instead of n∆2 ≤ 1).

Proof. We know that

‖g − gm‖2 =
1

2π

∫

|u|≥πm
|g∗(u)|2du ≤ L

2π
(πm)−2a.

Thus, the compromise between ‖g − gm‖2 and m/(n∆)(first two terms in the risk bound of

Proposition 3.1) is obtained for m = (n∆)1/(2a+1) and leads to the rate (n∆)−2a/(2a+1).
There remains to study the term ∆2

∫ πm
−πm u2|g∗(u)|2du, which is a bias term due to the high

frequency framework and must be made negligible. As g ∈ C(a,L), we find
∫ πm

−πm
u2|g∗(u))|2du ≤ Lm2(1−a)+ .

If a ≥ 1, under the condition n∆3 = O(1), ∆2 = O(1/(n∆)). So the order of the risk bound is
(n∆)−2a/(2a+1).

If a ∈ (0, 1), we must have at least ∆2m2(1−a) ≤ m−2a. Hence, ∆2m2 ≤ 1. This is achieved

for n∆2 ≤ 1 as m ≤ n∆. The order of the risk bound is again (n∆)−2a/(2a+1). �

Remark 3.1. 1. If g is analytic i.e. belongs to a class

A(γ,Q) = {f,
∫

(eγx + e−γx)2|f∗(x)|2dx ≤ Q},

then the risk is of order O(ln(n∆)/(n∆)) (choose m = O(ln(n∆))).
2. If g is regular enough, (a ≥ 1), we find the constraint n∆3 = O(1) exhibited in Section 2.

If not (a ∈ (0, 1)), we must strengthen the constraint on ∆ to get the optimal rate of convergence
(see the examples below).

3.3. Adaptive estimator. Now, we have to select adaptively a relevant bandwidth m. For
this, it is convenient to show that the estimators ĝm are projection estimators, obtained as
minimizers of a projection contrast. For positive m, consider the following closed subspace of
L

2(R)

Sm = {h ∈ L
2(R), supp(h∗) ⊂ [−πm, πm]}.

For h ∈ L
2(R), let hm denote its orthogonal projection on Sm. A noteworthy property of Sm is

that hm is characterized by the fact that h∗m = h∗1I[−πm,πm]. Hence,

‖h− hm‖2 =
1

2π

∫

|x|≥πm
|h∗(x)|2dx.
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Moreover, for t ∈ Sm, t(x) = (1/2π)
∫ πm
−πm e−iuxt∗(u)du, and

|t(x)| ≤ 1

2π

(∫ πm

−πm
|t∗(u)|2du

∫ πm

−πm
|eiux|2du

)1/2

.

Thus

(17) ∀t ∈ Sm, ‖t‖∞ ≤ √
m‖t‖.

Let, for t ∈ Sm,

(18) γn(t) = ‖t‖2 − 1

π

∫

θ̂∆(u)

∆
t∗(−u)du = ‖t‖2 − 2〈ĝm, t〉.

Evidently,
ĝm = arg min

t∈Sm

γn(t),

and γn(ĝm) = −‖ĝm‖2. Using (15) and (16), we have

‖ĝm‖2 =
1

2π

∫ πm

−πm

∣

∣

∣

∣

∣

θ̂∆(u)

∆

∣

∣

∣

∣

∣

2

du =
m

n2∆2

∑

1≤k,`≤n

ZkZ`ϕ(m(Zk − Z`)).

Finally, it is interesting to stress that the space Sm is generated by an orthonormal basis, the
sinus cardinal basis, given by:

ϕm,j(x) =
√
mϕ(mx− j), j ∈ Z

where ϕ is defined by (16) (see Meyer (1990), p.22). This can be seen noting that:

(19) ϕ∗
m,j(x) =

eixj/m

√
m

1I[−πm,πm](x).

As above, we use that ϕm,j(x) = (1/2π)
∫ πm
−πm eiuxϕ∗

m,j(−u)du to obtain

∑

j∈Z

ϕ2
m,j(x) =

1

2π

∫ πm

−πm
|eiux|2du = m.

Therefore, a third formulation of ĝm is

ĝm =
∑

j∈Z

âm,jϕm,j where âm,j =
1

2π∆

∫

θ̂∆(u)ϕ∗
m,j(−u)du =

1

n∆

n
∑

k=1

Zkϕm,j(Zk).

Due to the explicit formula (15), even if Sm is not finite-dimensional, we need not truncate the
series. Nevertheless, the introduction of the basis is crucial for the proof. Using the development
on (ϕm,j)j , we also have

‖ĝm‖2 =
∑

j∈Z

|âm,j |2.

For h ∈ L
2(R), its orthogonal projection hm on Sm can be written as

hm =
∑

j∈Z

am,j(h)ϕm,j with am,j(h) = 〈h, ϕm,j〉.

We consider a collection (Sm,m = 1, . . . ,mn) where mn is restricted to satisfy mn ≤ n∆.
As it is usual, we select adaptively the value as follows:

m̂ = arg min
m∈{1,...,mn}

(γn(ĝm) + pen(m)) with pen(m) = κ

(

1

n∆

n
∑

k=1

Z2
k

)

m

n∆
.
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We shall denote by

penth(m) = E(pen(m)) = κ(E(Z2
1 )/∆)

m

n∆
.

Then we can prove

Theorem 3.1. Assume that (H2)(8)-(H3)-(H4) are fulfilled, that n is large and ∆ is small with
n∆ tends to infinity when n tends to infinity. Then

E(‖g− ĝm̂‖2) ≤ C inf
m∈{1,...,mn}

(

‖g − gm‖2 + penth(m)
)

+
C ′∆2

2π

∫ πmn

−πmn

u2|g∗(u)|2du+
C” ln2(n∆)

n∆
.

If g belongs to a class of regularity C(a,L), with unknown a and L, the estimator is automat-
ically such that

E(‖g − ĝm̂‖2) ≤ C

[

(n∆)−2a/(2a+1) + ∆2m2(1−a)+
n +

C” ln2(n∆)

n∆

]

.

If either (a ≥ 1, n∆3 = O(1)) or (0 < a < 1 and n∆2 = O(1)), then

E(‖g − ĝm̂‖2) = O((n∆)−2a/(2a+1)).

Remark 3.2. In Comte and Genon-Catalot (2008), it is assumed that ∆ is fixed and that

|ψ∆(x)| � c(1 + x2)−b∆/2. Using a different estimator and a different penalty (since ψ∆ has to
be estimated), we obtained that the L

2-risk of the adaptive estimator of g automatically attains

the rate O((n∆)−2a/(2b∆+2a+1)), when g belongs to C(a,L): it appears that the exponent in the
rate effectively depends on ∆. But it coincides with the exponent obtained here when ∆ → 0 or
b = 0 (compound Poisson process).

4. Estimation of g on a compact set.

4.1. Time domain point of view. In this section, we intend to proceed without Fourier
inversion and directly use the fact that (1/(n∆))

∑n
k=1 ZkδZk

= µ̂n converges weakly to µ(dx) =
g(x)dx. Recall that, for any function t such that t∗ is compactly supported,

γn(t) = ‖t‖2 − 2

2π
〈 θ̂∆
∆
, t∗〉.

Since θ̂∆/∆ is the Fourier Transform of µ̂n, we now consider, with the same notation and for
any compactly supported function t,

γn(t) = ‖t‖2 − 2〈µ̂n, t〉 = ‖t‖2 − 2

n∆

n
∑

k=1

Zkt(Zk).

More precisely, we fix a compact set A ⊂ R and focus on the estimation of gA := g1IA. In other
words, the estimation is performed in the “time domain” instead of previously, the “frequency
domain”. We consider a family (Σm,m ∈ Mn} of finite dimensional linear subspaces of L

2(A):
Σm = span{ϕλ, λ ∈ Λm} where card(Λm) = Dm is the dimension of Σm. The set {ϕλ, λ ∈ Λm}
denotes an orthonormal basis of Σm. We shall denote by ‖f‖2

A =
∫

A f
2(u)du for any function f .

For m ≥ 1, we define

(20) g̃m = arg min
t∈Σm

γn(t).
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4.2. Projection spaces and their fundamental properties. We consider projection spaces
satisfying

(M1) (Σm)m∈Mn is a collection of finite-dimensional linear sub-spaces of L
2(A), with dimension

Dm such that ∀m ∈ Mn,Dm ≤ n∆. For all m, functions in Σm are of class C1 in A,
and, satisfy

(21) ∃Φ0 > 0,∀m ∈ Mn,∀t ∈ Sm, ‖t‖∞ ≤ Φ0

√

Dm‖t‖A, and ‖t′‖A ≤ Φ0Dm‖t‖A.

where ‖t‖∞ = supx∈A |t(x)|.
(M2) (Σm)m∈Mn is a collection of nested models, all embedded in a space Sn belonging to the

collection (∀m ∈ Mn,Σm ⊂ Sn). We denote by Nn the dimension of Sn: dim(Sn) = Nn

(∀m ∈ Mn,Dm ≤ Nn ≤ n∆).

