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Abstract. This paper deals with the consistency and a rate of convergence
for a Nadaraya-Watson estimator of the drift function of a stochastic differen-
tial equation driven by an additive fractional noise. The results of this paper
are obtained via both some long-time behavior properties of Hairer and some
properties of the Skorokhod integral with respect to the fractional Brownian
motion. These results are illustrated on the fractional Ornstein-Uhlenbeck
process.
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1. Introduction

Consider the stochastic differential equation

(1) X(t) = X0 +

∫ t

0

b(X(s))ds+ σB(t),

where B is a fractional Brownian motion of Hurst index H ∈]1/2, 1[, b : R → R is
a continuous map and σ ∈ R∗.

Along the last two decades, many authors studied statistical inference from obser-
vations drawn from stochastic differential equations driven by fractional Brownian
motion.
Most references on the estimation of the trend component in Equation (1) deals
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with parametric estimators. In Kleptsyna and Le Breton [10] and Hu and Nu-
alart [12], estimators of the trend component in Langevin’s equation are studied.
Kleptsyna and Le Breton [10] provide a maximum likelihood estimator, where the
stochastic integral with respect to the solution of Equation (1) returns to an Itô
integral. In [26], Tudor and Viens extend this estimator to equations with a drift
function depending linearly on the unknown parameter. Hu and Nualart [12] pro-
vide a least square estimator, where the stochastic integral with respect to the
solution of Equation (1) is taken in the sense of Skorokhod. In [13], Hu, Nualart
and Zhou extend this estimator to equations with a drift function depending lin-
early on the unknown parameter.
In Tindel and Neuenkirch [17], the authors study a least square-type estimator
defined by an objective function tailor-maid with respect to the main result of Tu-
dor and Viens [27] on the rate of convergence of the quadratic variation of the
fractional Brownian motion. In [4], Chronopoulou and Tindel provide a likelihood
based numerical procedure to estimate a parameter involved in both the drift and
the volatility functions in a stochastic differential equation with multiplicative frac-
tional noise.
On the nonparametric estimation of the trend component in Equation (1), there
are only few references. Saussereau [23] and Mishra and Prakasa Rao [18] study
the consistency of some Nadaraya-Watson’s-type estimators of the drift function b
in Equation (1). On the nonparametric estimation in Itô’s calculus framework, the
reader is referred to Kutoyants [14].

Let K : R → R+ be a kernel that is a nonnegative function with integral equal
to 1. The paper deals with the consistency and a rate of convergence for the
Nadaraya-Watson estimator

(2) b̂T,h(x) :=

∫ T

0

K

(
X(s)− x

h

)
δX(s)∫ T

0

K

(
X(s)− x

h

)
ds

; x ∈ R

of the drift function b in Equation (1), where the stochastic integral with respect to
X is taken in the sense of Skorokhod. Since to compute the Skorokhod integral is
a challenge, by denoting by Xx0 the solution of Equation (1) with initial condition
x0 ∈ R, the following estimator is also studied:

b̂T,h,ε(x) :=

∫ T

0

K

(
Xx0(s)− x

h

)
dXx0(s)∫ T

0

K

(
Xx0(s)− x

h

)
ds

−αHσ
2

1

h

∫ T

0

∫ u

0

K′
(
Xx0(u)− x

h

)
Xx0+ε(u)−Xx0(u)

Xx0+ε(v)−Xx0(v)
|u− v|2H−2dvdu∫ T

0

K

(
Xx0(s)− x

h

)
ds

(3)

with ε > 0 and x ∈ R. In this second estimator, the stochastic integral is taken
pathwise. It depends on H, but an estimator of this parameter is for instance pro-
vided in Kubilius and Skorniakov [11].
As detailed in Subsection 2.2, the Skorokhod integral is defined via the divergence
operator which is the adjoint of the Malliavin derivative for the fractional Brown-
ian motion. If H = 1/2, then the Skorokhod integral coincides with Itô’s integral
on its domain. When H ∈]1/2, 1[, it is more difficult to compute the Skorokhod
integral, but not impossible as explained at the end of Subsection 2.2. Note that,
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the pathwise stochastic integral defined in Subsection 2.1 would have been a more
natural choice, but unfortunately, it does not provide a consistent estimator (see
Proposition 3.3).
Clearly, to be computable, the estimator b̂T,h,ε(x) requires an observed path of the
solution of Equation (1) for two close but different values of the initial condition.
This is not possible in any context, but we have in mind the following application
field: if t 7→ Xx0(ω, t) denotes the concentration of a drug along time during its
elimination by a patient ω with initial dose x0 > 0, t 7→ Xx0+ε(ω, t) could be ap-
proximated by replicating the exact same protocol on patient ω, but with initial
dose x0 + ε after the complete elimination of the previous dose.
We mention that we do not study the additional error which occurs when only
discrete time observations with step ∆ on [0, T ] (T = n∆) are available. Formula
(3) has then to be discretized and a study in the spirit of Saussereau [23] (Section
4.3) must be conducted.
Section 2 deals with some preliminary results on stochastic integrals with respect to
the fractional Brownian motion and an ergodic theorem for the solution of Equation
(1). The consistency and a rate of convergence of the Nadaraya-Watson estimator
studied in this paper are stated in Section 3. Almost all the proofs of the paper are
provided in Section 4.

Notations:
(1) The vector space of Lipschitz continuous maps from R into itself is denoted

by Lip(R) and equipped with the Lipschitz semi-norm ‖.‖Lip defined by

‖ϕ‖Lip := sup

{
|ϕ(y)− ϕ(x)|
|y − x|

; x, y ∈ R and x 6= y

}
for every ϕ ∈ Lip(R).

(2) For every m ∈ N,

Cmb (R) :=

{
ϕ ∈ Cm(R) : max

k∈J0,mK
‖ϕ(k)‖∞ <∞

}
.

(3) For every m ∈ N∗,

Lipmb (R) :=

{
ϕ ∈ Cm(R) : ϕ ∈ Lip(R) and max

k∈J1,mK
‖ϕ(k)‖∞ <∞

}
and for every ϕ ∈ Lipmb (R),

‖ϕ‖Lipm
b

:= ‖ϕ‖Lip ∨ max
k∈J1,mK

‖ϕ(k)‖∞.

The map ‖.‖Lipm
b

is a semi-norm on Lipmb (R).

Note that for every m ∈ N∗,
Cmb (R) ⊂ Lipmb (R).

