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Abstract. Consider a mixed compound process Y (t) =
∑N(Λt)

i=1 ξi where N is a Poisson process
with intensity 1, Λ a positive random variable, (ξi) a sequence of i.i.d. random variables with
density f and (N,Λ, (ξi)) are independent. In this paper, we study nonparametric estimators
of f by specific deconvolution methods. Assuming that Λ has exponential distribution with
unknown expectation, we propose two types of estimators based on the observation of an i.i.d.

sample (Yj(∆))1≤j≤n for ∆ a given time. One strategy is for fixed ∆, the other for small ∆ (with
large n∆). Risks bounds and adaptive procedures are provided. Then, with no assumption on
the distribution of Λ, we propose a nonparametric estimator of f based on the joint observation
(Nj(Λj∆), Yj(∆))1≤j≤n. Risks bounds are provided leading to unusual rates. The methods are
implemented and compared via simulations. May 22, 2014
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1. Introduction

Compound Poisson processes are commonly used in many fields of applications, especially in
queuing and risk theory (see e.g. Embrechts et al. (1997), Grandell (1997), Mikosch (2009)).
Nonparametric estimation of the jump size density in compound Poisson processes has been
the subject of several recent contributions. The model can be described as follows. Consider
a Poisson process (N(t)) with intensity 1, (ξi, i ≥ 1) a sequence of i.i.d. random variables
with common density f independent of N and λ a positive number. Then, (N(λt), t ≥ 0)

is a Poisson process with intensity λ and Xλ(t) =
∑N(λt)

i=1 ξi is a compound Poisson process

with jump size density f . The process Xλ has independent and stationary increments and
is therefore a special case of Lévy process with Lévy density λf . Lots of references on Lévy
density estimation are available (see Comte and Genon-Catalot (2009), Figueroa-Lopez (2009),
Neumann and Reiss (2009), Ueltzhöfer and Klüppelberg (2011), Gugushvili (2012)). Inference
is generally based on a discrete observation of one sample path with sampling interval ∆ and
uses the n-sample of i.i.d. increments (Xλ(k∆)−Xλ((k − 1)∆), k ≤ n). For the special case of
compound Poisson process, van Es et al. (2007) build a kernel type estimator of f in the low
frequency setting (∆ fixed), assuming that the intensity λ is known. As null increments provide
no information on f , they only keep non zero increments for the estimation procedure. In Duval
(2013) and in Comte et al. (2014), the same problem is considered with λ unknown and in the
high frequency setting (∆ = ∆n tends to 0 while n∆ tends to infinity).

In this paper, we consider the case where the intensity λ is not deterministic but is random.
The model is now as follows. Let Λ be a positive random variable, independent of (N(t), t ≥ 0)
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and of the sequence (ξi, i ≥ 1). Then,

(1) Y (t) =

N(Λt)∑

i=1

ξi

defines a mixed compound Poisson process (see Grandell 1997). Given that Λ = λ, the condi-
tional distribution of (Y (t)) is identical to the distribution of (Xλ(t)). The mixed compound
Poisson model belongs to the more general class of mixed effects models where some parameters
are (unobserved) random variables. Mixed effects models are extremely popular in biostatistics
and actuarial statistics. They are used in studies in which repeated measurements are taken
on a series of individuals (see e.g. Davidian and Giltinan (1995), Pinhero and Bates (2000),
Antonio and Beirlant (2007), Belomestny (2011)). The randomness of parameters allows to ac-
count for the variability existing between subjects. This is why here, we assume that, for a given
time ∆, we have i.i.d. observations (Yj(∆), j = 1, . . . , n) of Y (∆) and our aim is to define and
study nonparametric estimators of f . Note that, for deterministic λ, the n-sample of increments
(Xλ(k∆)−Xλ((k−1)∆), k ≤ n) for one trajectory has exactly the same distribution as an i.i.d.
sample (Xλ

j (∆), j = 1, . . . , n) for n trajectories at one instant ∆. Hence, the performances of

estimating procedures based on i.i.d. data (Yj(∆), j = 1, . . . , n) may be compared with those

of procedures based on increments (Xλ(k∆) − Xλ((k − 1)∆), k ≤ n) for one trajectory. In
particular, rates of convergence depend on n∆ for large n, and small or fixed ∆ (not too large).

To fix notations, let (Λj , j ≥ 1) be i.i.d. with distribution ν(dλ), let (Nj(t), j ≥ 1) be i.i.d.
Poisson processes with intensity 1 independent of (Λj , j ≥ 1) and consider, for ∆ > 0, the

n-sample (Yj(∆) =
∑Nj(Λj∆)

i=1 ξji , j = 1, . . . , n) where (ξji , j, i ≥ 1) are i.i.d. with density f , and

the sequence (ξji , j, i ≥ 1) is independent of (Λj , (Nj(t)), j ≥ 1). The paper is divided in two
distinct parts, one is semi-parametric and the other purely nonparametric. In both parts, our
approach relies on deconvolution and requires the assumption that:

(H0) f belongs to L2(R).

In Section 2, we assume that the unobserved random intensities Λj ’s have an exponential
distribution with parameter µ−1 (expectation µ). Noting that q∆ := P(Y (∆) 6= 0) = µ∆(1 +
µ∆)−1, the unknown parameter µ is estimated (see Proposition 2.1) from

(2) q̂∆ =
1

n

n∑

j=1

1IYj(∆)6=0.

Then, we define two different nonparametric estimators of f by a deconvolution approach. First,
introducing

(3) Q∆(u) = E(eiuY (∆)1IY (∆)6=0), φ∆(u) = EeiuY (∆),

we observe that the Fourier transform f∗(u) of f satisfies f∗(u) = Q∆(u)/(q∆φ∆(u)), a relation
which is specific to the case of Λ having an exponential distribution. We deduce an estimator
f̂∗(u) of f∗(u) based on empirical estimators of Q∆(u), φ∆(u), q∆ where we have to deal with
the fact that q∆, φ∆(u) appear in the denominator of f∗(u). Then, by Fourier inversion, we

build a collection of nonparametric estimators f̂m(x) of f associated with a cut off parameter
m. Proposition 2.2 gives the bound of the L2-risk of the estimator with fixed cut off parameter.
Afterwards, we propose a data driven selection m̂ of m and prove that the corresponding esti-
mator f̂m̂ is adaptive (Theorem 2.1). The risk bounds are non asymptotic.
However, if ∆ gets too small, the previous method deteriorates as q∆ becomes small and 1/q∆
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is badly estimated (this is pointed out on simulations). This is why we investigate a second
method which performs well for small ∆. The idea of the second method relies on the fact that
for µ∆ < 1, the following series development holds:

(4) f∗(u) =
∑

k≥0

(−1)k(1 + µ∆)(µ∆)k(g∗∆(u))
k+1,

where g∆ is the conditional density of Y (∆) given Y (∆) 6= 0. Therefore, we define an estimator
of g∗∆(u) which leads to an estimator of f∗(u) by truncating the series (4) and plugging the
estimators of µ and of g∗∆(u). Afterwards, we proceed by deconvolution and adaptive cut off
(see Proposition 2.5, Theorem 2.2). The method relies on tools developed in Chesneau et al.
(2013) and is comparable to the one developed in Comte et al. (2014) for non random intensity.

In Section 3, we no longer assume that Λ has exponential distribution. We enrich the obser-
vation and assume that, in addition to (Yj(∆)), the sample (Nj(Λj∆), j = 1, . . . , n) is observed.
In Comte and Genon-Catalot (2013), the sample (Nj(Λj∆), j = 1, . . . , n) is used to estimate
the density of Λ. Note that a similar problem in the Lévy case is studied in Belomestny and
Schoenmakers (2014). Here, we focus on estimating f without using any estimator for the distri-
bution of Λ. We do not assume that Λ admits a density and the method works for deterministic
(unknown) λ. The idea is the following. Assuming that f∗(u) 6= 0 for all u, E(Λ + |ξ|) < +∞
and K∆(u) := E(ΛeiuY (∆)) 6= 0, we check that

(5) ψ(u) :=
(f∗(u))′

f∗(u)
= i

G∆(u)

H∆(u)
,

where

(6) G∆(u) = E

(
Y (∆)

∆
eiuY (∆)

)
, H∆(u) = E

(
N(Λ∆)

∆
eiuY (∆)

)
.

Therefore, ψ(u) can be estimated by using empirical counterparts of G∆(u),H∆(u) dealing again
with the difficulty that H∆(u) appears in the denominator of (5). As f∗(0) = 1,

f∗(u) = exp

(∫ u

0
ψ(v)dv

)

can be estimated replacing ψ by its estimator. This yields a first estimator f̂∗(u) which may
not have a modulus smaller than 1. The final estimator of f∗(u) is thus defined by

f̃∗(u) =
f̂∗(u)

max(1, |f̂∗(u)|)
.

Afterwards, we proceed by deconvolution to define a collection of estimators f̃m depending on a

cut off parameter m. Proposition 3.1 gives the bound of the L2-risk of f̃m for fixed m. The risk
bounds are non standard as well as the proof to obtain them and give rise to unusual rates on
standard examples when making the optimal bias-variance trade-off. We propose an heuristic
penalization criterion to define a data-driven choice of the cut off parameter. A naive procedure
for estimating f is also described.
Section 4 illustrates our methods on simulated data for different examples of jump densities f
and of distributions for Λ. It appears clearly that the first method of Section 2 performs well
for all values of ∆ except very small contrary to the second one, as expected from theoretical
results. The method of Section 3 though more complex can be easily implemented. A complete
discussion on numerical results is given. Section 5 contains proofs. In the Appendix, auxiliary
results needed in proofs are recalled.
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2. Semi-parametric strategy of estimation

In this Section, we assume that Λ has an exponential distribution with parameter µ−1.

2.1. Estimation of µ when Λ is E(µ−1). The following assumption is required:

(H1) The parameter µ belongs to a compact interval [µ0, µ1] with µ0 > 0.

For any distribution ν(dλ) of Λj , the distribution of Nj(Λj∆) is given by:

P(Nj(Λj∆) = m) =

∫ +∞

0
e−λ∆ (λ∆)m

m!
ν(dλ),m ≥ 0

When Λj has an exponential density µ−1e−λµ−1
1λ>0, the computation is explicit. For m ≥ 0,

P(Nj(Λj∆) = m) =

(
µ∆

µ∆+ 1

)m 1

µ∆+ 1
:= αm(µ,∆).(7)

Noting that

(8) P(Yj(∆) 6= 0) = P(Nj(Λj∆) 6= 0) = 1− α0(µ,∆) = 1− 1

1 + µ∆
=

µ∆

1+ µ∆
:= q∆,

we get

µ =
1

∆

q∆
1− q∆

.