Inequality (21) is often referred to as the norm connection property of the projection spaces
and is the basic tool to obtain the adequate order of the risk bound. It follows from Lemma 1
in Birgé and Massart (1998), that (21) is equivalent to

(22) ∃Φ0 > 0, ‖
∑

λ∈Λm

ϕ2
λ‖∞ ≤ Φ2

0Dm.

Functions of the spaces Σm are considered as functions on R equal to zero outside A.
Here are the examples we have in view, and that we describe with A = [0, 1] for simplicity.

They satisfy assumptions (M1) and (M2).

[T] Trigonometric spaces: they are generated by ϕ0 = 1[0,1], ϕj(x) =
√

2 cos(2πjx)1I[0,1](x) and

ϕj+m+1(x) =
√

2 sin(2πjx)1I[0,1](x) for j = 1, . . . ,m }, Dm = 2m+1 and Mn = {1, . . . , [n∆/2]−
1}.
[W] Dyadic wavelet generated spaces with regularity r ≥ 2 and compact support, as described
e.g. in Härdle et al. (1998). The generating basis is of cardinality Dm = 2m+1 and m ∈ Mn =
{1, 2, . . . , [ln(n∆)/2] − 1}.

4.3. Integrated risk on a compact set. Now, we have

(23) g̃m =
∑

λ∈Λm

ãλϕλ with ãλ =
1

n∆

n
∑

k=1

Zkϕλ(Zk).

Let gm denote the orthogonal projection of g on Σm, now given by gm =
∑

λ∈Λm
aλϕλ with

aλ = (1/∆)E(Z1ϕλ(Z1)). At this stage, note that the “time domain approach” differs from the
“frequency domain approach” only through the projection spaces.

A useful decomposition of the contrast is

(24) γn(t) − γn(s) = ‖t− g‖2 − ‖s− g‖2 − 2νn(t− s) − 2Rn(t− s),

where we set

(25) νn(t) =
1

n∆

n
∑

k=1

(Zkt(Zk) − E(Z1t(Z1)),

and

(26) Rn(t) =
1

∆
E(Z1t(Z1)) −

∫

t(x)g(x)dx.

We can prove the following propositions:
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Proposition 4.1. Let t ∈ Σm and assume that (H1) and (H3) hold.
1) If L :=

∫

u2|g∗(u)|2du < +∞, then

|Rn(t)| ≤ ∆‖t‖A‖g‖1L
1/2/

√
2π.

2) If g is bounded, |Rn(t)| ≤ CΦ0‖t‖A∆Dm where C depends on ‖g‖1, ‖g‖ and A.
3) Otherwise:

(27) |Rn(t)| ≤ CΦ0‖t‖A(
√

∆Dm + ∆Dm),

where C depends on ‖g‖1, ‖g‖ and A.

Proposition 4.2. Assume that (H1)-(H2)(2)-(H3) hold. We consider g̃m, an estimator of g
defined by (23) on a space Σm and denote by gm the orthogonal projection of g on Σm. Then

(28) E(‖g̃m − g‖2
A) ≤ 3‖g − gm‖2

A + 16Φ0[E(Z2
1 )/∆]

Dm

n∆
+Kρ

m,∆
,

where K depends on m1, m2 and g and ρ
m,∆

= ∆2 if
∫

u2|g∗(u)|2du < +∞, ρ
m,∆

= ∆2D2
m if g

is bounded. Otherwise ρ
m,∆

= ∆Dm if n∆2 ≤ 1.

As for Proposition 3.1, we draw the consequences of Proposition 4.2 on the rate of convergence
of the risk bound.

In the setting of this section, the regularity of gA must be described by using classical Besov
spaces on compact sets. Let us recall that the Besov space Bα,2,∞([0, 1]) is defined by:

Bα,2,∞([0, 1]) = {f ∈ L
2([0, 1]), |f |α,2 := sup

t>0
t−αωr(f, t)2 < +∞}

where r = [α] + 1 ([.] denotes the integer part), and ωr(f, t)2 is called the r-th modulus of
smoothness of a function f ∈ L

2(A). Note that |f |α,2 is a semi-norm with usual associated

norm ‖f‖α,2 = ‖f‖2 + |f |α,2, ‖f‖2 =
(∫

|f |2(x)dx
)1/2

. For details, we refer to DeVore and
Lorentz (1993, p.54-57).

Heuristically, a function in Bα,2,∞([0, 1]) can be seen as square integrable and [α]-times dif-
ferentiable with derivative of order [α] having a Hölder property of order α− [α].

Proposition 4.3. Consider A = [0, 1] and Σm a space in collection [T] or [W]. Assume that

(H1), (H2)(2) and (H3) hold. Let g ∈ Bα,2,∞([0, 1]), Dm = (n∆)1/(2α+1) and ∆ = n−a with
a ∈ (0, 1).

• If
∫

u2|g∗(u)|2du < +∞, choose a ≥ α/(3α + 1),
• If g is bounded, choose a ≥ (α + 1)/(3α + 2),
• Otherwise, choose a ≥ 1/2.

Then E(‖g − g̃m‖2
A) ≤ K(n∆)−2α/(2α+1).

Proof. It is well known (see DeVore and Lorentz (1993)) that, if Σm is a space of [T] or [W],
and if g ∈ Bα,2,∞([0, 1]), then ‖g − gm‖2

[0,1] ≤ CD−2α
m . The usual compromise between D−2α

m

and Dm/(n∆) leads to the best choice Dm = O((n∆)1/(2α+1)). Therefore, the first two terms

in (28) have rate O((n∆)−2α/(2α+1)). Now, we search for the choice of ∆ = n−a such that
ρ

m,∆
≤ (n∆)−2α/(2α+1). If

∫

u2|g∗(u)|2du < +∞, ρ
m,∆

= ∆2 and we find a ≥ α/(3α + 1). If g

is bounded, ρ
m,∆

= ∆2D2
m and we find a ≥ (α + 1)/(3α + 2). Otherwise, ρ

m,∆
= ∆Dm and we

find a ≥ 1/2. �

Note that a ≥ α/(3α + 1) and a ≥ (α + 1)/(3α + 2) holds for any α ≥ 0 if a ≥ 1/3 (hence

n∆ ≤ n2/3), and a ≥ 1/2 implies n∆ ≤ n1/2.



12 F. COMTE AND V. GENON-CATALOT

4.4. Adaptive result. Now, to get an adaptive result, we need to define a penalty function
pen(.) and set

m̃ = arg min
m∈Mn

(γn(g̃m) + pen(m))

Let

pen(m) =
κ

n∆

n
∑

i=1

Z2
i

Dm

n∆
, penth(m) = E(pen(m)) = κE(Z2

1/∆)
Dm

n∆
.

Here too, we use the same notation pen(m), penth(m) as above, although the definitions differ.
Then the following theorem holds:

Theorem 4.1. Assume that assumptions (H1)-(H2)(12)-(H3) and (M1)-(M2) are fulfilled. Con-
sider a nested collection of models and the estimator g̃m̃, then

E(‖g − g̃m̃‖2
A) ≤ C inf

m∈Mn

(

‖g − gm‖2
A + penth(m)

)

+ Cρ
n,∆

+
C ′

n∆
,

where ρ
n,∆

= ∆2 if
∫

u2|g∗(u)|2du < +∞, ρ
n,∆

= ∆2N2
n if g is bounded. Otherwise, ρ

n,∆
= ∆Nn.

Remark 4.1. The moment condition of order 12 in Theorem 4.1 can be weakened into a con-
dition of order 8 for basis [T], which is bounded.

The constant κ is numerical and must be calibrated by preliminary simulations (see Section 6).

Then the following (standard) rate is obtained:

Corollary 4.1. Let the Sm’s be Dm-dimensional linear spaces in collections [T] or [W]. Assume
moreover that g belongs to Bα,2,∞([0, 1]) with r > α > 0 and ∆ = n−a with a ∈ [1/3, 1[ if
∫

u2|g∗(u)|2du < +∞, a ∈ [3/5, 1[ if g is bounded, and otherwise, a ∈ [2/3, 1[. Then, under the
assumptions of Theorem 4.1,

(29) E(‖g − g̃m̃‖2) = O
(

(n∆)−
2α

2α+1

)

.

Remark 4.2. The bound r on α stands for the regularity of the basis functions for collection
[W]. For the trigonometric collection [T], no upper bound for the regularity α is required.