(4) Consider n ∈ N∗. The vector space of infinitely continuously differentiable
maps f : Rn → R such that f and all its partial derivatives have polynomial
growth is denoted by C∞p (Rn,R).

2. Stochastic integrals with respect to the fractional Brownian
motion and an ergodic theorem for fractional SDE

On the one hand, this section presents two different methods to define a sto-
chastic integral with respect to the fractional Brownian motion. The first one is
based on the pathwise properties of the fractional Brownian motion. Even if this
approach is very natural, it is proved in Proposition 3.3 that the pathwise stochastic
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integral is not appropriate to get a consistent estimator of the drift function b in
Equation (1). Another stochastic integral with respect to the fractional Brownian
motion is defined via the Malliavin divergence operator. This stochastic integral is
called Skorokhod’s integral with respect to B. If H = 1/2, which means that B
is a Brownian motion, the Skorokhod integral defined via the divergence operator
coincides with Itô’s integral on its domain. This integral is appropriate for the
estimation of the drift function b in Equation (1). On the other hand, an ergodic
theorem for the solution of Equation (1) is stated in Subsection 2.3.

2.1. The pathwise stochastic integral. This subsection deals with some defi-
nitions and basic properties of the pathwise stochastic integral with respect to the
fractional Brownian motion of Hurst index greater than 1/2.

Definition 2.1. Consider x and w two continuous functions from [0, T ] into R.
Consider a partition D := (tk)k∈J0,mK of [s, t] with m ∈ N∗ and s, t ∈ [0, T ] such
that s < t. The Riemann sum of x with respect to w on [s, t] for the partition D is

Jx,w,D(s, t) :=

m−1∑
k=0

x(tk)(w(tk+1)− w(tk)).

Notation. With the notations of Definition 2.1, the mesh of the partition D is

δ(D) := max
k∈J0,m−1K

|tk+1 − tk|.

The following theorem ensures the existence and the uniqueness of Young’s integral
(see Friz and Victoir [6], Theorem 6.8).

Theorem 2.2. Let x (resp. w) be a α-Hölder (resp. β-Hölder) continuous map
from [0, T ] into R with α, β ∈]0, 1] such that α + β > 1. There exists a unique
continuous map Jx,w : [0, T ] → R such that for every s, t ∈ [0, T ] satisfying s < t
and any sequence (Dn)n∈N of partitions of [s, t] such that δ(Dn)→ 0 as n→∞,

lim
n→∞

|Jx,w(t)− Jx,w(s)− Jx,w,Dn(s, t)| = 0.

The map Jx,w is the Young integral of x with respect to w and Jx,w(t)− Jx,w(s) is
denoted by ∫ t

s

x(u)dw(u)

for every s, t ∈ [0, T ] such that s < t.

The following proposition is a change of variable for Young’s integral.

Proposition 2.3. Let x be a α-Hölder continuous map from [0, T ] into R with
α ∈]1/2, 1[. For every ϕ ∈ Lip1

b(R) and s, t ∈ [0, T ] such that s < t,

ϕ(x(t))− ϕ(x(s)) =

∫ t

s

ϕ′(x(u))dx(u).

For any α ∈]1/2, H[, the paths of B are α-Hölder continuous (see Nualart [20],
Section 5.1). So, for every process Y := (Y (t))t∈[0,T ] with β-Hölder continuous
paths from [0, T ] into R such that α+β > 1, by Theorem 2.2, it is natural to define
the pathwise stochastic integral of Y with respect to B by(∫ t

0

Y (s)dB(s)

)
(ω) :=

∫ t

0

Y (ω, s)dB(ω, s)

for every ω ∈ Ω and t ∈ [0, T ].
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2.2. The Skorokhod integral. This subsection deals with some definitions and
results on Malliavin calculus in order to define and to provide a suitable expression
of Skorokhod’s integral.

Consider the vector space

H :=

{
ϕ : R+ → R :

∫ ∞
0

∫ ∞
0

|t− s|2H−2|ϕ(s)| · |ϕ(t)|dsdt <∞
}
.

Equipped with the scalar product

〈ϕ,ψ〉H := H(2H − 1)

∫ ∞
0

∫ ∞
0

|t− s|2H−2ϕ(s)ψ(t)dsdt ; ϕ,ψ ∈ H,

H is the reproducing kernel Hilbert space of B. Let B be the map defined on H by

B(h) :=

∫ .

0

h(s)dB(s) ; h ∈ H

which is the Wiener integral of h with respect to B. The family (B(h))h∈H is an
isonormal Gaussian process.

Definition 2.4. The Malliavin derivative of a smooth functional

F = f(B(h1), . . . ,B(hn))

where n ∈ N∗, f ∈ C∞p (Rn,R) and h1, . . . , hn ∈ H is the H-valued random variable

DF :=

n∑
k=1

∂kf(B(h1), . . . ,B(hn))hk.

Proposition 2.5. The map D is closable from L2(Ω,A,P) into L2(Ω;H). Its
domain in L2(Ω,A,P) is denoted by D1,2 and is the closure of the smooth functionals
space for the norm ‖.‖1,2 defined by

‖F‖21,2 := E(|F |2) + E(‖DF‖2H) <∞

for every F ∈ L2(Ω,A,P).

For a proof, see Nualart [20], Proposition 1.2.1.

Definition 2.6. The adjoint δ of the Malliavin derivative D is the divergence
operator. The domain of δ is denoted by dom(δ) and u ∈ dom(δ) if and only if
there exists a deterministic constant c > 0 such that for every F ∈ D1,2,

|E(〈DF, u〉H)| 6 cE(|F |2)1/2.

For every process Y := (Y (s))s∈R+ and every t > 0, if Y 1[0,t] ∈ dom(δ), then its
Skorokhod integral with respect to B is defined on [0, t] by∫ t

0

Y (s)δB(s) := δ(Y 1[0,t]).

With the same notations:∫ t

0

Y (s)δX(s) :=

∫ t

0

Y (s)b(X(s))ds+ σ

∫ t

0

Y (s)δB(s).

The following proposition provides the link between the Skorokhod integral and the
pathwise stochastic integral of Subsection 2.1.
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Proposition 2.7. If b ∈ Lip1
b(R), then Equation (1) with initial condition x ∈

R has a unique solution Xx with α-Hölder continuous paths for every α ∈]0, H[.
Moreover, for every ϕ ∈ Lip1

b(R),∫ t

0

ϕ(Xx(u))δXx(u) =

∫ t

0

ϕ(Xx(u))dXx(u)(4)

−αHσ2

∫ t

0

∫ u

0

ϕ′(Xx(u))
∂xXx(u)

∂xXx(v)
|u− v|2H−2dvdu,

where αH = H(2H − 1).