Therefore we consider the empirical estimator q̂∆ of q∆ given by (2). Assumption (H1) implies
that q∆ ∈

[
q
0,∆
, q

1,∆

]
with

q
0,∆

=
µ0∆

1 + µ0∆
, q

1,∆
=

µ1∆

1 + µ1∆
.

To estimate 1/q∆ and µ, we define

(9)
1

q̃∆
=

1

q̂∆
1Iq̂∆≥q

0,∆
/2, µ̃ =

1

∆

q̂∆
1− q̂∆

1I1−q̂∆≥(1−q
1,∆

)/2.

These definitions require the knowledge of µ0, µ1, however this can be avoided, see Remark 1
and Remark 3. The following properties hold.

Proposition 2.1. Under (H1), and n∆ ≥ 1, the estimators q̂∆, 1/q̃∆ and µ̃ given by (2) and
(9) satisfy for all integer p ≥ 1,

E(q̂∆ − q∆)
2p ≤ C(p, µ1)

(
∆

n

)p

, E

(
1

q̃∆
− 1

q∆

)2p

≤ C ′(p,∆)

(
1

n∆3

)p

,

and

(10) E(µ̃− µ)2p ≤ C ′′(p,∆)

(n∆)p

where C(p, µ1) only depends on p, µ1, C
′(p,∆) = C ′(p) +O(∆), C ′′(p,∆) = C ′′(p) +O(∆), and

C ′(p,∆), C ′′(p,∆) only depend on p, µ0, µ1,∆.

We can see that for fixed ∆, the estimation rate for µ is of order n−1/2, the standard parametric
rate.
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2.2. Notation. The following notations are used below. For u : R → C integrable, we denote
its L1 norm and its Fourier transform respectively by

‖u‖1 =
∫

R

|u(x)|dx, u∗(y) =
∫

R

eiyxu(x)dx, y ∈ R.

When u, v are square integrable, we denote the L2 norm and the L2 scalar product by

‖u‖ =

(∫

R

|u(x)|2dx
)1/2

, 〈u, v〉 =
∫

R

u(x)v(x)dx with zz = |z|2.

We recall that, for any integrable and square-integrable functions u, u1, u2, the following relations
hold:

(11) (u∗)∗(x) = 2πu(−x) and 〈u1, u2〉 = (2π)−1〈u∗1, u∗2〉.
The convolution product of u, v is denoted by: u ⋆ v(x) =

∫
R
u(y)v̄(x− y)dy.

2.3. Estimation of f for fixed sampling interval ∆. In this section, we propose an estimator
of f assuming that ∆ is fixed (heuristically, ∆ = 1). The distribution of Yj(∆) is given by:

PYj(∆)(dx) = α0(µ,∆)δ0(dx) +
∑

m≥1

αm(µ,∆)f⋆ m(x)dx,

where αm(µ,∆),m ≥ 0 is the distribution of Nj(Λj∆) when Λj has exponential distribution
with expectation µ, i.e. the geometric distribution with parameter 1/(1 + µ∆). AS null values
bring no information on the density f , we intend to base our estimation on non null data. Let
us note that Q∆, φ∆ defined in (3) satisfy

φ∆(u) =

∫ +∞

0
µ−1e−λ/µ exp (−λ∆(1− f∗(u)))dλ =

1

1 + µ∆(1− f∗(u))
.

Simple computations yield:

Q∆(u) = φ∆(u)−
1

1 + µ∆
=

µ∆f∗(u)
(1 + µ∆)(1 + µ∆(1− f∗(u)))

.

Solving for f∗(u) yields the following formula

f∗(u) =
1 + µ∆

µ∆

Q∆(u)

Q∆(u) +
1

1+µ∆

=
Q∆(u)

q∆φ∆(u)
.

This formula which is very specific to the case of Λj having exponential distribution with ex-
pectation µ suggests to estimate f∗(u) as follows:

(12) f̂∗(u) =
Q̂∆(u)

q̃∆φ̃∆(u)

where 1/q̃∆ is defined by (9),

(13) Q̂∆(u) =
1

n

n∑

j=1

eiuYj(∆)1IYj(∆)6=0,

and for k a constant (k = 0.5 in the simulations),

(14)
1

φ̃∆(u)
=

1

φ̂∆(u)
1I|φ̂∆(u)|≥k/

√
n
, φ̂∆(u) =

1

n

n∑

j=1

eiuYj(∆).
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Then, we apply Fourier inversion to (12), but as f̂∗ is not integrable, a cut off is required. We
propose thus

(15) f̂m(x) =
1

2π

∫ πm

−πm
e−iuxf̂∗(u)du.

Then we can bound the mean-square risk of the estimator as follows.

Proposition 2.2. Assume that Λ is E(µ−1) and that (H0)-(H1) hold. Then the estimator f̂m
for m ≤ n∆ given by (15) and (12) satisfies

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + 1

πnq∆

∫ πm

−πm

du

|φ∆(u)|2
+

c

n∆

where fm is such that f∗m = f∗1I[−πm,π,m] and where the constant c does not depend on n nor ∆.

We can see that the bias term ‖f − fm‖2 is decreasing with m while the variance term, of
order m/n, is increasing with m; this illustrates that a standard bias-variance compromise has
to be performed. We can also see this in an asymptotic way if we assume that f belongs to the
Sobolev ball defined by

S(α,L) = {f ∈ L2(R),

∫
|f∗(u)|2(1 + u2)αdu ≤ L}.

Then

‖f − fm‖2 = 1

2π

∫

|u|≥πm
|f∗(u)|2du ≤ L

2π
(1 + (πm)2)−α ≤ cLm

−2α.

Therefore, we find that, for m = m∗ ≍ (n∆)1/(2α+1), E(‖f̂m∗−f‖2) = O((n∆)−2α/(2α+1)), which
is a standard nonparametric rate.

We propose a data driven way of selecting m, and we proceed classically by mimicking the
bias-variance compromise. Setting Mn = {1, . . . , n∆}, we select

m̂ = arg min
m∈Mn

(
−‖f̂m‖2 + p̂en(m)

)
where p̂en(m) = κ

1

q̃∆

1

2πn

∫ πm

−πm

du

|φ̃∆(u)|2
.

Then we can prove the following result

Theorem 2.1. Assume that Λ is E(µ−1) and that assumption (H0)-(H1) hold. Then for
κ ≥ κ0 = 96, we have

E(‖f̂m̂ − f‖2) ≤ c inf
m∈Mn

(
‖f − fm‖2 + κ

2πnq∆

∫ πm

−πm

du

|φ∆(u)|2
)
+

c′

n∆

where c is a numerical constant (c = 4 would suit) and c′ depends on µ0, µ1 and ‖f‖.
The bounds of Proposition 2.2 and Theorem 2.1 are nonasymptotic and hold for all n and ∆.

However, if ∆ gets too small, the method deteriorates because q∆ is small and 1/q∆ is badly
estimated.
Remark 1. Note that the knowledge of µ0 is required for 1/q̃∆ but we may get rid of this
condition by defining 1/q̄∆ = (1/q̂∆)1Iq̂∆≥k

√
∆/n

for some constant k. Following the proof of

Lemma 5.1, we would get

E(| 1
q̄∆

− 1

q∆
|2p) ≤ c

(
1

q2p∆
∧ (n/∆)−p

q4p∆

)
= O(

1

(n∆3)p
).

The results of Proposition 2.2 and Theorem 2.1 hold. This estimator, with k = 0.5, is the one
used in simulations to avoid fixing a value for µ0 and µ1.
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Remark 2. Theorem 2.1 states that the estimator f̂m̂ is adaptive as the bias-variance compro-
mise is automatically realized. It also states that there is a minimal value κ0 such that for all
κ ≥ κ0, the adaptive risk bound holds. From our proof, we find κ0 = 96, which is not optimal.
Indeed, in simple models, a minimal value for κ0 may be computed. For instance, Birgé and
Massart (2007) prove that for Gaussian regression or white noise models, the method works for
κ0 = 1+ η, η > 0, and explodes for κ0 = 1− η. To obtain the minimal value in another context
is not obvious. This is why it is customary when using a penalized method, to calibrate the
value κ in the penalty by preliminary simulations.

2.4. Estimation of f for small sampling interval. Now, we assume that ∆ = ∆n tends to 0
and that n∆ tends to infinity. We use an approach for small sampling interval which is different
from the previous one. The conditional distribution of Y (∆) given Y (∆) 6= 0 has density and
Fourier transform given by (see (3), (8))

g∆(x) =
1

q∆

∑

k≥1

αk(µ,∆)f⋆ k(x), g∗∆(u) =
Q∆(u)

q∆
.

Using (7), the Fourier transform of g∆ is given by (µ∆|f∗(u)|/(1 + µ∆) < 1 ):

g∗∆(u) =

(
µ∆

1+ µ∆

)−1∑

k≥1

1

1 + µ∆

(
µ∆

1+ µ∆

)k

(f∗(u))k =
f∗(u)

1 + µ∆(1− f∗(u)))

Thus |g∗∆(u)| ≤ |f∗(u)| which implies that

(16) ‖g∆‖ ≤ ‖f‖.
Solving for f∗(u) yields:

f∗(u) = (1 + µ∆)
g∗∆(u)

1 + µ∆g∗∆(u)
.

Now, if we assume that µ∆ < 1, then the development in series (4) holds. To estimate f∗(u),
we have to estimate g∗∆(u). For this, we set:

g̃∗∆(u) =
ĝ∗∆(u)

max
(
1, |ĝ∗∆(u)|

) with ĝ∗∆(u) =
Q̂∆(u)

q̃∆

where Q̂∆(u) is given by (13) and q̃∆ by (9). We can prove that g̃∗∆ satisfies the following
property.

Proposition 2.3. Under (H0), for all v ≥ 1 and µ ∈ [µ0, µ1] with µ1∆ < 1, we have

sup
u∈R

E

(
|g̃∗∆(u)− g∗∆(u)|2v

)
≤ C(v, µ0, µ1)

(n∆)v
.

We can deduce from Proposition 2.3 the following Corollary showing also that we have esti-
mators of convolutions of g∆ with parametric rate as soon as k ≥ 2:

Corollary 2.1. Let µ ∈ [µ0, µ1] and

ĝ⋆km,∆(x) =
1

2π

∫ πm

−πm
(g̃∗∆(u))

ke−iuxdu, g⋆km,∆(x) =
1

2π

∫ πm

−πm
(g∗∆(u))

ke−iuxdu.