Proof. The result is a straightforward consequence of the results of DeVore and Lorentz (1993)
and of Lemma 12 of Barron, Birgé and Massart (1999). They imply that, if g ∈ Bα,2,∞([0, 1])
for some α > 0, then ‖g− gm‖ is of order D−α

m in the collections [T] and [W]. Thus the infimum

in Theorem 4.1 is reached for Dmn = O([(n∆)1/(1+2α)]), which is less than n∆ for α > 0. We
know that the collection of models is such that Nn ≤ n∆. Thus, if

∫

u2|g∗(u)|2du < +∞,
∆2 ≤ 1/(n∆) holds for ∆ = n−a if a ∈ [1/3, 1[. If g is bounded, ∆2N2

n ≤ 1/(n∆) holds if
∆2(n∆)2 ≤ 1/(n∆) which gives a ∈ [3/5, 1[. Otherwise, Nn∆ ≤ 1/(n∆) holds for ∆ = n−a if
a ∈ [2/3, 1[. Unfortunately, this also implies that n∆ ≤ n2/3 in the first case, n∆ ≤ n2/5 in the

second case and n∆ ≤ n1/3 in the third case. Then, we find the standard nonparametric rate of
convergence (n∆)−2α/(1+2α). �

Remark 4.3. Figueroa-López and Houdré (2006) investigate the nonparametric estimation of
n(.) from a continuous observation (Lt)t∈[0,T ]. They use projection methods and penalization to

obtain estimators with rate O(T−2α/(2α+1)) on a Besov class Bα,2,∞([0, 1]). Thus, our result can

be compared to theirs since our rate is O((n∆)−2α/(2α+1)).
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5. Rates of convergence on examples.

The discussion on rates of convergence is different according to the estimation method. We
give some illustrating examples.

5.1. Rates for the Fourier method on examples. Below, we compute with more precision
the risk bound given by Theorem 3.1 on specific examples.

Example 1. Compound Poisson processes.

Let Lt =
∑Nt

i=1 Yi, where (Nt) is a Poisson process with constant intensity c and (Yi) is a
sequence of i.i.d. random variables with density f independent of the process (Nt). Then, (Lt)
is a compound Poisson process with characteristic function (1) with n(x) = cf(x). Assumptions
(H1)-(H2)(p) are equivalent to E(|Y1|p) <∞. Assumption (H3) is equivalent to

∫

R
x2f2(x)dx <

∞, which holds for instance if supx f(x) < +∞ and E(Y 2
1 ) < +∞. The distribution of Z1 = L∆

is:

(30) P∆(dz) = PZ1(dz) = e−c∆



δ0(dz) +
∑

n≥1

f∗n(z)
(c∆)n

n!
dz



 .

Hence,

(31) µ∆(dz) = e−c∆



czf(z) + c2∆z
∑

n≥2

cn−2∆n−2

n!
f∗n(z)dz





Now as f is any density and g(x) = cxf(x), any type of rate can be obtained.
We summarize in Table 1 the rates obtained for several examples that we test below by

simulation experiments.

Density f Gaussian N (0, 1) Exponential E(1) Uniform U([0, 1])

g(x)(= cxf(x)) = cxe−x2/2/
√

2π cxe−x1IR+(x) cx1I[0,1](x)

g∗(x) = cixe−x2/2 c/(1 − ix)2 c
eix − 1 − ixeix

x2
∫

|x|≥πm |g∗(x)|2dx = O(me−π2m2
) O(m−3) O(m−1)

∫

|x|≤πmn
x2|g∗(x)|2dx = O(1) O(1) O(mn)

Constraint on ∆ n∆3 ≤ 1 n∆3 ≤ 1 n∆2 ≤ 1

Selected m = m =
√

ln(n∆)/π m = O((n∆)1/4) m = O((n∆)1/2)

Rate = O(

√

ln(n∆)

n∆
) O((n∆)−3/4)) O((n∆)−1/2))

Table 1. Choice of m and rates in three compound Poisson examples.

It is worth stressing that the rates obtained in Table 1 are the same as the ones obtained
for fixed ∆ in Comte and Genon-Catalot (2008). This is because b = 0 for compound Poisson
models (see Remark 3.2). The fixed ∆ case requires a more complicated estimator, but no ad-
ditional constraint on ∆, while here, the estimator is simpler, under small ∆.
For instance, for ∆ = n−a, with a ∈ [1/3, 1[, the best risk is of order ln1/2(n)/n2/3 in the Gauss-

ian case and of order n−1/2 in the exponential case. In the uniform case for ∆ = n−a and now
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a ∈ [1/2, 1[, the best risk is of order n−1/4.

Example 2. The Lévy gamma process. Let α > 0, β > 0. The Lévy Gamma process (Lt) with
parameters (β, α) is a subordinator such that, for all t > 0, Lt has distribution Gamma with
parameters (βt, α), i.e. has density:

(32)
αβt

Γ(βt)
xβt−1e−αx1x≥0.

The characteristic function of Z1 is equal to:

(33) ψ∆(u) =

(

α

α− iu

)β∆

.

The Lévy density is n(x) = βx−1e−αx1I{x>0} so that g(x) = βe−αx1I{x>0} satisfies our assump-
tions. We have: g∗(x) = β/(α− ix). Table 2 gives the risk bound and auxiliary quantities.

Example 2. (continued) More generally, we consider the Lévy process (Lt) with parameters
(δ, β, c) and Lévy density

n(x) = cxδ−1/2x−1e−βx1x>0.

For δ > 1/2,
∫ +∞
0 n(x)dx < +∞, and we recover compound Poisson processes. For 0 < δ ≤ 1/2,

∫ +∞
0 n(x)dx = +∞ and g(x) = xn(x) belongs to L

2(R)∩L
1(R). This includes the case δ = 1/2

of the Lévy Gamma process. We have:

g∗(u) = c
Γ(δ + 1/2)

(β − iu)δ+1/2
.

It follows from Table 2 that for ∆ = n−a, with a ∈ [1/2, 1[, the best risk is of order n−δ/(2δ+1).

Example 3. The variance Gamma stochastic volatility model. This model was introduced by
Madan and Seneta (1990).

Let (Wt) be a Brownian motion, and let (Vt) be an increasing Lévy process (subordinator),
independent of (Wt). Assume that the observed process is

Lt = WVt .

We have

ψ∆(u) = E(eiuL∆) = E(e−
u2

2
V∆) =

(

α

α+ u2

2

)∆β

.

The Lévy measure of (Lt) is equal to:

nL(x) = β(2α)1/4)|x|−1 exp (−(2α)1/2|x|).
We can compute the density of L∆ = Z1 which is a variance mixture of Gaussian distributions
with mixing distribution Gamma Γ(β∆, α):

fZ1(x) =
1√
2π

∫ +∞

0
vβ∆−3/2e−

1
2
(x2/v+2αv) αβ∆

Γ(β∆)
dv

=
2√
2π

αβ∆

Γ(β∆)
(
(2α)1/2

|x| )
1
2
−β∆Kβ∆− 1

2
((2α)1/2|x|)

where Kν is the modified Bessel function (third kind) with index ν (see e.g. Lebedev).
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Now with α̃ = (2α)1/2, β̃ = β(2α)1/4,

g(x) = β̃ exp(−α̃x)1Ix≥0 − β̃ exp(α̃x)1Ix<0 ⇒ g∗(x) =
2iα̃β̃x

α̃2 + x2
.

Example 3 (continued). The variance Gamma stochastic volatility model is a special case
of bilateral Gamma process (see Küchler and Tappe (2008), Comte and Genon-Catalot (2008)).
Consider the Lévy process Lt with characteristic function

ψt(u) =

(

α

α− iu

)βt( α′

α′ + iu

)β′t

and Lévy density

n(x) = |x|−1(βe−αx1I(0,+∞)(x) + β′e−α|x|1I(−∞,0)(x)).

Rates are given in Table (2).

Process Example 2 Ex.2 (continued) Example 3
δ ∈]0, 1/2[ (continued)

g∗(x) =
β

α− ix
c

Γ(δ + 1/2)

(β − iu)δ+1/2

β

α− ix
− β′

α′ − ix

∫

|x|≥πm |g∗(x)|2dx = O(1/m) O(1/m2δ) O(1/m)
∫

|x|≤πmn
x2|g∗(x)|2dx = O(mn) O(m2−2δ

n ) O(mn)

Constraint on ∆ n∆2 ≤ 1 n∆2 ≤ 1 n∆2 ≤ 1

Selected m = O((n∆)1/2) O((n∆)1/(2δ+1)) O((n∆)1/2)

Rate (small ∆) O((n∆)−1/2) O((n∆)−2δ/(2δ+1)) O((n∆)−1/2)

Rate (fixed ∆) O((n∆)−1/(2β∆+1)) O([ln(n∆)]−2δ) O((n∆)−1/(4β∆+1))
(see [5] (2008))

Table 2. Choice of m and rates in examples 2, 2 (continued), 3 (continued).