Moreover, we can prove the following Corollary, which allows us to propose a com-
putable form for the estimator.

Corollary 2.8. Assume that b ∈ Lip2
b(R) and there exists a constant M > 0 such

that
b′(x) 6 −M ; ∀x ∈ R.

For every ϕ ∈ Lip1
b(R), x ∈ R and ε, t > 0,∣∣∣∣∫ t

0

ϕ(Xx(u))δXx(u)− Sϕ(x, ε, t)

∣∣∣∣ 6 Cϕεt2H−1,

where

Sϕ(x, ε, t) :=

∫ t

0

ϕ(Xx(u))dXx(u)

−αHσ2

∫ t

0

∫ u

0

ϕ′(Xx(u))
Xx+ε(u)−Xx(u)

Xx+ε(v)−Xx(v)
|u− v|2H−2dvdu

and

Cϕ := Hσ2 ‖b′′‖∞‖ϕ′‖∞
2M2

.

As mentioned in the Introduction, the formula for Sϕ(x, ε, t) can be used if two
paths of X can be observed with different but close initial conditions.
Lastly, the following theorem, recently proved by Hu, Nualart and Zhou in [13] (see
Proposition 4.4), provides a suitable control of Skorokhod’s integral to study its
long-time behavior.

Theorem 2.9. Assume that b ∈ Lip2
b(R) and there exists a constant M > 0 such

that
b′(x) 6 −M ; ∀x ∈ R.

There exists a deterministic constant C > 0, not depending on T , such that for
every ϕ ∈ Lip1

b(R):

E

∣∣∣∣∣
∫ T

0

ϕ(X(s))δB(s)

∣∣∣∣∣
2
 6 C

(∫ T

0

E(|ϕ(X(s))|1/H)ds

)2H

+

(∫ T

0

E(|ϕ′(X(s))|2)1/(2H)ds

)2H
 <∞.

2.3. Ergodic theorem for the solution of a fractional SDE. On the ergodic-
ity of fractional SDEs, the reader can refer to Hairer [7], Hairer and Ohashi [8] and
Hairer and Pillai [9] (see Subsection 4.3 for details).

In the sequel, the map b fulfills the following condition.
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Assumption 2.10. The map b belongs to Lip∞b (R) and there exists a constant
M > 0 such that

(5) b′(x) 6 −M ; ∀x ∈ R.

Remarks:
(1) Since b ∈ Lip1

b(R), Equation (1) has a unique solution.
(2) Under Assumption 2.10, the dissipativity conditions of Hairer [7], Hairer

and Ohashi [8] and Hu, Nualart and Zhou [13] are fulfilled by b:

(x− y)(b(x)− b(y)) 6 −M(x− y)2 ; ∀x, y ∈ R

and there exists a constant M ′ > 0 such that

xb(x) 6M ′(1− x2) ; ∀x ∈ R.

Therefore, Assumption 2.10 is sufficient to apply the results proved in [7],
[8] and [13] in the sequel.

Proposition 2.11. Consider a measurable map ϕ : R→ R+ such that there exists
a nonempty compact subset C of R satisfying ϕ(C) ⊂]0,∞[. Under Assumption
2.10, there exists a deterministic constant l(ϕ) > 0 such that

1

T

∫ T

0

ϕ(X(t))dt
a.s./L2

−−−−→
T→∞

l(ϕ) > 0.

3. Convergence of the Nadaraya-Watson estimator of the drift
function

This section deals with the consistency and rate of convergence of the Nadaraya-
Watson estimator of the drift function b in Equation (1).

In the sequel, the kernel K fulfills the following assumption.

Assumption 3.1. supp(K) = [−1, 1] and K ∈ C1
b (R,R+).

3.1. Why is pathwise integral inadequate. First of all, let us prove that, even
if it seems very natural, the pathwise Nadaraya-Watson estimator

b̃T,h(x) :=

∫ T

0

K

(
X(s)− x

h

)
dX(s)∫ T

0

K

(
X(s)− x

h

)
ds

=

1

Th

∫ T

0

K

(
X(s)− x

h

)
dX(s)

f̂T,h(x)

where

(6) f̂T,h(x) :=
1

Th

∫ T

0

K

(
X(s)− x

h

)
ds.

is not consistent.

For this, we need the following lemma providing a convergence result for f̂T,h(x).
It will also be used to prove Proposition 3.4.

Lemma 3.2. Under Assumptions 2.10 and 3.1, there exists a deterministic con-
stant lh(x) > 0 such that

f̂T,h(x)
a.s./L2

−−−−→
T→∞

lh(x) > 0.
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Proof. Under Assumption 3.1, the map

y ∈ R 7−→ 1

h
K

(
y − x
h

)
satisfies the condition on ϕ of Proposition 2.11, which applies thus here and gives
the result. �

Now, we state the result proving that b̃T,h(x) is not consistent to recover b(x).

Proposition 3.3. Under Assumptions 2.10 and 3.1:

b̃T,h(x)
P−−−−→

T→∞
0.

Proof. Let K be a primitive function of K. By the change of variable formula for
Young’s integral (Proposition 2.3):

K
(
X(T )− x

h

)
−K

(
X(0)− x

h

)
=

1

h

∫ T

0

K

(
X(s)− x

h

)
dX(s)

= T f̂T,h(x)̃bT,h(x).

Then,

b̃T,h(x) =
1

T f̂T,h(x)

(
K
(
X(T )− x

h

)
−K

(
X(0)− x

h

))
.

Since K is differentiable with bounded derivative K:

|̃bT,h(x)| 6 ‖K‖∞
Thf̂T,h(x)

|X(T )−X(0)|.

Finally, as we know by Hairer [7], Proposition 3.12 that

t ∈ R+ 7−→ E(|X(t)|)

is uniformly bounded, and by Lemma 3.2 that f̂T,h(x) converges almost surely to
lh(x) > 0 as T → ∞, it follows that b̃T,h(x) converges to 0 in probability, when
T →∞. �

This is why the Skorokhod integral replaces the pathwise stochastic integral in
b̂T,h(x).