Then, for all k ≥ 2

E

(
‖ĝ⋆km,∆ − g⋆km,∆‖2

)
≤ c(k, µ0, µ1)

(
m

(n∆)k
+
D2

k

n∆
‖f‖2

)
,

where Dk = (3k − 2k − 1)/2.
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Moreover, the coefficients Fk(µ∆) := (1+µ∆)(µ∆)k are estimated by Fk(µ̃∆) with µ̃ defined
in (9), and satisfy:

Proposition 2.4. For all k ≥ 0 and µ ∈ [µ0, µ1],

E(Fk(µ̃∆)− Fk(µ∆))2 ≤ C(k, µ1,∆)
∆2k

n∆

where the constant C(k, µ1,∆) = C(k, µ1) +O(∆).

Thus, to estimate f∗, we plug in the estimators g̃∗∆ and µ̃ in (4) and truncate the series up to
order K:

f̂∗K(u) =
K∑

k=0

(−1)k(1 + µ̃∆)(µ̃∆)k(g̃∗∆(u))
k+1.

Then, we proceed with Fourier inversion to obtain an estimator of f , but we have again to insert
a cut off in the integral

f̂m,K(x) =
1

2π

∫ πm

−πm
f̂∗K(u)e−iuxdu.

Then, we can prove the following result.

Proposition 2.5. Assume that (H0)-(H1) hold, that Λ is E(µ−1), and that 2µ1∆ < 1 and
∆ < 1. Then, for any m ≤ n∆, we have

E

(
‖f̂m,K − f‖2

)
≤ ‖fm − f‖2 + 4A(µ1∆)2K+2 + 12

(1 + µ∆)3

µ

m

n∆
+
EK

n∆
,

where fm is such that f∗m = f∗1I[−πm,π,m], A = 4‖f‖2(1+µ1∆)2/(1−µ1∆)2 and EK is a constant
depending on K, µ0, µ1 and ‖f‖.

If f ∈ S(α,L), then ‖f − fm‖2 ≤ cLm
−2α as already noticed and choosing m = m∗ ≍

(n∆)1/(2α+1) implies

E(‖f̂m∗,K − f‖2) ≤ c1(n∆)−2α/(2α+1) + c2∆
2K+2.

To choose K in practice, we impose ∆2K+2 ≤ 1/(n∆), i.e.

(17) K ≥ K0 :=
1

2

(
log(n)

| log(∆)| − 3

)
,

even if this contradicts the fact that K is fixed (and thus independent on n).
Now, we have to select m in a data driven way. To that aim, we propose

m̂K = arg min
m∈{1,...,[n∆]}

(
−‖f̂m,K‖2 + p̃en(m)

)
, p̃en(m) = κ′

(1 + µ̃∆)2

q̃∆

m

n
.

We can prove

Theorem 2.2. Assume that (H0)-(H1) hold, that Λ is E(µ−1), and that 2µ1∆ < 1. Then
there exists a numerical constant κ′0 such that, for all κ′ ≥ κ′0, we have

E

(
‖f̂m̂K ,K − f‖2

)
≤ c inf

m∈{1,...,[n∆]}

(
‖fm − f‖2 + κ′

(1 + µ∆)3

µ

m

n∆

)
+ 4A(µ1∆)2K+2 +

E′
K

n∆
,

where c is a numerical constant, A is defined in Proposition 2.5 and E′
K is a constant depending

on K, µ0, µ1 and ‖f‖.
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For the choice of κ′ in the penalty, we refer to Remark 2.

Remark 3. A proposal analogous to the one in Remark 1 can be done here to define an
estimator of µ which does not depend on µ1: µ̄ := q̂∆/(∆(1 − q̂∆))1I1−q̂∆≥k

√
∆/n

. This is used

in simulations with k = 0.5.

3. Nonparametric strategy

In this section, we no longer assume that Λ follows an exponential distribution and turn to
the estimation of f , using both samples (Yj(∆), Nj(Λj∆))j .

3.1. Definition of the estimator. We start from the characteristic function and for ν denoting
the distribution of Λ, we have, from (3),

φ∆(u) =

∫ +∞

0
exp (−λ∆(1− f∗(u)))ν(dλ)

and by derivation (see (6)),

(18) iG∆(u) = (f∗(u))′K∆(u), where K∆(u) = E(ΛeiuY (∆)).

For fixed Λ = λ, we get

E

(
N(λ∆)

∆
eiu

∑N(λ∆)
k=1 ξk

)
= f∗(u)E

(
λeiu

∑N(λ∆)
k=1 ξk

)

and therefore

H∆(u) = E

(
N(Λ∆)

∆
eiuY (∆)

)
= f∗(u)K∆(u).

We deduce that, if H∆ 6= 0, (5) holds. With the condition f∗(0) = 1, we obtain the formula

f∗(u) = exp

(∫ u

0
ψ(v)dv

)
.

Note that for u ≤ 0,
∫ u
0 = −

∫ 0
u , and the formula is still valid. We deduce an estimator by

setting

(19) f̃m(u) =
1

2π

∫ πm

−πm
e−iuxf̃∗(u)du

where

f̃∗(u) = f̂∗(u)1I{|f̂∗(u)|≤1} +
f̂∗(u)

|f̂∗(u)|
1I{|f̂∗(u)|>1} =

f̂∗(u)

max(1, |f̂∗(u)|)
,

with

f̂∗(u) = exp

(∫ u

0
ψ̃(v)dv

)
, ψ̃(v) = i

Ĝ∆(v)

H̃∆(v)
,

Ĝ∆(v) =
1

n∆

n∑

j=1

Yj(∆)eivYj (∆),

Ĥ∆(v) =
1

n∆

n∑

j=1

Nj(Λj∆)eivYj (∆),
1

H̃∆(v)
=

1

Ĥ∆(v)
1I{|Ĥ∆(v)|≥k(n∆)−1/2},

for some constant k.
We introduce the following assumption.

[B] (i) ∀u ∈ R, f∗(u) 6= 0, and there exists K0 > 0 such that ∀u ∈ R, |K∆(u)| ≥ K0.
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(ii)(p) E(ξ2p) < +∞, E(Λ2p) < +∞.
(iii) ‖G′

∆‖1 < +∞.

To justify assumption [B](i), let us consider the case where Λ follows an exponential E(1/µ)
distribution. Then

K∆(u) =
µ

[1 + µ∆(1− f∗(u))]2
and K∆(u) ∼u→+∞

µ

[1 + µ∆]2
.

Thus H∆ is not lower bounded near infinity contrary to K∆(u).

Under [B] (ii), E[(Y (∆))2p] = ∆E(Λ)E(ξ2p) + o(∆). Indeed, we first compute the cumulants
of the conditional distribution of Y (∆) given Λ. Then we deduce the conditional moments using
the link between moments and cumulants. Integrating with respect to Λ gives the result. Note
that [B](ii) implies that G′

∆ exists, with

iG′
∆(u) = (f∗)′′(u)K∆(u) + i(f∗)′(u)E(ΛY (∆)eiuY (∆)).

Thus, if (f∗)′ and (f∗)′′ are integrable, then [B](iii) holds.

Then we can prove the following result.

Proposition 3.1. Assume that (H0), [B] (i) and (ii)(p) hold. Let f̃m be given by (19) and let
∆ ≤ 1 be fixed. Then the following bound holds:

E(‖f̃m − f‖2) ≤ ‖f − fm‖2 + c

n∆

∫ πm

−πm
|f∗(u)|2|u|

∫ u

0

1

|f∗(v)|2

(
1 +

∣∣∣∣
(f∗)′(v)
f∗(v)

∣∣∣∣
2
)
dvdu

+
c(p)

(n∆)p

∫ πm

−πm
|u|2p−1

∫ u

0

1

|f∗(v)|2p

(
1 +

∣∣∣∣
(f∗)′(v)
f∗(v)

∣∣∣∣
2p
)
dvdu(20)

where c, c(p) are constants depending on p,K0, the moments of Λ and ξi up to order 2p.
If moreover [B] (iii) holds, we have

E(‖f̃m − f‖2) ≤ ‖f − fm‖2 + c1
n∆

∫ πm

−πm
|f∗(u)|2



∫ |u|

0

dv

|f∗(v)|2 +

(∫ |u|

0

|(f∗)′(v)|
|f∗(v)|2 dv

)2

 du

+
c2

(n∆)p

∫ πm

−πm

(
1 +

(∫ |u|

0

∣∣∣∣
(f∗)′(v)
f∗(v)

∣∣∣∣
2

dv

)p)(∫ |u|

0

dv

|f∗(v)|2

)p

du

+
c3

(n∆)2p−1

∫ πm

−πm

(∫ |u|

0

dv

|f∗(v)|

)2p

du(21)

where the constants ci, i = 1, 2, 3 depend on ‖G′
∆‖1, K0 and the moments of Λ and ξi up to

order 2p

The bounds are specific to our problem since the unknown function appears both in bias and
variance terms.

3.2. Rate of the estimator. We study the resulting rate for the estimator on different exam-
ples.
• Gamma distribution. Let f ∼ Γ(α, 1). Then f∗(u) = (1− iu)−α and

(f∗)′(u)/f∗(u) = − iα

1− iu
.
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Note that Assumption [B](iii) is fulfilled.
Then ‖f − fm‖2 = O(m−2α+1) so that α > 1/2 is required for consistency of the estimator.

For the variance terms, using the bound (20), we have

V1 :=

∫ πm

−πm
|f∗(u)|2



∫ |u|

0

dv

|f∗(v)|2 +

(∫ |u|

0

|(f∗)′(v)|
|f∗(v)|2 dv

)2

 du = O(m2),

V2 :=

∫ πm

−πm

(
1 +

(∫ |u|

0

∣∣∣∣
(f∗)′(v)
f∗(v)

∣∣∣∣
2

dv

)p)(∫ |u|

0

dv

|f∗(v)|2

)p

du = O(m(2α+1)p+1),

and

V3 :=

∫ πm

−πm

(∫ |u|

0

dv

|f∗(v)|

)2p

du = O(m(2α+1)p+1).

Optimizing the bias and V1/(n∆) yieldsmopt,1 ≍ (n∆)1/(2α+1) and a rate O((n∆)−(2α−1)/(2α+1)).

Optimizing the bias and V2/(n∆)p yields mopt,2 ≍ (n∆)1/(1+2α(1+1/p)) and a rate

O((n∆)−(2α−1)/(2α+1+2α/p)).