The rates of the last lime in Table 2 come from Comte and Genon-Catalot (2008). As
announced before (see Remark 3.2), the rates for small ∆ are different from the rates with
fixed ∆, and they are in all cases better. Moreover, the estimation strategy in simpler and
more complete (see Remark 4.2 in Comte and Genon-Catalot (2008)). The price to pay is the
constraint on ∆.

5.2. Rates for the estimation on a compact set. In all the examples above, it is possible
to find a compact set A such that g is of class C∞ on A.

Due to Corollary 4.1, for all α > 0, E(‖g − g̃m̃‖2
A) = O((n∆)−2α/(2α+1)).

For the conditions under which this rate arises, three possibilities happen:

(1) for the compound Poisson process with Gaussian and exponential density, we have
∫

u2|g∗(u)|2du < +∞,
(2) for the compound Poisson process with uniform density f , the Lévy Gamma process and

the bilateral Lévy Gamma process, we have
∫

u2|g∗(u)|2du = +∞ and g is bounded.
(3) For the Lévy-δ (see Example 2 (continued)),

∫

u2|g∗(u)|2du = +∞ and g is not bounded.
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Choosing ∆ = n−a (see Corollary 4.1), in the first case, the best rate corresponding to

α → +∞ is of order O(n−2/3), for the second case, of order O(n−2/5) and for the third case of

order O(n−1/3).
To conclude this section we show in Table 3 the best rate that can be obtained on each

example according to the method, either Fourier method (Sinus Cardinal basis) or the time
domain method (Trigonometric basis). The winner of the challenge is always the trigonometric
basis. This is because the limit α → +∞ is considered for the latter basis only. However, on
simulations, the global method performs better.

Process Sinus Cardinal basis Trigonometric basis

Poisson-Gaussian ln1/2(n)n−2/3 n−2/3

Poisson-Exp. n−1/2 n−2/3

Poisson-Unif. n−1/4 n−2/5

Lévy-Gamma n−1/4 n−2/5

Lévy-δ n−δ/(2δ+1), δ ∈ (0, 1/2) n−1/3

Bilateral Gamma n−1/4 n−2/5

Table 3. Comparison of best possible rates with the two methods.

In all cases, rates measured as powers of n are very slow. As will be illustrated in the
simulations, the important value is n∆, that should be large enough. This means that ∆ cannot
be too small in order to keep a reasonable number n of observations. This is why, in our
simulations, we have not always taken ∆2 smaller that 1/(n∆).

6. Simulations

We provide in this section simulation results. We have implemented the estimation method
for two bases: the sinus cardinal basis of Section 3 and the trigonometric basis of Section 4. We
simulated Lévy processes chosen among the examples given in Section 5. Precisely,

(1) A compound Poisson process with Gaussian N (0, 1) Yi’s, g(x) = cx exp(−x2/2)/
√

2π.
(2) A compound Poisson process with Exponential E(1) Yi’s, g(x) = cxe−x1Ix>0.
(3) A compound Poisson process with Uniform U([0, 1]) Yi’s, g(x) = cx1I[0,1](x).
(4) A Lévy-Gamma process with parameters (α, β) = (2, 0.2), g(x) = β exp(−αx)1Ix>0,
(5) A Lévy-Gamma process with parameters (α, β) = (1, 1),
(6) A Bilateral Lévy-Gamma process with parameters (α, β) = (α′, β′) = (2, 0.2), g(x) =

β exp(−αx)1Ix≥0 − β′ exp(α′x)1Ix<0,
(7) A Bilateral Lévy-Gamma process with parameters (α, β) = (2, 0.2) and (α′, β′) = (1, 1)

After preliminary experiments, the constant κ is taken equal to 7.5 for the sinus cardinal basis
and to 1 for the trigonometric basis. The cutoff m̂ is chosen among 100 equispaced values
between 0 and 10. The dimension Dm̃ is chosen among 80 values between 1 and 80. We used
in both cases the expression of the estimators using the coefficients on the basis. In the sinus
cardinal case, this avoids high dimensional matrices manipulations, but the series have to be
truncated (we keep coefficients âm,j for |j| ≤ Kn and we take Kn = 15).

Results are given in Figures 1 and 2. We give confidence bands for our estimators by plotting
50 estimated curves on the same figure. The first two columns give estimation results with the
sinus cardinal basis for n = 5000,∆ = 0.2 (n∆ = 1000) and n = 50000,∆ = 0.05 (n∆ = 2500).
The third columns concerns the trigonometric basis for n = 50000,∆ = 0.05.
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It is clear from the first two columns that increasing n∆ improves the result by showing a thin-
ner confidence band. Comparing the last two columns amounts to comparing the performance
of the two bases. It appears that the sinus cardinal must be preferred because the trigonometric
basis has very important edge effects for highly dissymmetric densities: see in particular the
exponential-Poisson, and the Gamma case, which start with a peak and end at zero.

On top of each graph in Figures 1 and 2, we give the mean of the selected values for m̂
(sinus cardinal basis) or for Dm̃ (trigonometric basis) with the associated standard deviation
in parentheses. Various values are chosen by the estimation procedure, and in each case, the
standard deviation exhibits a reasonable variability. This is an indication that the constants in
the penalties are adequately chosen: too small constants κ imply very unstable choices for the
same model, while greater κ’s quickly lead to null standard deviations for 50 sample paths. Note
also that the higher the regularity of g, the smaller the selected m̂’s and Dm̃’s (which is coherent

with orders as Dm̃ = O(n1/(2α+1)) for a regularity α). The uniform-Poisson case involves larger
values for m̂ than the two other Poisson cases, for instance.

At last, let us remark that, when
∫

u2|g∗(u)|2du < +∞, we need not use a C1-basis in the
second approach. For instance, a histogram basis or a piecewise polynomial basis can also be
implemented. But in practice, it is not possible to know if the condition is fulfilled or not.

7. Concluding remarks

In this paper, we have investigated in the high frequency framework the nonparametric es-
timation of the Lévy density n(·) of a pure jump Lévy process under assumption (H1). This
paper complements a previous one (Comte and Genon-Catalot (2008)) where the low frequency
framework was treated. The estimation of n(.) is done through the estimation of the function
g(x) = xn(x). In here, we use two kinds of bases. On the one hand, the sinus cardinal basis,
which is of classical use in deconvolution provides a global estimation. On the other hand, finite
dimensional bases satisfying (21) provide an estimation of g restricted to a compact set. In each
approach, an adaptive estimator is built which reaches automatically the classical best rate that
can be achieved on a prescribed class of regularity. The estimators can easily be implemented.
Especially in the case of the sinus cardinal basis, the method allows the automatic (and adap-
tive) choice of a cutoff value m in Fourier inversion, a point that was unsolved in several previous
references (quoted in the introduction).

There remain several open problems: mainly, how can the method be extended to more
general Lévy processes having a drift term and under a weaker assumption on n(·) such as
∫

x2n(x)dx < +∞ (see Neumann and Reiss (2009)).

8. Appendix: Proofs

8.1. Proof of Theorem 2.1. We apply Rosenthal’s inequality recalled in Appendix (see (51)):

E

(∣

∣

∣

∣

∣

1

n

n
∑

k=1

Z`
k − E(Z`

1)

∣

∣

∣

∣

∣

p)

≤ C(p)

np





n
∑

k=1

E[|Z`
k − E(Z`

1)|p] +
(

n
∑

k=1

E[(Z`
k − E(Z`

1))
2]

)p/2




≤ C(p)

np
(nE[|Z`

1 − E(Z`
1)|p] + np/2(E[(Z`

1 − E(Z`
1))

2])p/2)

≤ C ′(p)
np

(nE(Zp`
1 ) + np/2[E(Z2`

1 )]p/2)

≤ C”(p)

(

∆

np−1
+

(

∆

n

)p/2
)

.
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(a1) ¯̂m = 0.85 (0.05) (a2) ¯̂m = 0.91 (0.03.) (a3) D̄m̂ = 5.08 (0.34)
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Figure 1. Confidence band for the estimation of g for a compound Poisson
process with Gaussian (first line), Exponential E(1) (second line), and uniform
U([0, 1]) (third line) Yi’s, c = 0.5. True (bold black line) and 50 estimated curves
(dotted red), left ∆ = 0.2 n = 5000, Sinus Cardinal Basis; center, ∆ = 0.05,
n = 5.104, Sinus Cardinal Basis; right ∆ = 0.05, n = 5.104, trigonometric basis.

We have

1

n∆

n
∑

k=1

Z`
k −m` =

1

n∆

(

n
∑

k=1

(Z`
k − E(Z`

1)

)

+
1

∆
E(Z`

1) −m`.