3.2. Convergence of the Nadaraya-Watson estimator. This subsection deals
with the consistency and rate of convergence of the estimators.

The Nadaraya-Watson estimator b̂T,h(x) defined by Equation (2) can be decom-
posed as follows:

(7) b̂T,h(x)− b(x) =
BT,h(x)

f̂T,h(x)
+
ST,h(x)

f̂T,h(x)
,

where f̂T,h(x) is defined by (6),

BT,h(x) :=
1

Th

∫ T

0

K

(
X(s)− x

h

)
(b(X(s))− b(x))ds.

and

ST,h(x) :=
σ

Th

∫ T

0

K

(
X(s)− x

h

)
δB(s).

By using the Lipschitz assumption 2.10 on b together with the technical lemmas
proved in Section 2, the estimators b̂T,h(x) and b̂T,h,ε(x) can be studied.
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Proposition 3.4. Under Assumptions 2.10 and 3.1,

|̂bT,h(x)− b(x)| 6 ‖b‖Liph+
|ST,h(x)|
f̂T,h(x)

,

and there exists a positive constant C such that

E(ST,h(x)2) 6
C

h4T 2(1−H)
.

As a consequence, for fixed h > 0, we have

(8) T βVT,h(x)
P−−−−→

T→∞
0 ; ∀β ∈ [0, 1−H[, where VT,h(x) :=

∣∣∣∣∣ST,h(x)

f̂T,h(x)

∣∣∣∣∣ .
Moreover, for b̂T,h,ε defined by (3), ∀ε > 0,

(9) |̂bT,h,ε(x)− b̂T,h(x)| 6 C εh
−2T 2H−2

f̂T,h(x)
.

Heuristically, Proposition 3.4 says that the pointwise quadratic risk of the kernel
estimator b̂T,h(x) involves a squared bias of order h2 and a variance term of order
1/(h4T 2(1−H)). The best possible rate is thus T−

2
3 (1−H) with a bandwidth choice

of order T−
1
3 (1−H). A more rigorous formulation of this is stated below.

Note also that it follows from (9) that the rate of b̂T,h,ε(x) is preserved for any
small ε.
We want to emphasize that no order condition is set on the kernel, and the bias
term is not bounded in the usual way for kernel setting (see e.g. Tsybakov [25],
Chapter 1). Indeed, we can not refer to the expectation of the numerator as a
convolution product, because the existence of a stationary density is not ensured.
Would it exist, it would be difficult to set adequate regularity conditions on it.

Now, consider a decreasing function h : [t0,∞[→]0, 1[ (t0 ∈ R+) such that

lim
T→∞

h(T ) = 0 and lim
T→∞

Th(T ) =∞

and assume that f̂T,h(T )(x) fulfills the following assumption.

Assumption 3.5. There exists l(x) ∈]0,∞] such that f̂T,h(T )(x) converges to l(x)
in probability as T →∞.

Subsection 3.3 deals with the special case of fractional SDE with Gaussian solution
in order to prove that Assumption 3.5 holds in this setting.
In Proposition 3.6, the result of Proposition 3.4 is extended to the estimator
b̂T,h(T )(x) under Assumption 3.5.

Proposition 3.6. Under Assumptions 2.10, 3.1 and 3.5:
(1) If there exists β ∈]0, 1−H[ such that T−β =T→∞ o(h(T )2), then

b̂T,h(T )(x)
P−−−−→

T→∞
b(x).

(2) For every γ ∈]0, β[ such that

h(T ) =T→∞ o(T−γ) and TH−1+γ =T→∞ o(h(T )2),

then
T γ |̂bT,h(T )(x)− b(x)| P−−−−→

T→∞
0.

Example. Consider

β ∈
]

2

3
(1−H), 1−H

[
and h(T ) := T

H−1
3 .
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• Th(T ) = TH+ 2
3 (1−H) −−−−→

T→∞
∞.

• T−β/h(T )2 = T−β+ 2
3 (1−H) −−−−→

T→∞
0.

• For every γ ∈]0, (1−H)/3[, h(T )/T−γ = T
H−1

3 +γ −−−−→
T→∞

0.

• For every γ ∈]0, (1−H)/3[, TH−1+γ/h(T )2 = T
H−1

3 +γ −−−−→
T→∞

0.

In Corollary 3.7, the result of Proposition 3.6 is extended to b̂T,h(T ),ε(T )(x) where

lim
T→∞

ε(T ) = 0.

Corollary 3.7. Under Assumptions 2.10, 3.1 and 3.5:

(1) If there exists β ∈]0, 1−H[ such that

T−β =T→∞ o(h(T )2) and ε(T ) =T→∞ o(h(T )−2T 2H−2),

then

b̂T,h(T ),ε(T )(x)
P−−−−→

T→∞
b(x).

(2) For every γ ∈]0, β[ such that h(T ) =T→∞ o(T−γ),
TH−1+γ =T→∞ o(h(T )2)

ε(T ) =T→∞ o(h(T )−2T 2H−2+γ)
,

then

T γ |̂bT,h(T ),ε(T )(x)− b(x)| P−−−−→
T→∞

0.

Example. One can take ε(T ) := h(T )2.

3.3. Special case of fractional SDE with Gaussian solution. The purpose
of this subsection is to show that Assumption 3.5 holds when the drift function in
Equation (1) is linear with a negative slope. Note also that if H = 1/2, then f̂T,h(T )

is a consistent estimator of the stationary density for Equation (1) (see Kutoyants
[14], Section 4.2).

Assume that Equation (1) has a centered Gaussian stationary solution X and con-
sider the normalized process Y := X/σ0 where σ0 :=

√
var(X0).

Throughout this subsection, ν is the standard normal density and the autocor-
relation function ρ of Y fulfills the following assumption.

Assumption 3.8.
∫ T

0

∫ T

0

|ρ(v − u)|dvdu =T→∞ O(T 2H).

The following proposition ensures that under Assumption 3.8, f̂T,h(T ) fulfills As-
sumption 3.5 for every x ∈ R∗.

Proposition 3.9. Under Assumptions 2.10 and 3.1, if Equation (1) has a centered,
Gaussian, stationary solution X, the autocorrelation function ρ of Y := X/σ0

satisfies Assumption 3.8 and T 2H−2 =T→∞ o(h(T )), then

(10) f̂T,h(T )(x)
P−−−−→

T→∞

1

σ0
ν

(
x

σ0

)
> 0

for every x ∈ R∗.
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Now, consider the fractional Langevin equation

(11) X(t) = X0 − λ
∫ t

0

X(s)ds+ σB(t),

where λ, σ > 0. Equation (11) has a unique solution called Ornstein-Uhlenbeck’s
process.