Optimizing the bias and V3/(n∆)2p−1 yields mopt,3 ≍ (n∆)(2p−1)/(2p(α+1)+2α) and a rate

O((n∆)−(2α−1)(2p−1)/(2p(α+1)+2α)).

For p ≥ 2 the rate is of order (n∆)−(2α−1)/(2α+1+ 2α
p
), which is close to (n∆)−(2α−1)/(2α+1) for

large p. Thus, as p can be as large as possible, V1 and V2 get comparable.

• Gaussian distribution. Let us consider f∗(u) = e−u2/2, (f∗)′(u)/f∗(u) = −u. Assump-
tion [B](iii) is fulfilled. We use Lemma 6.2 recalled in the Appendix. Then ‖f − fm‖2 =

O(m−1e−(πm)2), V1 = O(m), V2 = O(m2p−1ep(πm)2) and V3 = O(m−2p−1ep(πm)2). We choose

(πmopt)
2 =

p

p+ 1
log(n∆)− 2p

p+ 1
log(log(n∆)),

and get the rate

(n∆)−
p

p+1 (log n∆)
p−1
p+1 .

Note that optimizing the bias and V1/(n∆) yields the rate
√

log(n∆)/(n∆). Here again, for
large p, the two terms V1 and V2 are comparable.

3.3. Cut off selection. As for the previous methods, we need to propose a data-driven selection

of the cut off. As above, the bias is estimated up to a constant by −‖f̃m‖2. The penalty is built
by estimating the variance term of the risk bound. Here, we have three terms and we choose to
estimate only the first one. So we set

m̃ = argmin
m

(−‖f̃m‖2 + qen(m))

with

qen(m) =
κ loga(n∆)

n∆

∫ πm

−πm
|f̃∗(u)|2


ŝY

∫ |u|

0

dv

|f̃∗(v)|2
+

(∫ |u|

0

|ψ̃(v)|
|f̃∗(v)|

dv

)2

 du,

where ŝY = n−1
∑n

j=1 Y
2
j (∆) is an estimate of E(Y 2(∆)) which appears when proving the risk

bound.
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We provide no theoretical result concerning this penalization criterion. As illustrated by the
examples, estimating the first variance term V1 seems enough.

The constant κ is calibrated on preliminary simulations. The term loga(n∆) allows to stabilize
the value of κ when n∆ varies and appears usually in adaptive deconvolution.

3.4. Naive procedure. A simple procedure is available for estimating f based on the joint
observation (Nj(Λj∆), Yj(∆))1≤j≤n. This procedure is compared to the above nonparametric
strategy on simulations.

Note that

P(Nj(Λj∆) = 1) := α1(ν,∆) = ∆

∫ +∞

0
e−λ∆λν(dλ) > 0

and that the conditional distribution of Yj(∆) given Nj(Λj∆) = 1 is identical to the distribution

of ξj1. Hence, let us set:

(22)
1

α̃1
=

1

α̂1
1I
α̂1≥k

√
∆/n

, α̂1 =
1

n

n∑

i=1

1I(Nj(Λj∆)=1),

and

(23) f̌m(x) =
1

2πα̃1

∫ πm

−πm
e−iux

(
1

n

n∑

i=1

eiuYj(∆)1I(Nj(Λj∆)=1)

)
du.

The following property holds.

Proposition 3.2. Assume (H0), E(Λ) < +∞, E(Λe−Λ∆) ≥ k0 and n∆ ≥ 1 ∨ 4k2

k20
. Then

E(‖f̌m − f‖2) ≤ ‖f − fm‖2 + 4m

nα1(ν,∆)

(
1 +

2k2∆

α1(ν,∆)

1

nα1(ν,∆)

)

where fm is such that f∗m = f∗1I[−πm,π,m]

Note that α1(ν,∆) = ∆(E(Λ)+o(1)). The variance term is of order O(m/(n∆)). We propose
the following adaptive choice for m:

m̌ = arg min
m≤n∆

(
−‖f̌m‖2 + κ

nα̃1

)
.

The proof of Proposition 3.2 follows the same lines as the analogous Proposition 2.2 and is
omitted. The proof of adaptiveness of f̌m̌ is also omitted.
The interest of the naive estimator is obviously its simplicity. However, it strongly depends on
the observed value α̂1 as the number of observations taken for the estimation is nα̂1. If this
value is too small, the estimator performs poorly.

4. Illustrations of the methods

In this section, we illustrate the estimators with data driven cut off on simulated data for Λ.
Tables 1, 2, 3, 4 correspond to f a Gaussian N (0, 3) and Λ either an exponential distribution
with mean 1, or a uniform density on [5, 6], a translated exponential E(2) + 5, a translated
Beta distribution Beta(2, 2) + 5. Figure 1 corresponds to a jump density mixture of Gaussian
0.4N (−2, 1)+0.6N (3, 1) and Λ an exponential E(1). Figure 2 plots a Gumbel jump distribution
with c.d.f. F (x) = exp(− exp(−x)), x > 0 and Λ either E(1) or U([1, 2]). The truncation
constant k is alway taken equal to 0.5, except in (22) where k = 0.
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∆ 0.01 0.1 0.5 0.9 1 2

n 20000 2000 400 220 200 100
n 6=0 200 181 133 104 99 66
L2 Risk 0.14 6.2 · 10−3 3.9 · 10−3 5.3 · 10−3 5.6 · 10−3 2.1 · 10−2

(5.9 · 10−3) (2.8 · 10−3) (2.6 · 10−3) (4.8 · 10−3) (5.7 · 10−3) (0.06)

m̂ 0.01 0.25 0.29 0.29 0.29 0.29

n 100000 10000 2000 1110 1000 500
n 6=0 990 908 666 526 499 333
L2 Risk 0.014 1.1 · 10−3 9.1 · 10−4 1.4 · 10−3 1.5 · 10−3 3.5 · 10−3

(0.002) (5.0 · 10−4) (5.8 · 10−4) (1.6 · 10−3) (1.7 · 10−3) (5.0 · 10−3)

m̂ 0.21 0.34 0.37 0.36 0.36 0.33

n - 50000 10000 5550 5000 2500
n 6=0 - 4545 3333 2969 2500 1666
L2 Risk - 2.4 · 10−4 2.2 · 10−4 3.6 · 10−4 3.7 · 10−4 9.2 · 10−4

- (9.5 · 10−5) (1.3 · 10−4) (2.3 · 10−4) (2.9 · 10−4) (1.1 · 10−3)

m̂ - 0.24 0.43 0.42 0.42 0.39

Table 1. Mean of the L2-risks for the semi-parametric method 1 with Λ ∼ E(1)
(standard deviation in parenthesis) and f is N (0, 3); n 6=0 is the mean of nonzero

data; m̂ is the mean of selected m̂’s.

All methods require the calibration of the constant κ in penalties and the exponent a in
method 3. After preliminary experiments, κ is taken equal to 0.21 in method 1 (first semi-
parametric method), to 5 in method 2 (second semi-parametric method), 0.15 in method 3 with
α = 1.75 (pure nonparametric method), and to 5 in the naive method. The cut off m is selected
among 200 equispaced values between 0.01 and 2.

∆ 0.01 0.1 0.5 0.9 1

n 20000 2000 400 220 200
n 6=0 197 183 132 104 100
K 1 1 3 25 50
L2 Risk 1.6 · 10−3 1.9 · 10−3 3.8 · 10−3 2.6 · 10−2 1.5 · 1016

(1.3 · 10−3) (1.3 · 10−3) (2.9 · 10−3) (4.7 · 10−2) (5.0 · 1017)
m̂K 0.36 0.35 0.30 0.25 0.24

n 100000 10000 2000 1110 1000
n 6=0 992 910 667 525 499
K 1 1 4 32 50
L2 Risk 4.4 · 10−4 4.6 · 10−4 9.4 · 10−4 5.4 · 10−3 2.3 · 103

(3.5 · 10−2) (3.1 · 10−4) (6.6 · 10−4) (3.5 · 10−2) (3.1 · 104)
m̂K 0.44 0.42 0.38 0.35 0.34

Table 2. Mean of the L2-risks for the semi-parametric method 2 with Λ ∼ E(1)
(standard deviation in parenthesis) and f is N (0, 3); n 6=0 is the mean of nonzero

data; m̂ is the mean of selected m̂K ’s.
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m̂ = 0.45 (0.08) m̂ = 0.52 (0.02) m̂ = 0.56 (0.05)

m̂5 = 0.49 (0.04) m̂5 = 0.54 (0.02) m̂5 = 0.61 (0.09)

Figure 1. Estimation of f for a Gaussian mixture 0.4N (−2, 1)+0.6N (3.1) for
n = 500 (first column) n = 2000 (second column) and n = 5000 (third column)
with the semiparametric method 1 (first line) and the semi parametric method
2 (second line, K = 5) for ∆ = 1/2. True density (bold black line) and 50
estimated curves (green lines).

We give L2-risks for f ∼ N (0, 3) and graphical illustrations for the two other examples of
jump densities. To compute L2-risks, we use 1000 repetitions for n∆ = 200, 1000 and 2500
repetitions for n∆ = 5000. Note that because of computational limitations, we only make 100
repetitions when ∆ = 0.01 (first columns of Tables 1, 2).

Tables 1, 2 allow to compare the two semiparametric methods for the Gaussian jump density
and Λ exponential E(1). Method 1 works for fixed values of ∆ (∆ = 1, 2), but also for small
values (0.1 to 0.9). However, when ∆ gets too small (0.01), the risk increases. On the other hand
method 2, completely fails for ∆ = 1, as predicted by the theory (A = +∞ in the risk bound of
Proposition 2.5 when µ∆ = 1); for ∆ = 0.5, 0.9, methods 1 and 2 have comparable risks while
for ∆ ≤ 0.1, method 2 is better. The value n̄ 6=0 of non zero data represents the number of data
really used for estimation. The cut off values are rather small and stable (standard deviations
are of order 10−2). The value K is taken of order sup(1,K0) for K0 defined in formula (17).
In Figure 1, 50 estimated curves of a Gaussian mixture by methods 1 and 2 are plotted, for
different sample sizes n = 500, 2000, 5000. The two methods distinguish well the two modes and
are improved as n increases.