First note that, by Proposition 2.2,

1

∆
E(Z`

1) −m` = ∆O(1).

Using that
√
n∆∆ = (n∆3)1/2 = o(1), we see that the bias term tends to 0.
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(a1) ¯̂m = 2.32 (0.39) (a2) ¯̂m = 3.74 (0.64) (a3) D̄m̂ = 13.8 (2.7)
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Figure 2. Confidence band for the estimation of g for a Lévy Gamma process
with parameters (α, β) = (2, 0.2) (first line), (α, β) = (1, 1) (second line), a
bilateral Lévy Gamma process with parameters (α, β) = (α′, β′) = (2, 0.2) (third
line) and a bilateral Lévy Gamma process with parameters (α, β) = (2, 0.2),
(α′, β′) = (1, 1). True (bold black line) and 50 estimated curves (dotted red),
left ∆ = 0.2 n = 5000, Sinus Cardinal Basis; center, ∆ = 0.05, n = 5.104, Sinus
Cardinal Basis; right ∆ = 0.05, n = 5.104, trigonometric basis.
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Let us introduce the centered i.i.d. random variables

ξk =
1√
n∆

(Z`
k − E(Z`

1)).

We have

nE(ξ2k) =
1

∆
(E(Z2`

k ) − (E(Z`
1))

2) = m2` + o(1).

And

nE(ξ4k) ≤ Cn
1

n2∆2
(E(Z4`

k ) + (E(Z`
1)

4)) =
1

n∆
(m4` +O(1)),

which tends to 0. Hence, the result. �

8.2. Proof of Proposition 2.3. By the Taylor formula,

ψ∆(u) − 1 = uψ
′

∆(cuu) = iu∆ψ∆(cuu)g
∗(cuu),

for some cu ∈ (0, 1). This gives (10) and thus (11).
For the other bound with p = 1, note that

E(|θ̂∆(u) − θ∆(u)|2) =
1

n
Var(Z1 exp (iuZ1)) ≤

1

n
E(Z2

1 ).

Inequality (13)follows.
For p ≥ 1, we apply Rosenthal’s inequality recalled in Appendix (see (51)):

E

(

E(|θ̂∆(u))) − θ∆(u)|2p)
)

≤ C(2p)

n2p

(

n
∑

k=1

E[|Zke
iuZk − E(Zke

iuZk)|2p]

+

(

n
∑

k=1

E|Zke
iuZk − E(Zke

iuZk)|2]
)p)

≤ C ′(2p)
n2p

(nE(Z2p
1 ) + np(E(Z2

1 ))p).

We conclude using Proposition 2.2 and p ≥ 1. �

8.3. Proof of Theorem 2.2. We have

√
n∆(θ̂∆(u)/∆ − g∗(u)) =

√
n∆

(

θ̂∆(u) − θ∆(u)

∆
+ g∗(u)(ψ∆(u) − 1)

)

.

Hence, the bias term in
√
n∆(θ̂∆(u)/∆ − g∗(u)) is of order

√
n∆∆ =

√
n∆3. This explains the

condition n∆3 = o(1) in Theorem 2.2. There remains to study Xn(u) =
√
n∆(∆−1θ̂∆(u) −

∆−1θ∆(u)).
Using (5), we have,

Xn(u) =

∫

eiux
√
n∆(µ̂n(dx) − µ∆(dx)) =

n
∑

k=1

Xk,n(u),

with

Xk,n(u) =
1√
n∆

(Zke
iuZk − θ∆(u)).

Consider, for any integer l ≥ 1, u1, u2, . . . , ul ∈ R. We need to prove that the random vector
Xn = (Xn(u1),Xn(u2), . . . ,Xn(ul))

′ (with values in C
l) converges in distribution to Nl(0, V )

where the covariance matrix V is given by:

Vj,j′ =

∫

ei(uj−uj′)xx2n(x)dx.
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Let us set g1 = g and for ` ≥ 1,

(34) g`(x) = x`−1g(x) = x`n(x).

Since the random variables Xk,n(u) are independent, identically distributed and centered, it
is enough to check that, for all (u, v)

(35) nE(Xk,n(u)X̄k,n(v)) → V (u, v) =

∫

ei(u−v)xx2n(x)dx = g∗2(u− v),

and

(36) nE(|Xk,n(u)|4) → 0.

We have:

nE(Xk,n(u)X̄k,n(v)) =
1

∆
(E(Z2

ke
i(u−v)Zk ) − θ∆(u)θ̄∆(v))

and

E(Z2
1e

i(u−v)Z1) = −ψ′′

∆(u− v)).

Computing ψ
′′

∆, we get:

ψ
′′

∆(u) = −∆ψ∆(u)[g∗2(u) + ∆(g∗(u))2].

Since θ∆(u)θ̄∆(v) = ∆2g∗(u)g∗(−v)ψ∆(u)ψ∆(−v),
nE(Xk,n(u)X̄k,n(v)) = ψ∆(u− v)[g∗2(u− v) + ∆O(1)] = g∗2(u− v) + o(1),

which gives (35).
Moreover,

(37) nE(|Xk,n(u)|4) ≤ 8

n∆2
(E(Z4

k) + |θ∆(u)|4) =
8

n∆
(m4 + o(1)),

which implies (36).�

8.4. Proof of Theorem 3.1. The proof is given in two steps. We define, for some b, 0 < b < 1,

Ωb :=

{∣

∣

∣

∣

(1/n∆)
∑n

k=1 Z
2
k

E(Z2
1/∆)

− 1

∣

∣

∣

∣

≤ b

}

,

so that E(‖ĝm̂ − g‖2) = E(‖ĝm̂ − g‖21IΩb
) + E(‖ĝm̂ − g‖21IΩc

b
).

Step 1. Study of E(‖ĝm̂ − g‖21IΩb
). For notational convenience, let us define, for t ∈ Sm:

(38) νn(t) =
1

2π

∫

θ̂∆(u) − θ∆(u)

∆
t∗(−u)du

(39) Rn(t) =
1

2π

∫

(ψ∆(u) − 1)g∗(u)t∗(−u)du.

We have used the same notation as in (25) and (26) but the interpretation is different. Note
that νn = ν̄n and Rn = R̄n so that they are both real valued. Then (24) holds.

We must split νn into two terms. With kn to be defined later on, let

θ
(1)
∆ (x) = E

(

Z11I|Z1|≤kn

√
∆e

ixZ1

)

and θ
(2)
∆ (x) = E

(

Z11I|Z1|>kn

√
∆e

ixZ1

)

and θ̂
(1)
∆ (x) and θ̂

(2)
∆ (x) their empirical counterparts. We define

ν(1)
n (t) =

1

2π∆

∫

(θ̂
(1)
∆ (u) − θ

(1)
∆ (u))t∗(−u)du
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and

ν(2)
n (t) =

1

2π∆

∫

(θ̂
(2)
∆ (u) − θ

(2)
∆ (u))t∗(−u)du.

The definition of ĝm̂ implies that

(40) γn(ĝm̂) + pen(m̂) ≤ γn(gm) + pen(m)

where gm denotes the orthogonal projection of g on Sm.
Then, using (24) yields that, for all m = 1, . . . ,mn,

‖ĝm̂ − g‖2 ≤ ‖g − gm‖2 + pen(m) + 2ν(1)
n (gm − ĝm̂) − pen(m̂)

+2Rn(gm − ĝm̂) + 2ν(2)
n (gm − ĝm̂)

≤ ‖g − gm‖2 + pen(m) +
3

8
‖gm − ĝm̂‖2 + 8 sup

t∈Sm+Sm̂,‖t‖=1
[ν(1)

n (t)]2 − pen(m̂)

+8 sup
t∈Smn ,‖t‖=1

[Rn(t)]2 + 8 sup
t∈Smn ,‖t‖=1

[ν(2)
n (t)]2

≤ (1 +
3

4
)‖g − gm‖2 + pen(m) +

3

4
‖ĝm̂ − g‖2

+8

(

sup
t∈Sm+Sm̂,‖t‖=1

[ν(1)
n (t)]2 − p(m, m̂)

)

+

+ 8p(m, m̂) − pen(m̂)

+8 sup
t∈Smn ,‖t‖=1

[Rn(t)]2 + 8 sup
t∈Smn ,‖t‖=1

[ν(2)
n (t)]2.

The function p(m,m′) plugged in the last inequality is fixed by applying Talagrand’s inequality

(see Lemma 9.1) to ν
(1)
n , which yields the following result:

Proposition 8.1. Under the Assumptions of Theorem 3.1, define

(41) p(m,m′) = 4E(Z2
1/∆)

m ∨m′

n∆
,

then

E( sup
t∈Sm+Sm̂,‖t‖=1

[ν(1)
n (t)]2 − p(m, m̂))+ ≤

mn
∑

m′=1

E( sup
t∈Sm+Sm′ ,‖t‖=1

[ν(1)
n (t)]2 − p(m,m′))+ ≤ C

n∆
,

where C is a constant.