On the one hand, the drift function of Equation (11) fulfills Assumption 2.10.
So, under Assumption 3.1, by Proposition 3.4,

|̂bT,h(x) + λx| 6 ‖b‖Liph+ VT,h(x),

where
T βVT,h(x)

P−−−−→
T→∞

0 ; ∀β ∈ [0, 2H − 1[.

On the other hand, by Cheridito et al. [3], Section 2, Equation (11) has a centered,
Gaussian, stationary solution X such that:

X(t) = σ

∫ t

−∞
e−λ(t−u)dB(u) ; ∀t ∈ R+.

Moreover, by Cheridito et al. [3], Theorem 2.3, the autocorrelation function ρ of
Y := X/σ0 satisfies

ρ(T ) =T→∞ O(T 2H−2).

So, ρ fulfills Assumption 3.8.

Consider β ∈]0, 2H − 1[ and γ ∈]0, 2H − 1− β[ such that

h(T ) =T→∞ o(T−γ) and TH−1+γ =T→∞ o(h(T )2).

Then,

lim
T→∞

T 2H−2

h(T )
= lim
T→∞

h(T )TH−1−γ T
H−1+γ

h(T )2
= 0.

Therefore, by Proposition 3.6 and Proposition 3.9:

T γ |̂bT,h(T )(x) + λx| P−−−−→
T→∞

0 ; ∀x ∈ R∗.

4. Proofs

4.1. Proof of Proposition 2.7. On the existence, uniqueness and regularity of
the paths of the solution of Equation (1), see Lejay [15].

Now, let us prove (4).

Let Xx be the solution of Equation (2.7) with initial condition x ∈ R. Consider
also ϕ ∈ Lip1

b(R) and t > 0. By Nualart [20], Proposition 5.2.3:∫ t

0

ϕ(Xx(u))δXx(u) =

∫ t

0

ϕ(Xx(u))b(Xx(u))du+ σ

∫ t

0

ϕ(Xx(u))δB(u)

=

∫ t

0

ϕ(Xx(u))dXx(u)

−αHσ
∫ t

0

∫ t

0

ϕ′(Xx(u))DvXx(u)|u− v|2H−2dvdu.

Consider u, v ∈ [0, t]. On the one hand,

DvXx(u) = σ1[0,u](v) +

∫ u

0

b′(Xx(r))DvXx(r)dr.
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Then,

DvXx(u) = σ1[0,u](v) exp

(∫ u

v

b′(Xx(r))dr

)
.

On the other hand,

∂xXx(u) = 1 +

∫ u

0

b′(Xx(r))∂xXx(r)dr.

Then,

∂xXx(u) = exp

(∫ u

0

b′(Xx(r))dr

)
.

Therefore,

DvXx(u) = σ1[0,u](v)
∂xXx(u)

∂xXx(v)

and∫ t

0

ϕ(Xx(u))δXx(u) =

∫ t

0

ϕ(Xx(u))dXx(u)

−αHσ2

∫ t

0

∫ u

0

ϕ′(Xx(u))
∂xXx(u)

∂xXx(v)
|u− v|2H−2dvdu.

4.2. Proof of Corollary 2.8. Consider x ∈ R and ε, t > 0. For every s ∈ [0, t],

∂xXx(s) = 1 +

∫ s

0

b′(Xx(r))∂xXx(r)dr

and, by Taylor’s formula,

Xx+ε(s)−Xx(s) = ε+

∫ s

0

(Xx+ε(r)−Xx(r))

∫ 1

0

b′(Xx(r) + θ(Xx+ε(r)−Xx(r)))dθdr.

So, for every (u, v) ∈ [0, t]2 such that v < u,

∂xXx(u)

∂xXx(v)
= exp

(∫ u

v

b′(Xx(r))dr

)
and

Xx+ε(u)−Xx(u)

Xx+ε(v)−Xx(v)
= exp

(∫ u

v

∫ 1

0

b′(Xx(r) + θ(Xx+ε(r)−Xx(r)))dθdr

)
.

For a given ϕ ∈ Lip1
b(R), by Proposition 2.7,

∆S
ϕ(x, ε, t) 6 αHσ

2

∫ t

0

∫ u

0

|ϕ′(Xx(u))|∆ϕ(x, ε, u, v)(u− v)2H−2dvdu,

where

∆S
ϕ(x, ε, t) :=

∣∣∣∣∫ t

0

ϕ(Xx(u))δXx(u)− Sϕ(x, ε, t)

∣∣∣∣
and, for every (u, v) ∈ [0, t]2 such that v < u,

∆ϕ(x, ε, u, v) :=

∣∣∣∣∂xXx(u)

∂xXx(v)
− Xx+ε(u)−Xx(u)

Xx+ε(v)−Xx(v)

∣∣∣∣ .



NONPARAMETRIC ESTIMATION IN FRACTIONAL SDE 13

Since b′(R) ⊂]−∞, 0] and b is two times continuously differentiable,

∆ϕ(x, ε, u, v) =

∣∣∣∣exp

(∫ u

v

b′(Xx(r))dr

)
− exp

(∫ u

v

∫ 1

0

b′(Xx(r) + θ(Xx+ε(r)−Xx(r)))dθdr

)∣∣∣∣
6 sup

z∈b′(R)
ez

×
∫ u

v

∣∣∣∣b′(Xx(r))−
∫ 1

0

b′(Xx(r) + θ(Xx+ε(r)−Xx(r)))dθ

∣∣∣∣ dr
6
∫ u

v

∫ 1

0

|b′(Xx(r))− b′(Xx(r) + θ(Xx+ε(r)−Xx(r)))|dθdr

6
‖b′′‖∞

2

∫ u

v

|Xx+ε(r)−Xx(r)|dr.

Consider s ∈ R+. By Equation (1):

(Xx+ε(s)−Xx(s))2 = ε2 + 2

∫ s

0

(Xx+ε(r)−Xx(r))d(Xx+ε −Xx)(r)

= ε2 + 2

∫ s

0

(Xx+ε(r)−Xx(r))(b(Xx+ε(r))− b(Xx(r)))dr.