Table 3 shows that the first semi-parametric, the pure nonparametric and the naive procedures
are comparable, with good results even for small values of n. The naive method performs
surprisingly well and is stable. In Table 4, we change the distribution of Λ and therefore we
show no results for method 1, since it does not work in that case, neither in theory nor in
practice. The chosen distributions for Λ make the naive method perform worse than method 3.
For n = 200, the risk of method 3 is twice better, for n = 500, it is three times better and for
n = 1000, four times better. For larger n, the methods become equivalent. The naive method
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n Method 1 Method 3 Naive

200 5.6 · 10−3 (5.7 · 10−3) 4.9 · 10−3 (6.0 · 10−3) 5.9 · 10−3 (4.5 · 10−3)
500 2.7 · 10−3 (2.5 · 10−3) 3.6 · 10−3 (1.2 · 10−3) 2.6 · 10−3 (2.2 · 10−3)
1000 1.5 · 10−3 (1.7 · 10−3) 2.4 · 10−3 (5.2 · 10−3) 1.3 · 10−3 (9.2 · 10−4)
2000 7.9 · 10−4 (5.7 · 10−4) 2.0 · 10−3 (9.7 · 10−3) 7.2 · 10−4 (5.1 · 10−4)
5000 3.7 · 10−4 (2.9 · 10−4) 7.4 · 10−4 (9.4 · 10−4) 3.1 · 10−4 (2.2 · 10−4)

Table 3. Mean of the L2-risks for the semi-parametric method 1, the nonpara-
metric method 3 and the naive method (see section 3.4). Λ ∼ E(1) and f is
N (0, 3); standard deviation in parenthesis.

fails here because the number nα̂1 (see (22)) is too small. In Figure 2, 50 estimated curves of a
Gumbel distribution by methods 1 and 3 are plotted, for different sample sizes n = 500, 2000, for
Λ an exponential E(1) and a uniform U([1, 2]). Columns 1 and 2 allow to compare methods 1 and
3 when Λ is exponential. Method 3 has good performances without estimating the distribution
of Λ. In all cases, the values of m are small and stable.

Λ n Method 3 Naive

U([5, 6]) 200 2.8 · 10−2 (6.6 · 10−3) 5.6 · 10−2 (1.5 · 10−2)
500 9.0 · 10−3 (3.8 · 10−3) 2.8 · 10−2 (1.8 · 10−2)
1000 3.3 · 10−3 (2.2 · 10−3) 1.3 · 10−2 (9.5 · 10−3)

E(2) + 5 200 2.8 · 10−2 (6.8 · 10−3) 5.6 · 10−2 (1.7 · 10−2)
500 9.0 · 10−3 (3.7 · 10−3) 2.7 · 10−2 (1.6 · 10−2)
1000 3.4 · 10−3 (2.3 · 10−3) 1.3 · 10−2 (8.7 · 10−3)

Beta(2, 2) + 5 200 2.7 · 10−2 (6.5 · 10−3) 5.6 · 10−2 (1.4 · 10−2)
500 9.2 · 10−3 (4.0 · 10−3) 2.9 · 10−2 (1.7 · 10−2)
1000 3.3 · 10−3 (2.2 · 10−3) 1.3 · 10−2 (8.9 · 10−3)

Table 4. Mean of the L2-risks for the nonparametric method 3 and the naive
method (see section 3.4); standard deviation in parenthesis. Λ ∼ U([5, 6]), E(2)+
5, Beta(2, 2) + 5 and f is N (0, 3).

5. Appendix: Proofs

5.1. Proof of Proposition 2.1. By the Rosenthal Inequality, we get

E
(
|q̂∆ − q∆|2p

)
≤ Λ(2p)

n2p
(nq∆ + (nq∆(1− q∆))

p) .

Now, nq∆ = n∆µ/(1 + µ∆) ≤ n∆µ1 gives, under n∆ ≥ 1

E
(
|q̂∆ − q∆|2p

)
≤ C(2p)∆p

np
(µ1 + µp1)

and thus the first bound. Now we write that

1

q̃∆
− 1

q∆
=

(
1

q̂∆
− 1

q∆

)
1Iq̂∆>q

0,∆
/2 −

1

q∆
1Iq̂∆≤q

0,∆
/2.
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m̂ = 0.57 (0.10) m̃ = 0.53 (0.05) m̃ = 0.47 (0.04)

m̂ = 0.72 (0.08) m̃ = 0.66 (0.05) m̃ = 0.60 (0.04)

Figure 2. Estimation of f for a Gumbel distribution, for n = 500 (first line)
n = 2000 (second line) with method 1 (first column) and method 3 (second and
third column) for ∆ = 1. In the first two columns Λ is E(1) and in the third Λ
is U([1, 2]). True density (bold black line) and 50 estimated curves (green lines).

We get

E

(∣∣∣∣
1

q̃∆
− 1

q∆

∣∣∣∣
2p
)

≤ E(|q̂∆ − q∆|2p)
(q2

0,∆
/2)2p

+
1

q2p0,∆
P(|q̂∆ − q∆| > q

0,∆
/2)

≤ 22p

q4p0,∆
E(|q̂∆ − q∆|2p) +

1

q2p0,∆

E(|q̂∆ − q∆|2p
(q

0,∆
/2)2p

≤ 22p+1

q4p0,∆
E(|q̂∆ − q∆|2p) ≤

C ′(p,∆)

(n∆3)p
,

with C ′(p,∆) = 22p+1C(2p)(1 + µ0∆)4p(µ1 + µp1)/µ
4p
0 .

For µ̃, the decomposition is the following

µ̃− µ =
1

∆

{
q̂∆ − q∆
1− q̂∆

1I1−q̂∆>(1−q
1,∆

)/2 + q∆

(
1

q̂∆
− 1

q∆

)
1I1−q̂∆>(1−q

1,∆
)/2

− q∆
1− q∆

1I1−q̂∆≤(1−q
1,∆

)/2

}
.

This yields

E(|µ̃ − µ|2p) ≤ E(|q̂∆ − q∆|2p)
∆2p

{
22p−1

((1− q
1,∆

)/2)2p
+

22p−1q2p∆
(1− q∆)2p[(1− q

1,∆
)/2]2p

+

(
q∆

1− q∆

)2p 1

((1− q
1,∆

)/2)2p

}

≤ C ′′(p,∆)

(n∆)p
,
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with C ′′(p,∆) = 22p−1(1 + 2(µ1∆)2p)C(2p)(µ1 + µ2p1 )/(1 − q
1,∆

)/2. �

5.2. Proof of Proposition 2.2. We use the fact that |φ∆(u)|−1 ≤ 1+2µ∆, q−1
∆ ≤ 1+1/(µ0∆),

‖f∗‖2 = 2π‖f‖2, Proposition 2.1 and the following Lemma, proved in Section 5.3.

Lemma 5.1.

∀u ∈ R, E(| 1

φ̃∆(u)
− 1

φ∆(u)
|2p) ≤ cp

(
1

|φ∆(u)|2p
∧ n−p

|φ∆(u)|4p
)
.

In our setting, only the second term of the bound is useful.
Moreover Rosenthal’s inequality implies for p ≥ 1,

E

(
|Q̂∆(u)−Q∆(u)|2p

)
≤ C(2p)

n2p
(nq∆ + (nq∆)

p).

Consequently,

(24) E

(
|Q̂∆(u)−Q∆(u)|2p

)
≤ cp(µ1 + µp1)

(
∆

n

)p

.

Then we have the decomposition

(25) f̂∗(u)− f∗(u) = T0(u) +

6∑

i=1

Ti(u),

with

T0(u) =
Q̂∆(u)−Q∆(u)

q∆φ∆(u)

T1(u) =
( 1

q̃∆
− 1

q∆

)Q∆(u)

φ∆(u)
, T2(u) = (Q̂∆(u)−Q∆(u))

( 1

φ̃∆(u)
− 1

φ∆(u)

)( 1

q̃∆
− 1

q∆

)

T3(u) =Q∆(u)
( 1

φ̃∆(u)
− 1

φ∆(u)

)
, T4(u) =

Q̂∆(u)−Q∆(u)

φ∆(u)

( 1

q̃∆
− 1

q∆

)

T5(u) =
Q∆(u)

q∆

( 1

φ̃∆(u)
− 1

φ∆(u)

)
, T6(u) =

Q̂∆(u)−Q∆(u)

q∆

( 1

φ̃∆(u)
− 1

φ∆(u)

)
,

Then ∫ πm

−πm
|f̂∗(u)− f∗(u)|2du ≤ 2

∫ πm

−πm
|T0(u)|2du+ 12

6∑

i=1

∫ πm

−πm
|Ti(u)|2du

and first

E

(∫ πm

−πm
|T0(u)|2du

)
≤ 1

nq∆

∫ πm

−πm

du

|φ∆(u)|2
.

For the following bounds, we use constants c, c′ which may change from line to line but depend
neither on n nor on ∆. We have

E

(∫ πm

−πm
|T1(u)|2du

)
=

∫ πm

−πm
|f∗(u)|2duE

(
q2∆

∣∣∣ 1
q̃∆

− 1

q∆

∣∣∣
2
)

≤ c

n∆
2π‖f‖2,

E

(∫ πm

−πm
|T2(u)|2du

)
≤ c

n3∆2

∫ πm

−πm

du

|φ∆(u)|4
≤ c′

n2∆
,
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as m ≤ n∆. Next

E

(∫ πm

−πm
|T3(u)|2du

)
≤ c

n2∆

∫ πm

−πm

du

|φ∆(u)|4
≤ c′

n
,

E

(∫ πm

−πm
|T4(u)|2du

)
≤ c

n2∆2

∫ πm

−πm

du

|φ∆(u)|2
≤ c′

n∆
,

E

(∫ πm

−πm
|T5(u)|2du

)
≤ c

n

∫ πm

−πm

|f∗(u)|2
|φ∆(u)|2

du ≤ c′‖f‖2
n

,

E

(∫ πm

−πm
|T6(u)|2du

)
≤ c

n2∆

∫ πm

−πm

du

|φ∆(u)|4
≤ c′

n
.

Gathering all the terms gives the result of Proposition 2.2.�

5.3. Proof of Lemma 5.1. Below, c is a constant which may change from line to line.

Let Bn = (|φ̂∆(u)| ≥ k/
√
n). We write

1

φ̃∆(u)
− 1

φ∆(u)
= A1 +A2

with

A1 =

(
1

φ̂∆(u)
− 1

φ∆(u)

)
1IBn , A2 = − 1

φ∆(u)
1IBc

n
.

We have:

|A1| ≤
√
n|φ̂∆(u)− φ∆(u)|

k|φ∆(u)|
.