Now, on Ωb, the following inequality holds (by bounding the indicator by 1), for any choice
of κ:

(42) ∀m, (1 − b)penth(m) ≤ pen(m) ≤ (1 + b)penth(m).

Therefore

1

4
‖ĝm̂ − g‖21IΩb

≤ 7

4
‖g − gm‖2 + (1 + b)penth(m)1IΩb

+ 8

(

sup
t∈Sm+Sm̂,‖t‖=1

[ν(1)
n (t)]2 − p(m, m̂)

)

+

+(8p(m, m̂) − (1 − b)penth(m̂))1IΩb

+8 sup
t∈Smn ,‖t‖=1

[Rn(t)]2 + 8 sup
t∈Smn ,‖t‖=1

[ν(2)
n (t)]2.

The constant κ is now chosen such that

∀m,m′ ∈ {1, . . . ,mn}, 8p(m,m′) ≤ (1 − b)(penth(m) + penth(m′)),
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that is κ ≥ 32/(1 − b). In view of (41), this gives the choices

penth(m) =
32

1 − b
E(Z2

1/∆)
m

n∆
and pen(m) =

32

1 − b

1

n∆

n
∑

i=1

Z2
i

m

n∆
.

It follows that

1

4
‖ĝm̂ − g‖21IΩb

≤ 7

4
‖g − gm‖2 + 2penth(m)

+8
mn
∑

m′=1

(

sup
t∈Sm+Sm′ ,‖t‖=1

[ν(1)
n (t)]2 − p(m,m′)

)

+

+8 sup
t∈Smn ,‖t‖=1

[Rn(t)]2 + 8 sup
t∈Smn ,‖t‖=1

[ν(2)
n (t)]2.

Using (39) and (10), we get

(43) sup
t∈Smn ,‖t‖=1

R2
n(t) ≤ C∆2

∫ πmn

−πmn

u2|g∗(u)|2du.

For ν
(2)
n (t), we write

E

(

sup
t∈Smn ,‖t‖=1

[ν(2)
n (t)]2

)

≤ 1

2π∆2

∫ πmn

−πmn

E|θ̂(2)
∆ (u) − θ

(2)
∆ (u)|2du

≤
E(Z2

11I|Z1|>kn

√
∆)mn

n∆2

≤ E(Z4
1 )mn

nk2
n∆3

=
[E(Z4

1 )/∆]mn

nk2
n∆2

≤ [E(Z4
1 )/∆]

k2
n∆

since mn ≤ n∆. We know that [E(Z4
1 )/∆] is bounded. If k2

n ≥ Cn/ ln2(n∆), then the above
term is of order ln2(n∆)/(n∆) .

Then we obtain that, for all m ∈ {1, . . . ,mn},

E
(

‖ĝm̂ − g‖21IΩb

)

≤ 7‖g − gm‖2 + 8penth(m) +
C1

n∆
+ C2∆

2

∫ πmn

−πmn

u2|g∗(u)|2du+ C3
ln2(n∆)

n∆
.

Step 2. Study of E(‖ĝm̂ − g‖21IΩc
b
).

The strategy is different. Using (24) and (40) yields that, ∀m ∈ {1, . . . ,mn},
‖ĝm̂ − g‖2 ≤ ‖g − gm‖2 + pen(m) + 2νn(gm − ĝm̂) − pen(m̂) + 2Rn(gm − ĝm̂)

≤ ‖g − gm‖2 + pen(m) +
1

4
‖gm − ĝm̂‖2(44)

+8 sup
t∈Smn ,‖t‖=1

[νn(t)]2 + 8 sup
t∈Smn ,‖t‖=1

[Rn(t)]2.(45)

Now we apply inequality (43) to Rn(t) and the Parseval formula for νn(t), and get

1

2
‖ĝm̂ − g‖2 ≤ 3

2
‖g − gm‖2 + penth(m) + [pen(m) − E(pen(m))]

+
4

π∆2

∫ πmn

−πmn

|θ̂∆(u) − θ∆(u)|2du+ C ′∆2

∫ πmn

−πmn

u2|g∗(u)|2du.
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Therefore, using that penth(m) = E(pen(m)), we obtain

(46) E
(

(pen(m) − penth(m))1IΩc
b

)

≤







E





(

1

n∆

n
∑

k=1

(Z2
k − E(Z2

1 )

)2










1/2

(P(Ωc
b))

1/2,

and we find

1

2
E(‖ĝm̂ − g‖21IΩc

b
) ≤

(

3

2
‖g‖2 + penth(m) + C”∆2m2

n‖g‖2

)

P(Ωc
b)

+E
1/2





(

1

n∆

n
∑

k=1

(Z2
k − E(Z2

1 )

)2


P
1/2(Ωc

b)

+E
1/2

(

(
4

π∆2

∫ πmn

−πmn

|θ̂∆(u) − θ∆(u)|2du)2
)

P
1/2(Ωc

b).

Then we apply (9) of Theorem 2.1 with ` = 2 and get for p ≥ 2:

E

(∣

∣

∣

∣

∣

1

n∆

n
∑

k=1

Z2
k − E(Z2

1 )

∣

∣

∣

∣

∣

p)

≤ Cp

(

1

n∆

)p/2

.

Thus, by taking p = 2,

E
1/2

(

(
1

n∆

n
∑

i=1

(Z2
i − E(Z2

i ))2

)

≤ C√
n∆

.

Applying (12) for p = 2 gives

E(|θ̂∆(u) − θ∆(u)|4) ≤ C∆2

n2
.

Thus

E

(

(
4

π∆2

∫ πmn

−πmn

|θ̂∆(u) − θ∆(u)|2du)2
)

≤ 16

π2∆4
(2πmn)

∫ πmn

−πmn

E(|θ̂∆(u) − θ∆(u)|4du)

≤ C ′m
2
n

∆4

∆2

n2
≤ C ′

as mn ≤ n∆. We obtain:

(47) E(‖ĝm̂ − g‖21IΩc
b
) ≤ C

(

1 + n2∆4
)

P(Ωc
b) + C ′(1 +

1√
n∆

)P1/2(Ωc
b).

Lastly, if follows from the Markov inequality that

P(Ωc
b) ≤ 1

bp
E

(∣

∣

∣

∣

(1/n∆)
∑n

k=1 Z
2
k

E(Z2
1/∆)

− 1

∣

∣

∣

∣

p)

≤ 1

(E(Z2
1/∆)b)p

E

(∣

∣

∣

∣

∣

1

n∆

n
∑

k=1

Z2
i − E(Z2

1/∆)

∣

∣

∣

∣

∣

p)

.

We find that, if E(|Z1|2p) < +∞ and p ≥ 2,

(48) P(Ωc
b) ≤

Cp

(E(Z2
1/∆)b)p

1

(n∆)p/2
.

Therefore, using (47) and the above inequality, if we take p = 4 (i.e. E(Z8
1 ) <∞), we get

E(‖ĝm̂ − g‖21IΩc
b
) ≤ C/(n∆).
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This ends step 2 and the proof of Theorem 3.1. �

8.5. Proof of Proposition 8.1. Here we apply the Talagrand (see Lemma 9.1) Inequality to
the class

F = {ft, t ∈ Sm + Sm′} where ft(z) =
z1I|z|≤kn

√
∆

2π∆

∫ π(m∨m′)

−π(m∨m′)
eixzt∗(−x)dx.

In that case, ν
(1)
n (t) = (1/n)

∑n
k=1(ft(Zk)−E(ft(Zk))). We have to find the three quantities M ,

H, v.
Let m” = m ∨m′, and note that Sm + Sm′ = Sm”. Using Inequality (17),

sup
z∈R

|ft(z)| ≤ kn

2π
√

∆
sup
z∈R

|2πt(z)| ≤ kn‖t‖∞√
∆

≤ kn

√
m”√
∆

:= M.

Clearly,

E

(

sup
t∈Sm+Sm′ ,‖t‖=1

[ν(1)
n (t)]2

)

≤ 1

2π∆2

∫ πm”

−πm”
E|θ̂(1)

∆ (u) − θ
(1)
∆ (u)|2du ≤ E(Z2

1)m”

n∆2
.

Thus we set

H2 =
E(Z2

1 )m”

n∆2
.

The most delicate term is v.

Var(ft(Z1)) ≤ 1

4π2∆2
E

(∫∫

Z2
11I|Z1|≤kn

√
∆e

i(x−y)Z1t∗(−x)t∗(y)dxdy
)

=
1

4π2∆2

∫∫

p∗∆(x− y)t∗(−x)t∗(y)dxdy,

where

p∗∆(x) = E(Z2
11I|Z1|≤kn

√
∆e

ixZ1).