By the mean-value theorem, there exists xs ∈ R such that

∂s(Xx+ε(s)−Xx(s))2 = 2(Xx+ε(s)−Xx(s))2 b(Xx+ε(s))− b(Xx(s))

Xx+ε(s)−Xx(s)

= 2(Xx+ε(s)−Xx(s))2b′(xs) 6 −2M(Xx+ε(s)−Xx(s))2

and then,
|Xx+ε(s)−Xx(s)| 6 εe−Ms.

Therefore,

∆ϕ(x, ε, u, v) 6
‖b′′‖∞

2
ε

∫ u

v

e−Mrdr

=
‖b′′‖∞

2M
ε(e−Mv − e−Mu) 6

‖b′′‖∞
2M

εe−Mv.

Finally, using the above bounds, and in a second stage, the integration by parts
formula, we get:

∆S
ϕ(x, ε, t) 6 αHσ

2 ‖b′′‖∞
2M

ε

∫ t

0

∫ u

0

|ϕ′(Xx(u))|e−Mv(u− v)2H−2dvdu

6 αHσ
2 ‖b′′‖∞‖ϕ′‖∞

2M
ε

∫ t

0

e−Mv

∫ t

v

(u− v)2H−2dudv

= αHσ
2 ‖b′′‖∞‖ϕ′‖∞

2M(2H − 1)
ε

∫ t

0

e−Mv(t− v)2H−1dv

= αHσ
2 ‖b′′‖∞‖ϕ′‖∞

2M2
ε

(
t2H−1

2H − 1
−
∫ t

0

e−Mv(t− v)2H−2dv

)
6 αHσ

2 ‖b′′‖∞‖ϕ′‖∞
2M2(2H − 1)

εt2H−1 = Cϕεt
2H−1.

4.3. Proof of Proposition 2.11. Consider γ ∈]1/2, H[, δ ∈]H − γ, 1 − γ[ and
Ω := Ω− × Ω+, where Ω− (resp. Ω+) is the completion of C∞0 (R−,R) (resp.
C∞0 (R+,R)) with respect to the norm ‖.‖− (resp. ‖.‖+) defined by

‖ω−‖− := sup
s<t60

|ω−(t)− ω−(s)|
|t− s|γ(1 + |s|+ |t|)δ

; ∀ω− ∈ Ω−
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(resp.

‖ω+‖+ := sup
06s<t

|ω+(t)− ω+(s)|
|t− s|γ(1 + |s|+ |t|)δ

; ∀ω+ ∈ Ω+).

By Hairer [7], Section 3 or more clearly by Hairer and Ohashi [8], Lemmas 4.1 and
4.2, there exist a Borel probability measure P on Ω and a transition kernel P from
Ω− to Ω+ such that:

• The process generated by (Ω,P) is a two-sided fractional Brownian motion
B̃.

• For every Borel set U (resp. V ) of Ω− (resp. Ω+),

P(U × V ) =

∫
U

P (ω−, V )P−(dω−)

where P− is the probability distribution of (B̃(t))t∈R− .

Let I : R×Ω+ → C0(R+,R) be the Itô (solution) map for Equation (1). In general,
I(x, .) with x ∈ R is not a Markov process. However, the solution of Equation (1)
can be coupled with the past of the driving signal in order to bypass this difficulty.
In other words, consider the enhanced Itô map I : R× Ω→ C0(R+,R× Ω−) such
that for every (x, ω−, ω+) ∈ R× Ω and t ∈ R+,

I(x, ω−, ω+)(t) := (I(x, ω+)(t), pΩ−(θ(ω−, ω+)(t)))

where pΩ− is the projection from Ω onto Ω−,

θ(ω−, ω+)(t) := (ω− t ω+)(t+ ·)− (ω− t ω+)(·)

and ω− t ω+ is the concatenation of ω− and ω+. By Hairer [7], Lemma 2.12, the
process I(x, .) is Markovian and has a Feller transition semigroup (Q(t))t∈R+ such
that for every t ∈ R+, (x, ω−) ∈ R×Ω− and every Borel set U (resp. V ) of R (resp.
Ω−),

Q(t; (x, ω−), U × V ) =

∫
V

δI(x,ω+)(t)(U)P (t;ω−, dω+)

where δy is the delta measure located at y ∈ R and P (t;ω−, .) is the pushforward
measure of P (ω−, .) by θ(ω−, .)(t).

In order to prove Proposition 2.11, let us first state the following result from Hairer
[7] and Hairer and Ohashi [8].

Theorem 4.1. Under Assumption 2.10:

(1) (Irreducibility) There exists τ ∈]0,∞[ such that for every (x, ω−) ∈ R×Ω−
and every nonempty open set U ⊂ R,

Q(τ ; (x, ω−), U × Ω−) > 0.

(2) There exists a unique probability measure µ on R× Ω− such that µ(pΩ− ∈
·) = P− and

Q(t)µ = µ ; ∀t ∈ R+.

For a proof of Theorem 4.1.(1), see Hairer and Ohashi [8], Proposition 5.8. For
a proof of Theorem 4.1.(2), see Hairer [7], Theorem 6.1 which is a consequence of
Proposition 2.18, Lemma 2.20 and Proposition 3.12.

Since the Feller transition semigroup Q has exactly one invariant measure µ by
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Theorem 4.1, µ is ergodic, and since the first component of the process generated
by Q is a solution of Equation (1), by the ergodic theorem for Markov processes:

1

T

∫ T

0

ϕ(X(t))dt =
1

T

∫ T

0

(ϕ ◦ pR)(I(X0, .)(t))dt

a.s./L2

−−−−→
T→∞

µ(ϕ ◦ pR).

Moreover, µ = Q(τ)µ. So,

µ(ϕ ◦ pR) =

∫
R×Ω−

(ϕ ◦ pR)(x, ω−)(Q(τ)µ)(dx, dω−)

=

∫
R×Ω−

ϕ(x)

∫
R×Ω−

Q(τ ; (x̄, ω̄−), (dx, dω−))µ(dx̄, dω̄−)

> min
x∈C

ϕ(x) ·
∫
C×Ω−

∫
C×Ω−

Q(τ ; (x̄, ω̄−), (dx, dω−))µ(dx̄, dω̄−)

> min
x∈C

ϕ(x) ·
∫
C×Ω−

Q(τ ; (x̄, ω̄−), int(C)× Ω−)µ(dx̄, dω̄−).