By the Rosenthal inequality, for all q ≥ 1, E|φ̂∆(u) − φ∆(u)|2q ≤ 3/nq. Therefore, E|A1|2p ≤
(3/k)|φ∆(u)|2p. Obviously, E|A2|2p ≤ 1/|φ∆(u)|2p. Now, we proceed to find the other bound.
We have A1 = A′

1 +A′′
1 with

A′
1 =

(φ̂∆(u)− φ∆(u))
2

φ2∆(u)φ̂∆(u)
1IBn , A′′

1 =
φ∆(u)− φ̂∆(u)

φ2∆(u)
1IBn .

We have:

E|A′
1|2p ≤

1

|φ∆(u)|4p
(√

n

k

)2p
3

n2p
=

3

k2p
n−p

|φ∆(u)|4p
, E|A′′

1|2p ≤ 3
n−p

|φ∆(u)|4p
.

Therefore, we also have E|A1|2p ≤ cn−p/φ∆(u)|4p. Now, we study the second inequality for the
term A2. First note that

Bc
n ⊂ (|φ̂∆(u)− φ∆(u)| ≥ |φ∆(u)| − k/

√
n).

Moreover, |φ∆(u)| − k/
√
n > |φ∆(u)|/2 ⇐⇒ |φ∆(u)| > 2k/

√
n. Thus,

P(Bc
n) ≤ P

(
|φ̂∆(u)− φ∆(u)| ≥

|φ∆(u)|
2

)
+ 1I(|φ∆(u)|≤2k/

√
n)

≤
(

2

|φ∆(u)|

)2p

E|φ̂∆(u)− φ∆(u)|2p + 1I(|φ∆(u)|−1≥√
n/2k)

≤ c

(
2

|φ∆(u)|

)2p

n−p +

(
2k√
n

)2p

|φ∆(u)|−2p.
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Thus P(Bc
n) ≤ cn−p/|φ∆(u)|2p. Finally, we also have:

(26) E|A2|2p ≤ c
n−p

|φ∆(u)|4p
.

So the proof of Lemma 5.1 is complete. �

5.4. Proof of Theorem 2.1. Let

Sm = {t ∈ L2(R), t∗ = t∗1I[−πm,πm]},
and consider the contrast

γn(t) = ‖t‖2 − 2

2π
〈t∗, f̂∗〉.

Clearly, f̂m = argmint∈Sm γn(t) and γn(f̂m) = −‖f̂m‖2. Moreover, we note that

(27) γn(t)− γn(s) = ‖t− f‖2 − ‖s − f‖2 − 2

2π
〈t∗ − s∗, f̂∗ − f∗〉.

By definition of m̂, we have

γn(f̂m̂) + p̂en(m̂) ≤ γn(fm) + p̂en(m).

This with (27) implies

(28) ‖f̂m̂ − f‖2 ≤ ‖f − fm‖2 + p̂en(m) +
2

2π
〈f̂∗m̂ − f∗m, f̂

∗ − f∗〉 − p̂en(m̂).

Writing that

2〈f̂∗m̂ − f∗m, f̂
∗ − f∗〉 ≤ 2‖f̂∗m̂ − f∗m‖ sup

t∈Sm̂+Sm,‖t‖=1
|〈t∗, f̂∗ − f∗〉|

≤ 1

4
‖f̂∗m̂ − f∗m‖2 + 4 sup

t∈Sm̂∨m,‖t‖=1
〈t∗, f̂∗ − f∗〉2

≤ 1

2
‖f̂∗m̂ − f∗‖2 + 1

2
‖f∗ − f∗m‖2 + 4 sup

t∈Sm̂∨m,‖t‖=1
〈t∗, f̂∗ − f∗〉2,

plugging this in (28) and gathering the terms, we get

(29)
1

2
‖f̂m̂ − f‖2 ≤ 3

2
‖f − fm‖2 + p̂en(m) +

4

2π
sup

t∈Sm̂∨m,‖t‖=1
〈t∗, f̂∗ − f∗〉2 − p̂en(m̂).

Now, we write the decomposition

〈t∗, f̂∗ − f∗〉 = 1

q∆

〈
t∗,

Q̂∆ −Q∆

φ∆

〉
+R(t)

where R(t) =
∑6

i=1〈t∗, Ti〉 where the Ti’s are defined by (25).
Clearly, the proof of Proposition 2.2, the Cauchy Schwarz inequality and ‖t∗‖2 = 2π lead to

E

(
sup

t∈Sm̂∨m,‖t‖=1

∣∣R(t)
∣∣2
)

≤ c

n∆
.

Thus, we have to study the term

sup
t∈Sm̂∨m,‖t‖=1

1

q∆

〈
t∗,

Q̂∆ −Q∆

φ∆

〉
,

for which, we can prove (see the proof in Section 5.5):
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Lemma 5.2. Assume that the Assumptions of Theorem 2.1 hold. Let

p(m, m̂) =
3

2πnq∆

∫ π(m∨m̂)

−π(m∨m̂)

du

|φ∆(u)|2
,

we have

E

(
1

2π
sup

t∈Sm̂∨m,‖t‖=1

〈
t∗,

Q̂∆ −Q∆

q∆φ∆

〉2 − p(m, m̂)

)

+

≤ c

n∆
.

Let us define

Ω =

{∣∣∣∣
1

q̃∆
− 1

q∆

∣∣∣∣ ≤
1

2q∆

}
.

and

pen(m) =
1

2πnq∆

∫ πm

−πm

du

|φ∆(u)|2
.

We have p(m,m′) ≤ 3pen(m) + 3pen(m′) and on Ω, we have, ∀m ∈ Mn,

E(p̂en(m)1IΩ) ≤ 3

2

κ

2πnq∆
E

(∫ πm

−πm

du

|φ̃∆(u)|2

)

≤ 3κ

2πnq∆

∫ πm

−πm

du

|φ∆(u)|2
+

3κ

2πnq∆

∫ πm

−πm
E



∣∣∣∣∣

1

φ̃∆(u)
− 1

φ∆(u)

∣∣∣∣∣

2

 du

≤ 3κ pen(m) +
3κ

2πnq∆

2πm(1 + 2µ∆)4

n
≤ 3κ pen(m) +

c

n
.

Using (29) and Lemma 5.2, we derive

E(‖f̂m̂ − f‖21IΩ) ≤ 3‖f − fm‖2 + 6κpen(m) + E ([16p(m, m̂)− 2p̂en(m̂)]1IΩ) +
c

n∆

≤ 3‖f − fm‖2 + 6(κ+ 8)pen(m) + 2E ([24pen(m̂)− p̂en(m̂)]1IΩ) +
c

n∆
.(30)

Now we note that

E ([16pen(m̂)− p̂en(m̂)]1IΩ) = E

[(
24

2πnq∆

∫ πm̂

−πm̂

du

|φ∆(u)|2
− κ

2πnq̃∆

∫ πm̂

−πm̂

du

|φ̃∆(u)|2

)
1IΩ

]

≤ E

[(
96

2πnq̃∆

∫ πm̂

−πm̂

du

|φ̃∆(u)|2
− κ

2πnq̃∆

∫ πm̂

−πm̂

du

|φ̃∆(u)|2

)
1IΩ

]

+E




 96

2πnq̃∆

∫ πm̂

−πm̂

∣∣∣∣∣
1

φ̃∆(u)
− 1

φ∆(u)

∣∣∣∣∣

2

du


 1IΩ


 .

Now we choose κ ≥ 96 (which makes the first r.h.s. difference negative or zero), use that
on Ω, 1/q̃∆ ≤ (3/2)(1/q∆) and that m̂ ≤ n∆ which, together with Lemma 5.1 implies that
E ([24pen(m̂)− p̂en(m̂)]1IΩ) ≤ c/n. Plugging this in (30) yields, for κ ≥ κ0 = 96 that, ∀m ∈ Mn,

E(‖f̂m̂ − f‖21IΩ) ≤ 3‖f − fm‖2 + 6(κ+ 8)pen(m) +
c

n∆
.
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On the other hand

P(Ωc) = P

(∣∣∣∣
1

q̃∆
− 1

q∆

∣∣∣∣ >
1

2

1

q∆

)
≤ (2q∆)

6
E

(∣∣∣∣
1

q̃∆
− 1

q∆

∣∣∣∣
6
)

≤ (2q∆)
6C ′(3,∆)

1

∆9n3
≤ c

(n∆)3
,

where the last line follows from Proposition 2.1. Moreover ‖f̂m̂−f‖2 = ‖f̂m̂−fm̂‖2+‖f −fm̂‖2.
Now, ‖f − fm̂‖2 ≤ ‖f‖2 and as

‖f̂m̂ − fm̂‖2 ≤ ‖f̂n∆ − fn∆‖2 ≤ c(n∆)2,

we obtain that
E(‖f̂m̂ − f‖21IΩc) ≤ c

n∆
.

This, together with (30) implies the result given in Theorem 2.1. �

5.5. Proof of Lemma 5.2. The result follows from a standard application of the Talagrand
inequality to

t 7→ νn(t) =
1

2πn

n∑

j=1

∫ π(m∨m′)

−π(m∨m′)
t∗(−u)

eiuYj(∆)1IYj(∆)6=0 −Q∆(u)

q∆φ∆(u)
du.

First, we have

E

(
sup

t∈Sm′∨m,‖t‖=1
|νn(t)|2

)
≤ 1

2πn

∫ π(m∨m′)

−π(m∨m′)

1

q∆|φ2∆(u)|
du := H2.

Note that as 1 ≤ 1/|φ∆(u)| ≤ 1 + 2µ∆,

1

q∆

m ∨m′

n
≤ H2 ≤ (1 + 2µ∆)2

q∆

m ∨m′

n
.

Second, using

|φ−1
∆ (u)| ≤ 1 + 2µ∆ and f∗(u) =

Q∆(u)

q∆φ∆(u)
,

we get

sup
t∈Sm′∨m,‖t‖=1

Var

(
1

2π

∫ π(m∨m′)

−π(m∨m′)

t∗(−u)eiuY1(∆)1IY1(∆)6=0

q∆φ∆(u)
du

)

≤ 1

4π2
sup

t∈Sm′∨m,‖t‖=1
E

(∫∫
t∗(−u)t∗(w)ei(u−w)Y1(∆)1IY1(∆)6=0

q2∆φ∆(u)φ∆(−w)
dudw

)

≤ 1

2π

(∫∫

[−π(m∨m′),π(m∨m′)]2

|Q∆(u− w)|2
q2∆|φ∆(u)|2|φ∆(w)|2

dudw

)1/2

=
1

2π

(∫∫

[−π(m∨m′),π(m∨m′)]2

|Q∆(u− w)|2
q2∆|φ∆(u− w)|2

1

|φ∆(u)|2
|φ∆(u− w)|2
|φ∆(w)|2

dudw

)1/2

≤ (1 + 2µ1∆)‖f‖
(

1

2π

∫ π(m∨m′)

−π(m∨m′)

du

|φ2∆(u)|

)1/2

:= v.