Using that t =
∑

j∈Z
tjϕm”,j with ‖t‖2 =

∑

j∈Z
t2j = 1,

Var(ft(Z1)) ≤ 1

4π2∆2

∑

j,k∈Z

tjtk

∫∫

p∗∆(x− y)ϕ∗
m”,j(−x)ϕ∗

m”,k(y)dxdy

≤ 1

4π2∆2





∑

j,k∈Z

∣

∣

∣

∣

∫∫

p∗∆(x− y)ϕ∗
m”,j(−x)ϕ∗

m”,k(y)dxdy

∣

∣

∣

∣

2




1/2

,

Now, using Proposition 2.1, we have

p∗∆(x) = ∆

∫

z1I|z|≤kn

√
∆e

ixz
E(g(z − Z1))dz.

This implies that (see (H4))
∫

|p∗∆(z)|2dz ≤ 2π

∫

|p∆(z)|2dz = 2π∆2

∫

z21I|z|≤kn

√
∆E

2(g(z − Z1))dz

≤ 2π∆2
E

(∫

z21I|z|≤kn

√
∆g

2(z − Z1)dz

)

≤ 4π∆2
E

(
∫

(x2 + Z2
1 )g2(x)dx

)

= 4π∆2
(

M2 + E(Z2
1 )‖g‖2

)

.
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Therefore, it follows

Var(ft(Z1)) ≤ 1

4π2∆2

(

∫∫

[−πm”,πm”]2
|p∗∆(x− y)|2dxdy

)1/2

≤ 1

4π2∆2
(2πm”)1/2(

∫

|p∗∆(z)|2dz)1/2

≤
√
m”√
2π∆

(

M2 + ‖g‖2
E(Z2

1 )
)1/2

:= v.

Applying Lemma 9.1 yields, for ε2 = 1/2 and p(m,m′) given by (41) yields

E

(

sup
t∈Sm+Sm′ ,‖t‖=1

[ν(1)
n (t)]2 − p(m,m′)

)

+

≤ C1

(√
m”

n∆
e−C2

√
m” +

k2
nm”

n2∆
e−C3

√
n/kn

)

as p(m,m′) = 4H2. We choose

kn =
C3

4

√
n

ln(n∆)
,

and as m ≤ n∆, we get

E

(

sup
t∈Sm+Sm′ ,‖t‖=1

[ν(1)
n (t)]2 − p(m,m′)

)

+

≤ C ′
1

(√
m”

n∆
e−C2

√
m” +

1

(∆n)4 ln2(n∆)

)

.

Therefore
mn
∑

m′=1

E

(

sup
t∈Sm+Sm′ ,‖t‖=1

[ν(1)
n (t)]2 − p(m,m′)

)

+

≤ C ′
1

(

∑n∆
m′=1

√
m”e−C2

√
m”

n∆
+

1

(n∆)3 ln2(n∆)

)

.

As C2xe
−C2x is decreasing for x ≥ 1/C2, and its maximum is 1/(eC2), we get

mn
∑

m′=1

√
m”e−C2

√
m” ≤

∑

√
m′≤1/C2

(eC2)
−1 +

∑

√
m′≥1/C2

√
m′e−C2

√
m′

≤ 1

eC3
2

+

∞
∑

m′=1

√
m′e−C2

√
m′
< +∞.

I follows that
mn
∑

m′=1

E

(

sup
t∈Sm+Sm′ ,‖t‖=1

[ν(1)
n (t)]2 − p(m,m′)

)

+

≤ C

n∆

and Proposition 8.1 is proved. �

8.6. Proof of Proposition 4.1. First, we know that Rn(t) = (1/2π)
∫

(ψ∆ − 1)g∗(u)t∗(−u)
and thus, if

∫

u2|g∗(u)|du < +∞, if follows from (10) that

R2
n(t) ≤ ∆2‖g‖2

1

(2π)2

(
∫

|ug∗(u)t∗(−u)|du
)2

≤ ∆2‖g‖2
1

(2π)2

∫

u2|g∗(u)|2du
∫

|t∗(−u)|2du.

Noting that
∫

|t∗(−u)|2du = 2π‖t‖2 = 2π‖t‖2
A gives 1).

For the two other cases, using Proposition 2.1, we have, for t a function with support [a, b]:

1

∆
E(Z1t(Z1)) =

∫ b

a
t(z)Eg(z − Z1)dz = E(

∫ b−Z1

a−Z1

t(x+ Z1)g(x)dx).
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Thus Rn(t) = E(
∫ b−Z1

a−Z1
t(x+ Z1)g(x)dx −

∫ b
a t(x)g(x)dx).

On (|Z1| > b− a), [a− Z1, b− Z1] ∩ [a, b] = ∅ and

E

(

1I|Z1|>b−a

∣

∣

∣

∣

∫ b−Z1

a−Z1

t(x+ Z1)g(x)dx −
∫ b

a
t(x)g(x)dx

∣

∣

∣

∣

)

≤ 2‖t‖∞‖g‖1
E(|Z1|)
b− a

≤ 4Φ0‖g‖2
1

√
Dm∆‖t‖A

b− a
.

On (|Z1| ≤ b− a), [a− Z1, b− Z1] ∩ [a, b] 6= ∅. Assume for instance that 0 ≤ Z1 ≤ b− a.

∫ b−Z1

a−Z1

t(x+ Z1)g(x)dx −
∫ b

a
t(x)g(x)dx

=

∫ a

a−Z1

t(x+ Z1)g(x)dx +

∫ b−Z1

a
(t(x+ Z1) − t(x))g(x)dx −

∫ b

b−Z1

t(x)g(x)dx.

To study the middle term, we use the fact that t is C1 on [a, b].

T1 := E

(

1I0≤Z1≤b−a

∫ b−Z1

a
(t(x+ Z1) − t(x))g(x)dx

)

= E

(

Z11I0≤Z1≤b−a

∫ b−Z1

a

∫ 1

0
t′(x+ uZ1)dug(x)dx

)

= E

(

Z11I0≤Z1≤b−a

∫ 1

0
(

∫ b−Z1

a
t′(x+ uZ1)g(x)dx)du

)

An application of the Cauchy-Schwarz inequality yields

|T1| ≤ E|Z1|‖t′‖A‖g‖ ≤ 2Φ0‖g‖1‖g‖‖t‖A∆Dm.

Next,

T2 := E

(

1I0≤Z1≤b−a

∫ a

a−Z1

t(x+ Z1)g(x)dx

)

.

Here we distinguish between 2) and 3). If g is bounded (case 2)), then

|T2| ≤ ‖t‖∞‖g‖∞E(|Z1|) ≤ 2Φ0‖g‖1‖t‖A∆
√

Dm.

Otherwise (case 3)), using the Cauchy-Schwarz inequality again,

|T2| ≤ E(
√

Z+
1 )‖t‖∞‖g‖ ≤

√

E(|Z1|)Φ0

√

Dm‖t‖A‖g‖
≤

√
2Φ0‖t‖A

√

‖g‖1‖g‖
√

Dm∆.

The same bound holds for the last term.
The same study can be done for a − b ≤ Z1 ≤ 0. Joining all terms, we find that, if g is

bounded

|Rn(t)| ≤ CΦ0‖t‖A∆Dm.

Otherwise,

|Rn(t)| ≤ C ′Φ0‖t‖A(
√

∆Dm + ∆Dm).

The constants C and C ′ depend on a, b, ‖g‖1 and ‖g‖. �
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8.7. Proof of Proposition 4.2. Relation (24) still holds with νn and Rn respectively defined
by (25) and (26). As for any t ∈ Σm, ‖t− g‖2 = ‖t− g‖2

A + ‖g‖2
Ac , and we get

γn(t) − γn(s) = ‖t− g‖2
A − ‖s− g‖2

A − 2νn(t− s) − 2Rn(t− s).

Writing that γn(g̃m) − γn(g) ≤ γn(gm) − γn(g), we get

‖g̃m − g‖2
A ≤ ‖gm − g‖2

A + 2νn(g̃m − gm) + 2Rn(g̃m − gm).

We have

2νn(g̃m − gm) ≤ 1

8
‖g̃m − gm‖2

A + 8 sup
t∈Σm,‖t‖A=1

[νn(t)]2,

and the analogous inequality for Rn. Using that ‖g̃m − gm‖2
A ≤ 2‖g − gm‖2

A + 2‖g̃m − g‖2
A and

some algebra yields:

1

2
‖g̃m − g‖2

A ≤ 3

2
‖gm − g‖2

A + 8 sup
t∈Σm,‖t‖A=1

[νn(t)]2 + 8 sup
t∈Σm,‖t‖A=1

[Rn(t)]2.