Since
Q(τ ; (x̄, ω̄−), int(C)× Ω−) > 0 ; ∀(x̄, ω̄−) ∈ R× Ω−

by Theorem 4.1.(1), then∫
C×Ω−

Q(τ ; (x̄, ω̄−), int(C)× Ω−)µ(dx̄, dω̄−) > 0.

Therefore, µ(ϕ ◦ pR) > 0.

4.4. Proof of Proposition 3.4. First write that, under Assumption 2.10, for any
s ∈ [0, T ] such that X(s) ∈ [x− h, x+ h],

|b(X(s))− b(x)| 6 ‖b‖Liph.

So,

(12)

∣∣∣∣∣BT,h(x)

f̂T,h(x)

∣∣∣∣∣ 6 ‖b‖Liph.

Next, the following Lemma provides a suitable control of E(|ST,h(x)|2).

Lemma 4.2. Under Assumptions 2.10 and 3.1, there exists a deterministic con-
stant C > 0, not depending on h and T , such that:

E(|ST,h(x)|2) 6 CT 2(H−1)h−4.

Proof. Since K belongs to C1
b (R,R+), the map

ϕh : y ∈ R 7−→ ϕh(y) := K

(
y − x
h

)
belongs to Lip1

b(R). Moreover, sinceK andK ′ are continuous with bounded support
[−1, 1], (∫ T

0

E(|ϕh(X(s))|1/H)ds

)2H

6 ‖K‖2∞T 2H

and (∫ T

0

E(|ϕ′h(X(s))|2)1/(2H)ds

)2H

6 ‖K ′‖2∞T 2Hh−2.
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Therefore, by Theorem 2.9, there exists a deterministic constant C > 0, not de-
pending on h and T , such that:

E(|ST,h(x)|2) =
1

T 2h2
E

∣∣∣∣∣
∫ T

0

ϕh(X(s))δB(s)

∣∣∣∣∣
2


6 CT 2(H−1)h−4.

�

First, by Inequality (12) and Equation (7),

|̂bT,h(x)− b(x)| 6 ‖b‖Liph+ VT,h(x)

where VT,h(x) is defined by (8). Consider β ∈ [0, 1−H[. By Lemma 4.2:

T 2βE(|ST,h(x)|2) 6 CT 2(H−1+β)h−4 −−−−→
T→∞

0.

So,
T β |ST,h(x)| P−−−−→

T→∞
0.

Moreover, by Lemma 3.2:
1

f̂T,h(x)

D−−−−→
T→∞

1

lh(x)
> 0.

Therefore, by Slutsky’s lemma:

T βVT,h(x)
P−−−−→

T→∞
0.

Lastly, the bound (9) follows from the following Lemma.

Lemma 4.3. Under Assumptions 2.10 and 3.1, there exists a deterministic con-
stant C > 0, not depending on ε, h and T , such that:

|̂bT,h,ε(x)− b̂T,h(x)| 6 C εh
−2T 2H−2

f̂T,h(x)
.

Proof. Since K belongs to C1
b (R,R+), the map

ϕh : y ∈ R 7−→ ϕh(y) := K

(
y − x
h

)
belongs to Lip1

b(R). Consider

Sh(x0, ε, T ) :=

∫ T

0

ϕh(Xx0(u))dXx0(u)

−αHσ2

∫ T

0

∫ u

0

ϕ′h(Xx0
(u))

Xx0+ε(u)−Xx0
(u)

Xx0+ε(v)−Xx0(v)
|u− v|2H−2dvdu.

By Corollary 2.8:∣∣∣∣∣
∫ T

0

ϕh(Xx0(u))δXx0(u)− Sh(x0, ε, T )

∣∣∣∣∣ 6 Hσ2 ‖b′′‖∞‖ϕ′h‖∞
M2

εT 2H−1

6 Cεh−1T 2H−1,

where

C :=
Hσ2‖b′′‖∞‖K ′‖∞

M2
.

Therefore,

|̂bT,h,ε(x)− b̂T,h(x)| 6 C εh
−2T 2H−2

f̂T,h(x)
.

�



NONPARAMETRIC ESTIMATION IN FRACTIONAL SDE 17

4.5. Proof of Proposition 3.6. On the one hand, assume that there exists β ∈
]0, 1−H[ such that

T−β =T→∞ o(h(T )2)

in order to show the consistency of the estimator b̂T,h(T )(x). First, let us prove that

(13)
ST,h(T )(x)

f̂T,h(T )(x)

P−−−−→
T→∞

0.

For ε > 0 arbitrarily chosen:

P

(∣∣∣∣∣ST,h(T )(x)

f̂T,h(T )(x)

∣∣∣∣∣ > ε
)
6 P(|ST,h(T )(x)| > εTH+β−1) + P(f̂T,h(T )(x) < TH+β−1).

By Lemma 4.2:

P(|ST,h(T )(x)| > εTH+β−1) 6 Cε−2|h(T )−2T−β |2 −−−−→
T→∞

0.

So, since

f̂T,h(T )(x)
P−−−−→

T→∞
l(x) ∈]0,∞],

the convergence result (13) is true.

Moreover, by Inequality (12):

(14)
BT,h(T )(x)

f̂T,h(T )(x)

a.s.−−−−→
T→∞

0.

Therefore, by the convergence results (13) and (14) together with Equation (7):

b̂T,h(T )(x)
P−−−−→

T→∞
b(x).

On the other hand, let γ ∈]0, β[ be arbitrarily chosen such that

h(T ) =T→∞ o(T−γ) and TH−1+γ =T→∞ o(h(T )2)

in order to show that

(15) T γ |̂bT,h(T )(x)− b(x)| D−−−−→
T→∞

0.

First, by Inequality (12) and Equation (7):

(16) T γ |̂bT,h(T )(x)− b(x)| 6 ‖b‖LipT
γh(T ) + T γVT,h(T )(x).

By Lemma 4.2:

T 2γE(|ST,h(T )(x)|2) 6 C|h(T )−2TH−1+γ |2 −−−−→
T→∞

0.

So, since

f̂T,h(T )(x)
P−−−−→

T→∞
l(x) ∈]0,∞],

by Slutsky’s lemma:

T γVT,h(T )(x)
D−−−−→

T→∞
0.