Note that v ≤ c
√
m ∨m′.
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Lastly

sup
t∈Sm′∨m,‖t‖=1

sup
y∈R

∣∣∣∣
∫
t∗(−u)eiuy1Iy 6=0

q∆φ∆(u)
du

∣∣∣∣ ≤
√
2π

(∫ π(m∨m′)

−π(m∨m′)

du

|q∆φ∆(u)|2

)1/2

≤ c

√
m ∨m′

∆
:=M

Thus,

v

n
∝

√
m ∨m′

n
,

nH2

v
∝

√
m ∨m′

∆
,

M2

n2
∝ m ∨m′

(n∆)2
,

nH

M
∝

√
n∆,

and the Talagrand inequality with ǫ2 = 1
4 gives the result. �

5.6. Proof of Proposition 2.3. It follows from Lemma 6.3 (see the Appendix) that

|g̃∗∆(u)− g∗∆(u)| ≤ |ĝ∗∆(u)− g∗∆(u)| = |T1|+ |T2|
with

T1 =
1

q̃∆
(Q̂∆(u)−Q∆(u)), T2 = Q∆(u)(

1

q̃∆
− 1

q∆
).

As q∆ ≤ µ1∆
1+µ1∆

and 1
q̃∆

≤ 2(µ0∆+1)
µ0∆

, using Inequality (24), we get

E
(
|T1|2v

)
≤ C(v, µ0, µ1)

(n∆)v
.

Second, as |Q∆(u)| ≤ q∆, we obtain by Proposition 2.1

E
(
|T2|2v

)
≤
(q∆
∆

)2v C(v, µ0, µ1)

(n∆)v
.

The proof is now complete. �

5.7. Proof of Corollary 2.1. The proof follows the lines of Chesneau et al. (2012). For |v| ≤ 1
and |w| ≤ 1, we have for any k ≥ 1,

|wk − vk| = |(w − v)k +

k−1∑

j=1

(
k

j

)
vj(w − v)k−j| ≤ |w − v|k + |v|

k−1∑

j=1

(
k

j

)
|w − v|k−j

Thus,

|wk − vk|2 ≤ 2(|w − v|2k +D2
k|v|2|w − v|2).

We apply this inequality for w = g̃∗m,∆(u), v = g∗m,∆(u) and use Proposition 2.3 to obtain:

E|(g̃∗m,∆(u))
k − (g∗m,∆(u))

k|2 ≤ 2

(
C(k, µ0, µ1)

(n∆)k
+D2

k|g∗∆(u)|2
C(1, µ0, µ1)

n∆

)
.

Finally, the Plancherel theorem and Inequality (16) give

E

(
‖ĝ⋆km,∆ − g⋆km,∆‖2

)
=

1

2π

∫ πm

−πm
E
(
|(g̃∗m,∆(u))

k − (g∗m,∆(u))
k|2
)
du

≤ c(k, µ0, µ1)

(
m

(n∆)k
+D2

k

‖f‖2
n∆

)
.

This ends the proof of Corollary 2.1. �
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5.8. Proof of Proposition 2.4. We have

Fk(µ̃∆)− Fk(µ∆) = (µ̃− µ)∆
( k−1∑

j=0

(µ̃∆)j(µ∆)k−1−j +

k∑

j=0

(µ̃∆)j(µ∆)k−j
)

Then, we use inequality (10), which also implies E(|µ̃|2p) ≤ C(p, µ1) to get the result. �

5.9. Proof of Proposition 2.5. We write

f̂m,K = f̂ (1)m + f̂
(2)
m,K , f̂ (1)m = (1 + µ̃∆)ĝm,∆.

We define

f̃
(2)
m,K =

K∑

k=1

(−1)kFk(µ̃∆)g⋆ k+1
m,∆ , fm,K =

K∑

k=0

(−1)kFk(µ∆)g⋆ k+1
m,∆ ,

and
f (1)m = (1 + µ∆)gm,∆, f

(2)
m,K = fm,K − f (1)m .

By the triangle inequality we have

E(‖f̂m,K − f‖2) ≤ 4
(
E(‖f̂ (1)m − f (1)m ‖2) + E(‖f̂ (2)m,K − f̃

(2)
m,K‖2) + E(‖f̃ (2)m,K − f

(2)
m,K‖2)

+‖fm,K − fm‖2
)
+ ‖fm − f‖2

:= 4(T1 + T2 + T3 + T4) + ‖fm − f‖2,
where ‖fm − f‖2 is the usual bias term

‖fm − f‖2 = 1

2π

∫

|u|≥πm
|f∗(u)|2du,

Now we successively study the terms Ti, for i = 1, . . . , 4.
Let us start by the study of T1. We split it again T1 ≤ 3(T1,1 + T1,2 + T1,3) with

T1,1 =
1

2π

∫ πm

−πm

∣∣∣∣
1 + µ̃∆

q̃∆
− 1 + µ∆

q∆

∣∣∣∣
2

|Q̂∆(u)−Q∆(u)|2du

T1,2 =
1

2π

∫ πm

−πm

∣∣∣∣
1 + µ̃∆

q̃∆
− 1 + µ∆

q∆

∣∣∣∣
2

|Q∆(u)|2du, T1,3 =
1

2π

(
1 + µ∆

q∆

)2∫ πm

−πm
|Q̂∆(u)−Q∆(u)|2du.

As E(|Q̂∆(u)−Q∆(u)|2) ≤ q∆/n, we find

E(T1,3) ≤
(1 + µ∆)2

q∆

m

n
=

(1 + µ∆)3

µ

m

n∆
.

This term is the main one. Now we prove that the two others are of order less than O(1/(n∆)).
First, it follows from Proposition 2.1 that

(31) E

(∣∣∣∣
1 + µ̃∆

q̃∆
− 1 + µ∆

q∆

∣∣∣∣
2k
)

≤ C(k, µ0, µ1)
1

∆2k

1

(n∆)k
.

Moreover, using (24), we have

E

(
|Q̂∆(u)−Q∆(u)|4

)
≤ c(2, µ1)

(
∆

n

)2

.

Therefore, by the Cauchy-Schwarz Inequality and assuming that n∆ ≥ 1 and m ≤ n∆, we
obtain that

E(T1,1) ≤ c(µ0, µ1)
m

(n∆)2
≤ c(µ0, µ1)

n∆
.
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Now, using (31) with k = 1, and that |Q∆(u)| ≤ q∆|f∗(u)|, we get

E(T1,2) ≤ c1(µ0, µ1)
(q∆/∆)2

n∆

1

2π

∫ πm

−πm
|f∗(u)|2du ≤ c(µ0, µ1)‖f‖2

n∆
.

Gathering the terms, we have

E(T1) ≤ 3
(1 + µ∆)3

µ

m

n∆
+
c(µ0, µ1, ‖f‖)

n∆
.

Next we study T2:

E
(
‖f̂ (2)m,K − f̃

(2)
m,K‖2

)
= E

(∥∥∥
K∑

k=1

(−1)k(Fk(µ∆)− Fk(µ̃∆) + Fk(µ∆))
(̂g⋆ k+1

m,∆ − g⋆ k+1
m,∆

)∥∥∥
2
)

≤ c(K,µ1)

K∑

k=1

∆2kE

(
‖̂g⋆k+1

m,∆ − g⋆k+1
m,∆ ‖2

)
.

From Proposition 2.1, as m ≤ n∆, this term is bounded by

K∑

k=1

∆2kc(k + 1, µ0, µ1)

(
m

(n∆)k+1
+
D2

k+1

n∆
‖f‖2

)
≤ c(K,µ0, µ1)

n∆
.

Now, to bound T3, we write that, using that |g∗∆(u)| ≤ 1 ∧ |f∗(u)|, for all u,

2π‖f̃ (2)m,K − f
(2)
m,K‖2 ≤

∫ πm

−πm

∣∣∣
K∑

k=1

(−1)k
(
Fk(µ̃∆)− Fk(µ∆)

)(
g∗∆(u)

)k+1
∣∣∣
2
du

≤ ‖f∗‖2
∣∣∣

K∑

k=1

∣∣Fk(µ̃∆)− Fk(µ∆)
∣∣
∣∣∣
2
.

Then, with Proposition 2.4 we get

E

(
‖f̃ (2)m,K − f

(2)
m,K‖2

)
≤ K‖f‖2

K∑

k=1

E
(
|Fk(µ̃∆)− Fk(µ∆)|2

)
≤ c(K,µ1)

‖f‖2
n∆

.

Thus T3 is bounded by a term of order 1/(n∆).
Next we turn to T4. We have, using that |g∗∆(u)| ≤ 1 ∧ |f∗(u)| for all u,

2π‖fm,K − fm‖2 = ‖f∗m,K − f∗m‖2 ≤
∫ πm

−πm

∣∣∣
∞∑

k=K+1

(1 + µ1∆)(µ1∆)k+1
(
g∗∆(u)

)k+1
∣∣∣
2
du

≤ ‖f∗‖2
( ∞∑

k=K+1

(1 + µ1∆)(µ1∆)k+1
)2

=
(1 + µ1∆)2

(1− µ1∆)2
(µ1∆)2K+2‖f∗‖2 ≤ 2πA(µ1∆)2K+2,

where A is defined in Proposition 2.1. It follows that,

E(‖f̂m,K − f‖2) ≤ ‖fm − f‖2 + 4
(
A(µ1∆)2K+2 + 3

(1 + µ∆)3

µ

m

n∆
+ EK

1

n∆

)
,

which is the result of Proposition 2.1. �
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5.10. Proof of Theorem 2.2. The only term involved in the adaptation is T1,3, all the others
are bounded independently of m. Thus the above bounds can be used, and T1,3 is treated by
using Talagrand Inequality applied to the underlying empirical process. The principle is as in
Comte et al. (2014), proof of Theorem 4.1, with the use of the set Ω as in the proof of Theorem
2.1. For sake of conciseness, the proof is omitted.

5.11. Proofs of Section 3. We start by stating a useful Lemma.

Lemma 5.3. Assume that [B] (i)-(ii)(p) hold. Then

E

(∣∣∣ψ̃(v)− ψ(v)
∣∣∣
2p
)

≤ κp
(n∆)p

1 + |ψ(v)|2p
|H∆(v)|2p

.