We have:

E

(

sup
t∈Σm,‖t‖A=1

[νn(t)]2

)

≤
∑

λ∈Λm

E([νn(ϕλ)]2) =
∑

λ∈Λm

1

n∆2
Var(Z1ϕλ(Z1))

≤ E(Z2
1

∑

λ

ϕ2
λ(Z1))

1

n∆2
= [E(Z2

1 )/∆]
Φ0Dm

n∆
.(49)

Now, we conclude using Inequality (49) and Proposition 4.1. �

8.8. Proof of Theorem 4.1. The proof of Theorem 4.1 is close to the proof of Theorem 3.1.
Hence we focus mainly on the differences. Note that νn defined in (25) can be written as

νn(t) =
1

n

n
∑

k=1

(ft(Zk) − E(ft(Z1)))

with ft now given by ft(z) = zt(z) = z1Iz∈At(z), since t has compact support A. As in step 1 of
Theorem 3.1, we are led to the inequality:

1

2
‖g̃m̃ − g‖2

A1IΩb
≤ 3

2
‖g − gm‖2

A + 2penth(m)

+8
∑

m′∈Mn

(

sup
t∈Σm+Σm′ ,‖t‖A=1

[νn(t)]2 − p(m,m′)

)

+

+8 sup
t∈Sn,‖t‖A=1

[Rn(t)]2,

with 8p(m,m′) ≤ (1 − b)(penth(m) + penth(m′)), for all m ∈ Mn.
It follows from Proposition (4.1) that

sup
t∈Sn,‖t‖A=1

[Rn(t)]2 ≤ Kρ
n,∆
.

Proposition 8.2. Under the Assumptions of Theorem 4.1, define

(50) p(m,m′) = 4E(Z2
1/∆)

Dm ∨Dm′

n∆
,
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then

∑

m′∈Mn

E

(

sup
t∈Σm+Σm′ ,‖t‖A=1

[νn(t)]2 − p(m,m′)

)

+

≤ C

n∆
,

where C is a constant.

For the study of E(‖g̃m̃ − g‖2
A1IΩc

b
), as in step 2 above, we have the inequality analogous to

(44):

1

2
‖ĝm̂ − g‖2 ≤ 3

2
‖gA − gm‖2 + pen(m) + 8 sup

t∈Sn,‖t‖A=1
[νn(t)]2 + 8 sup

t∈Sn,‖t‖A=1
[Rn(t)]2.

The bound for P(Ωc
b) is given by (48). Proposition 4.1 applies to bound [Rn(t)]2 by Cρ

n,∆
.

Then we have again

pen(m)1IΩc
b
≤ penth(m) + (pen(m) − penth(m))1IΩc

b
.

The same bound holds also for the term E[(pen(m)−E(pen(m)))1IΩc
b
]. We apply inequality (46).

It remains to study the term E(supt∈Sn
[νn(t)]21IΩc

b
). We use

E

(

sup
t∈Sn,‖t‖A=1

[νn(t)]21IΩc
b

)

≤
(

E sup
t∈Sn,‖t‖A=1

[νn(t)]4

)1/2

P
1/2(Ωc

b).

Denote by (ϕλ)λ∈Λn
an orthonormal basis of Sn, |Λn| = Nn. We have

E

(

sup
t∈Sn,‖t‖A=1

[νn(t)]4

)

= E









∑

λ∈Λn

ν2
n(ϕλ)





2



≤ Nn

∑

λ∈Λn

E







(

1

n∆

n
∑

k=1

(Zkϕλ(Zk) − E(Zkϕλ(Zk)))

)4






≤ KNn

(n∆)4

∑

λ∈Λn

[

nE[(Z1ϕλ(Z1))
4] +

(

nE(Z2
1ϕ

2
λ(Z1))

)2
]

,

where the last inequality follows from the Rosenthal Inequality (51).
If the basis is bounded, ϕ2

λ ≤ B, ∀λ, as for instance basis [T] (B = 2), we find

E

(

sup
t∈Sn,‖t‖A=1

[νn(t)]4

)

≤ KN2
nB

2

(n∆)4
[

nE(Z4
1/∆)∆ + n2

E
2(Z2

1/∆)∆2
]

≤ K ′N2
n

(n∆)2
≤ K ′

using Nn ≤ n∆.
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In the general case, we use that
∑

λ ϕ
4
λ(x) ≤ ‖ϕλ‖2

∞
∑

λ ϕ
2
λ(x) and ‖∑λ ϕ

2
λ‖∞ ≤ Φ2

0Nn and
‖ϕλ‖2

∞ ≤ Φ2
0Nn, so that

E

(

sup
t∈Sn,‖t‖A=1

[νn(t)]4

)

≤ KNn

(n∆)4



Φ4
0N

2
nnE(Z4

1/∆)∆ + n2
E

2





∑

λ∈Λn

(Z2
1/∆)ϕ2

λ(Z1)



∆2





≤ KNn

(n∆)4
[

Φ4
0N

2
nnE(Z4

1/∆)∆ + n2Φ4
0N

2
nE

2(Z2
1/∆)∆2

]

≤ K”N3
n

(n∆)2
≤ K”(n∆)

using Nn ≤ n∆.

Using (48), we obtain E

(

supt∈Sn,‖t‖A=1[νn(t)]21IΩc
b

)

≤ C/(n∆) if P(Ωc
b) ≤ 1/(n∆)2 which

holds for p = 4 and E(Z8
1 ) < +∞ in the first case (bounded basis). In the general case, we need

P(Ωc
b) ≤ 1/(n∆)3 and thus p = 6 and E(Z12

1 ) < +∞ .

8.9. Proof of Proposition 8.2. Again, we apply the Talagrand (see Lemma 9.1) Inequality
to the class

F = {ft, t ∈ Σm + Σm′} where ft(z) =
z1Iz∈At(z)

∆
.

We obtain similarly to (49)

H2 = [E(Z2
1 )/∆]Φ0(Dm ∨Dm′)/(n∆) and M = bAΦ0

√

Dm ∨Dm′/∆,

where bA = supz∈A |z|. Lastly, we find

Var

(

Z1

∆
t(Z1)

)

≤ E(Z2
1 t

2(Z1))/∆
2 =

1

∆

∫

zt2(z)E(g(z − Z1))dz

≤ bA‖t‖∞
∆

E

(
∫

|t(z)g(z − Z1)|dz
)

≤ bAΦ0(Dm ∨Dm′)1/2

∆
E

(

‖t‖
∫

g2(z − Z1)dz

)1/2

≤ 2bAΦ0(Dm ∨Dm′)1/2‖g‖
∆

.

We denote by v = C(Dm ∨Dm′)1/2/∆ with C = 2Φ0bA‖g‖.
Then we get

E

(

sup
t∈Σm+Σm′ ,‖t‖A=1

[νn(t)]2 − p(m,m′)

)

+

≤ C ′
1

(√
Dm ∨Dm′

n∆
e−C2

√
Dm∨Dm′ +

1

n∆
exp(−

√
n∆)

)

.

Therefore, as Dm ≤ n∆, as above

∑

m′∈Mn

E

(

sup
t∈Σm+Σm′ ,‖t‖A=1

[νn(t)]2 − p(m,m′)

)

+

≤ C

n∆
.

This ends the proof of Proposition 8.2. �
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9. Appendix

The Talagrand inequality. The following result follows from the Talagrand concentration
inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the
proof of their Corollary 2 page 354).

Lemma 9.1. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables, let νn,Y (f) =
(1/n)

∑n
i=1[f(Yi) − E(f(Yi))] and let F be a countable class of uniformly bounded measurable

functions. Then for ε2 > 0

E

[

sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ε2)H2
]

+
≤ 4

K1

(

v

n
e−K1ε2 nH2

v +
98M2

K1n2C2(ε2)
e
− 2K1C(ε2)ε

7
√

2
nH
M

)

,

with C(ε2) =
√

1 + ε2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M, E

[

sup
f∈F

|νn,Y (f)|
]

≤ H, sup
f∈F

1

n

n
∑

k=1

Var(f(Yk)) ≤ v.

By standard density arguments, this result can be extended to the case where F is a unit
ball of a linear normed space, after checking that f 7→ νn(f) is continuous and F contains a
countable dense family.

The Rosenthal inequality. (see e.g. Hall and Heyde (1980, p.23)) Let (Xi)1≤i≤n be n
independent centered random variables, such that E(|Xi|p) < +∞ for an integer p ≥ 1. Then
there exists a constant C(p) such that

(51) E

(∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

p)

≤ C(p)





n
∑

i=1

E(|Xi|p) +

(

n
∑

i=1

E(X2
i )

)p/2


 .
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[19] Neumann, M. and Reiss, M. (2007). Nonparametric estimation for Lévy processes from low-frequency obser-
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