Finally, since h(T ) =T→∞ o(T−γ), by Equation (16), the convergence result (15) is
true.
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4.6. Proof of Corollary 3.7. In order to establish a rate of convergence for
b̂T,h,ε(x), Lemma 4.2 and Lemma 4.3 provide a suitable control.
Indeed, by Lemma 4.3, there exists a deterministic constant C > 0 such that:

|̂bT,h(T ),ε(T )(x)− b(x)| 6 |̂bT,h(T ),ε(T )(x)− b̂T,h(T )(x)|+ |̂bT,h(T )(x)− b(x)|

6 C
ε(T )h(T )−2T 2H−2

f̂T,h(T )(x)
+ |̂bT,h(T )(x)− b(x)|.

Proposition 3.6 allows to conclude.

4.7. Proof of Proposition 3.9. Consider a random variable U  N (0, 1) and

G := {G : R→ R : E(G(U)) = 0 and E(G(U)2) <∞},

which is a subset of L2(R, ν(y)dy).

The Hermite polynomials

Hq(y) := (−1)qey
2/2 d

q

dyq
e−y

2/2 ; y ∈ R, q ∈ N

form a complet orthogonal system of functions of L2(R, ν(y)dy) such that

E(Hq(U)Hp(U)) = q!δp,q ; ∀p, q ∈ N.

By Taqqu [24] (see p. 291) and Puig et al. [21], Lemma 3.3:
(1) For any G ∈ G and y ∈ R,

(17) G(y) =

∞∑
q=m(G)

J(q)

q!
Hq(y)

in L2(R, ν(y)dy), where

J(q) := E(G(U)Hq(U)) ; ∀q ∈ N

and
m(G) := inf{q ∈ N : J(q) 6= 0}.

(2) (Mehler’s formula) For any centered, normalized and stationary Gaussian
process Z of autocorrelation function R:

(18) E(Hq(Z(u))Hp(Z(v))) = q!R(v − u)qδp,q ; ∀u, v ∈ R+, ∀p, q ∈ N.

Consider the map KT : R→ R defined by:

KT (y) :=
1

h(T )
K

(
y

h(T )

)
; ∀y ∈ R.

In order to use (17) and (18) to prove the convergence result (10), note that
f̂T,h(T )(x) can be rewritten as

f̂T,h(T )(x) =
1

T

∫ T

0

GT,x(Y (s))ds−RT,x,

where

RT,x :=
1

σ0

(
KT ∗ ν

(
.

σ0

))
(x) ; ∀y ∈ R

and
GT,x(y) := KT (σ0y − x)−RT,x.

Lemma 4.4. The map GT,x belongs to G and there exists Tx > 0 such that

m(GT,x) = 1 ; ∀T > Tx.
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Proof. On the one hand, since KT is continuous and its support is compact, GT,x ∈
L2(R, ν(y)dy). Moreover,

E(GT,x(U)) =

∫ ∞
−∞

GT,x(y)ν(y)dy

=

∫ ∞
−∞

KT (σ0y − x)ν(y)dy −RT,x = 0.

So, GT,x ∈ G.

On the other hand, for every q ∈ N, by putting JT,x(q) := E(GT,x(U)Hq(U)),

JT,x(1) =

∫ ∞
−∞

GT,x(y)H1(y)ν(y)dy

=

∫ (x+h(T ))/σ0

(x−h(T ))/σ0

KT (σ0y − x)ν(y)ydy −RT,x
∫ ∞
−∞

H0(y)H1(y)ν(y)dy

=

∫ (x+h(T ))/σ0

(x−h(T ))/σ0

KT (σ0y − x)ν(y)ydy.

For any x > 0, there exists T+
x > 0 such that for every T > T+

x ,

IT,x :=

[
x− h(T )

σ0
;
x+ h(T )

σ0

]
⊂]0,∞[.

For every T > T+
x , since y 7→ KT (σ0y − x), ν and IdR are continuous and strictly

positive on I◦T,x, JT,x(1) > 0. Symmetrically, for every x < 0, there exists T−x > 0

such that for every T > T−x , JT,x(1) < 0. This concludes the proof. �

Lemma 4.5. For every x ∈ R∗,
∞∑
q=1

JT,x(q)2

q!
=T→∞ O

(
1

h(T )

)
.

Proof. Since GT,x ∈ L2(R, ν(y)dy), by Parseval’s inequality:
∞∑
q=1

JT,x(q)2

q!
= E(GT,x(U)2)

=

∫ ∞
−∞

(KT (σ0y − x)−RT,x)2ν(y)dy

6 2

∫ ∞
−∞

KT (σ0y − x)2ν(y)dy + 2R2
T,x.

On the one hand,

RT,x −−−−→
T→∞

1

σ0
ν

(
x

σ0

)
.

So,
R2
T,x =T→∞ O(1).

On the other hand,∫ ∞
−∞

KT (σ0y − x)2ν(y)dy =
1

σ0h(T )

∫ 1

−1

K(y)2ν

(
h(T )y + x

σ0

)
dy

6
2‖K‖2∞‖ν‖∞
σ0h(T )

.
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Therefore,
∞∑
q=2

JT,x(q)2

q!
=T→∞ O

(
1

h(T )

)
.

�

In order to prove the convergence result (10), since

RT,x −−−−→
T→∞

1

σ0
ν

(
x

σ0

)
,

let us prove that

(19)

∣∣∣∣∣ 1

T

∫ T

0

GT,x(Y (s))ds

∣∣∣∣∣ L2

−−−−→
T→∞

0.

By the decomposition (17) and Mehler’s formula (18) applied to GT,x and Y , for
every u, v ∈ [0, T ],

E(GT,x(Y (u))GT,x(Y (v))) =

∞∑
q=1

JT,x(q)2

q!
ρ(v − u)q.

So, since ρ is a [−1, 1]-valued function,

E

∣∣∣∣∣
∫ T

0

GT,x(Y (s))ds

∣∣∣∣∣
2
 =

∫ T

0

∫ T

0

|E(GT,x(Y (u))GT,x(Y (v)))|dudv

6
∞∑
q=1

JT,x(q)2

q!

∫ T

0

∫ T

0

|ρ(v − u)|qdudv

6

(∫ T

0

∫ T

0

|ρ(v − u)|dudv

) ∞∑
q=1

JT,x(q)2

q!
.

Then, by Assumption 3.8 and Lemma 4.5:

lim
T→∞

E

∣∣∣∣∣ 1

T

∫ T

0

GT,x(Y (s))ds

∣∣∣∣∣
2
 = lim

T→∞

T 2H−2

h(T )
= 0.

Therefore, the convergence result (19) is true.
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