Proof of Lemma 5.3.
We omit the index ∆ for simplicity. We have the decomposition

(32) ψ̃ − ψ =
Ĝ

H̃
− G

H
= (Ĝ−G)

(
1

H̃
− 1

H

)
+
Ĝ−G

H
+G

(
1

H̃
− 1

H

)

so that a bound follows from bounding E(|Ĝ(v) −G(v)|2) and E

(
|H̃−1(v)−H−1(v)|2

)
.

Clearly

(33) E(|Ĝ(v)−G(v)|2) = 1

n∆2
Var(Y1(∆)eivY1(∆)) ≤ E(|Y1(∆)|2/∆)

n∆
,

where E(|Y1(∆)|2/∆) = EΛEξ2 +∆E(Λ2)(E(ξ))2. And for general p, the Rosenthal Inequality
yields

E(|Ĝ(v)−G(v)|2p) ≤ C(2p)

(n∆)2p

{
n22pE(|Y1(∆)|2p) + [nVar(Y1(∆)eivY1(∆))]p

}

≤ c(
1

(n∆)2p−1
+

1

(n∆)p
)(34)

since [B](ii)(p) holds and ∆ ≤ 1.

Next the bound on E

(
|H̃−1 −H−1|2p

)
is the following:

(35) E

(∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2p
)

≤ cp inf
(
(n∆)−p|H(v)|−4p, |H(v)|−2p

)
.

The proof of (35) is similar to the proof of Lemma 5.1 and thus is omitted. We conclude using
(32), (33), (34) and (35). �
Proof of Proposition 3.1.
We first prove inequality (20) using Lemma 6.3 (see the Appendix). Let

R(u) =

∫ u

0

(
Ĝ(v)

H̃(v)
− G(v)

H(v)

)
dv.

Then to compute the risk of the estimator, we write:

‖f̃m − f‖2 = ‖f − fm‖2 + ‖f̃m − fm‖2 = ‖f − fm‖2 + 1

2π

∫ πm

−πm
|f̃∗(u)− f∗(u)|2du
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and

|f̃∗(u)− f∗(u)|2 ≤ |f̃∗(u)− f∗(u)|21I|R(u)|<1 + |f̃∗(u)− f∗(u)|21I|R(u)|≥1

≤ |f̂∗(u)− f∗(u)|21I|R(u)|<1 + 41I|R(u)|≥1

≤ |f∗(u)|2 |exp(R(u))− 1|2 1I|R(u)|<1 + 41I|R(u)|≥1

≤ e2|f∗(u)|2|R(u)|2 + 4|R(u)|2p

By the Hölder Inequality, E(|R(u)|2p) ≤ |u|2p−1
∫ u
0 E(|ψ̃(v)−ψ(v)|2p)dv. Then Lemma 5.3 gives

the result (20).
Now we prove inequality (21). We have

|f̃∗(u)− f∗(u)|2 ≤ e2|f∗(u)|2|R(u)|21I|R(u)|≤1 + 4|R(u)|1I|R(u)|>1.

So we prove

(36) E(|R(u)|21I|R(u)|≤1) ≤
c

n∆


M1

∫ |u|

0

dv

|H(v)|2 +

(∫ |u|

0

|G(v)|
|H(v)|2 dv

)2



and

E(|R(u)|1I|R(u)|>1) ≤ c

{(
Mp +

(∫ |u|

0

∣∣∣∣
G(v)

H(v)

∣∣∣∣
2

dv

)p)(
1

n∆

∫ |u|

0

dv

|H(v)|2

)p

+
E(|Y1(∆)|2p/∆)

(n∆)2p−1

(∫ |u|

0

dv

|H(v)|

)2p


(37)

with Mp = [‖G′‖p1 + E1/2(Y 2p
1 (∆)/∆)].

By decomposition (32), we write that |R(u)| ≤ R1(u) +R2(u) +R3(u) with

R1(u) =

∣∣∣∣∣

∫ u

0

Ĝ(v)−G(v)

H(v)
dv

∣∣∣∣∣ , R2(u) =

∣∣∣∣
∫ u

0
G(v)

(
1

H̃(v)
− 1

H(v)

)
dv

∣∣∣∣

and

R3(u) =

∣∣∣∣
∫ u

0
(Ĝ(v) −G(v))

(
1

H̃(v)
− 1

H(v)

)
dv

∣∣∣∣ .

Let Aj := {|R(u)| ≤ 1} ∩ {argmaxk∈{1,2,3}Rk(u) = j}, then

E(|R(u)|21I|R(u)|≤1) ≤ 9E(R2
1(u)1IA1) + 9E(R2

2(u)1IA2) + E(|R(u)|1IA3)

≤ 9E(R2
1(u)) + 9E(R2

2(u)) + 3E(R3(u)1IA3).(38)

Then

E(R2
1(u)) ≤ 1

n∆2

∫ u

0

∫ u

0

E(Y 2
1 (∆)ei(v−w)Y1(∆))

H(v)H(−w) dvdw

≤ 1

n∆

(∫ u

0

∫ u

0

1

|H(v)|2 |G
′(v − w)|dvdw

)1/2(∫ u

0

∫ u

0

1

|H(w)|2 |G
′(v − w)|dvdw

)1/2

≤ ‖G′‖1
n∆

∫ u

0

dv

|H(v)|2 .(39)
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Moreover

E(R2
2(u)) ≤

∫ u

0

∫ u

0
G(v)G(−w)E

[(
1

H̃(v)
− 1

H(v)

)(
1

H̃(−w)
− 1

H(−w)

)]
dvdw

≤ c

n∆

∫ u

0

∫ u

0

|G(v)G(−w)|
|H(v)|2|H(w)|2 dvdw =

c

n∆

(∫ u

0

|G(v)|
|H(v)|2 dv

)2

(40)

Lastly

E(R3(u)) ≤
∫ u

0
E1/2(|Ĝ(v)−G(v)|2)E1/2

(∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2
)
dv

≤ c
E1/2(Y 2

1 (∆)/∆)

n∆

∫ u

0

1

|H(v)|2 dv(41)

We plug (39)-(41) in (38) and we obtain (36).

Let now Bj := {|R(u)| > 1}∩{argmaxk∈{1,2,3}Rk(u) = j}. On Bj , |R(u)| ≤ 3Rj(u) and thus
3Rj(u) > 1. Then

E(|R(u)|1I|R(u)|>1) ≤ 3(E(R1(u)1IB1) + E(R2(u)1IB2) + E(R3(u)1IB3))

≤ 9p(E(R2p
1 (u)) + E(R2p

2 (u))) + 3pE(Rp
3(u)1IB3).(42)

By applying Rosenthal’s inequality and using the bound obtained in (39), we get

E(R2p
1 (u)) ≤ c


‖G′‖p1

(
1

n∆

∫ |u|

0

dv

|H(v)|2

)p

+
E(|Y1(∆)|2p/∆)

(n∆)2p−1

(∫ |u|

0

dv

|H(v)|

)2p

 .

For R2 we write

E(R2p
2 (u)) ≤

(∫ |u|

0

( |G(v)|
|H(v)|

)2

dv

)p

E

[(∫ |u|

0
|H(v)|2

∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2
)p]

.

Now we apply the Hölder inequality and inequality (35),

E(R2p
2 (u)) ≤

(∫ |u|

0

( |G(v)|
|H(v)|

)2

dv

)p(∫ |u|

0

dv

|H(v)|2

)p−1 ∫ |u|

0

|H(v)|4p
|H(v)|2 E

(∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2p
)
dv

≤ c

(∫ |u|

0

( |G(v)|
|H(v)|

)2

dv

)p(
1

n∆

∫ |u|

0

dv

|H(v)|2

)p

.

For R3 we apply the Hölder Inequality again, and then the Cauchy Schwarz Inequality, (34)
and (35), to obtain

E(Rp
3(u)) ≤

(∫ |u|

0

dv

|H(v)|2

)p−1 ∫ |u|

0

|H(v)|2p
|H(v)|2 E

((
|Ĝ(v) −G(v)|

∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
)p)

dv

≤
(∫ |u|

0

dv

|H(v)|2

)p−1 ∫ |u|

0

|H(v)|2p
|H(v)|2 E1/2

(
|Ĝ(v)−G(v)|2p

)
E1/2

(∣∣∣∣
1

H̃(v)
− 1

H(v)

∣∣∣∣
2p
)
dv

≤ c E1/2(|Y1(∆)|2p/∆)

(
1

n∆

∫ |u|

0

dv

|H(v)|2

)p

.

Plugging the three bounds in (42) gives (37). �
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6. Appendix

The Talagrand inequality. The result below follows from the Talagrand concentration in-
equality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the
proof of their Corollary 2 page 354).

Lemma 6.1. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables, let νn,Y (f) =
(1/n)

∑n
i=1[f(Yi) − E(f(Yi))] and let F be a countable class of uniformly bounded measurable

functions. Then for ǫ2 > 0

E

[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ǫ2)H2
]
+

≤ 4

K1

(
v

n
e−K1ǫ2

nH2

v +
98M2

K1n2C2(ǫ2)
e
− 2K1C(ǫ2)ǫ

7
√

2
nH
M

)
,

with C(ǫ2) =
√
1 + ǫ2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M, E

[
sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F

1

n

n∑

k=1

Var(f(Yk)) ≤ v.

By standard density arguments, this result can be extended to the case where F is a unit
ball of a linear normed space, after checking that f 7→ νn(f) is continuous and F contains a
countable dense family.

The Rosenthal inequality. (see e.g. Hall and Heyde (1980, p.23)) Let (Xi)1≤i≤n be n
independent centered random variables, such that E(|Xi|p) < +∞ for an integer p ≥ 1. Then
there exists a constant C(p) such that

(43) E

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣

p)
≤ C(p)




n∑

i=1

E(|Xi|p) +
(

n∑

i=1

E(X2
i )

)p/2

 .

Lemma 6.2. Consider c, s nonnegative real numbers, and γ a real such that 2γ > −1 if c = 0
or s = 0. Then, for all m > 0,

•
∫m
−m(x2 + 1)γ exp(c|x|s)dx ≈ m2γ+1−secm

s
,

and if in addition 2γ > 1 if c = 0 or s = 0,

•
∫∞
m (x2 + 1)−γ exp(−c|x|s)dx ≈ m−2γ+1−se−cms

.

The proof of this lemma is based on integration by parts and is omitted. See also Lemma 2
p. 35 in Butucea and Tsybakov (2008a,b).

Finally we state a useful and elementary inequality.

Lemma 6.3. Let z = reiθ with r ≤ 1, and ẑ = ρeiω, z̃ = eiω with ρ > 1. Then |z̃ − z| ≤ |ẑ − z|.
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