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Abstract. In this paper we consider the convolution model Z = X + Y with X of unknown
density f , independent of Y , when both random variables are nonnegative. Our goal is to estimate
the unknown density f of X from n independent, identically, distributed observations of Z, when
the law of the additive process Y is unknown. When the density of Y is known, a solution to
the problem has been proposed in Mabon (2017). To make the problem identifiable for unknown
density of Y , we assume that we have access to a preliminary sample of the nuisance process Y .
The question is to propose a solution to an inverse problem with unknown operator. To that aim,
we build a family of projection estimators of f on the Laguerre basis, well-suited for non-negativene
random variables. The dimension of the projection space is chosen thanks to a model selection
procedure by penalization. At last we prove that the final estimator satisfies an oracle inequality.
It can be noted that the study of the mean integrated square risk is based on Bernstein’s type
concentration inequalities developed for random matrices in Tropp (2015).
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1. Introduction

We consider in this work the following convolution model: Zi = Xi + Yi, for i = 1, . . . , n
where the observation is the sequence (Zi)1≤i≤n while the Xi’s are the independent and identically
distributed variables (i.i.d.) of interest, with common density denoted by f . The random variables
Yi, i = 1, . . . , n represent a nuisance process, they are also i.i.d. with common density g. The
sequences (Xi)1≤i≤n and (Yi)i≤i≤n are assumed to be independent.

Our aim is to perform nonparametric estimation of f . The specificity of our framework is that
all random variables are nonnegative. Moreover, we do not suppose that the density g of the
nuisance variables is known. Nevertheless, to make the problem identifiable, we assume that we
have at hand an auxiliary nuisance sample (Y ′i )1≤i≤n0 , independent of (Xi, Yi)1≤i≤n. To sum up,
we have to solve an inverse problem with unknown operator.

The literature studies the convolution model for real-valued random variables and for centered
Yi’s, which are then understood as a noise or a measurement error. Most solutions are based on
Fourier methods, relying on the fact that the characteristic function of the observations is the
product of the Fourier transforms of f and g: then, cautious Fourier inversion of a quotient should
allow one to recover f .

In the first works, g is assumed to be known, see Meister (2009) and references therein. However
this assumption is not realistic in most fields of application. To make the problem feasible, some
information on the error distribution is always required. For instance, in a physical context, a
preliminary sample of the noise can be obtained. Neumann (1997) first proposed an estimation
strategy still based on Fourier inversion; for the study of convergence rates, see Neumann (1997),
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Johannes (2009) or Meister (2009). The rigorous study of adaptive procedures in a deconvolution
model with unknown errors has only recently been addressed. We are aware of the work by Comte
and Lacour (2011) and Kappus and Mabon (2014) who extended it to the adaptive strategy, by
Johannes and Schwarz (2013) who consider a model of circular deconvolution and by Dattner et al.
(2016), who deal with adaptive quantile estimation via Lespki’s method.

In this paper, all random variables are nonnegative. Such modelization is encountered in survival
analysis or reliability models. For instance, X can be the time of infection of a disease and Y
the incubation time, a model used in so called back calculation problems in AIDS research. In
reliability, the lifetime of interest for a component can be hidden by another one, systematically
added to it. More broadly the problem of nonnegative variables appears in actuarial or insurance
models.

Groeneboom and Wellner (1992) have first introduced the problem of one-sided error in the
convolution model under monotonicity of the cumulative distribution function (c.d.f.). They derive
nonparametric maximum likelihood estimators (NPMLE) of the c.d.f. Some particular cases have
been tackled as Uniform or Exponential deconvolution by Groeneboom and Jongbloed (2003). van
Es (2011), in the Uniform deconvolution problem, proposes a density estimator and an estimator
of the c.d.f. using kernel estimators and inversion formula. The work of Mabon (2017) subsumes
the existing ones and in this way unifies the approach to tackle the problem of density estimation
for nonnegative variables in the convolution model with any known error density.

The method relies on a a projection strategy in a specific R+-supported orthonormal functional
basis, namely the Laguerre basis. This basis has been used for nonnegative variables in other
settings: e.g. in Comte et al. (2015) and Vareschi (2015) in a regression setting, or in Belomestny
et al. (2016) for a multiplicative censoring model.

Here, we extend the procedure proposed in Mabon (2017) for known g, to the case where g
is no longer known: instead, all quantities related to g are estimated thanks to the independent
(Y ′i )-n0-sample. This means that we estimate all coefficients of the linear system which was solved
in a deterministic way when g was known. Therefore the main difficulty is to measure the distance
between the inverse of a random matrix and the inverse of its expectation. This is what makes the
problem challenging, and the solution interesting. The strategy is inspired by the one initiated by
Neumann (1997) and developed by Kappus and Mabon (2014) in the Fourier context, with help
of tools related to matrix perturbation theory (see Stewart and Sun (1990)) and random matrices
taken in Tropp (2015). A result of matrix perturbation theory (see Th. 8.1) is the key result
to enable us to prove a lemma similar to Lemma 2.1 in Neumann (1997). Besides, Bernstein’s
inequality for random matrices provides useful moment inequalities. We discuss the influence of
the two sample sizes n and n0 and compare our results with the Fourier strategy outcomes, which
still can be applied to nonnegative random variables.

Let us now explain the plan of the paper. In Section 2, we give notations, we define the model,
the Laguerre basis and the density estimator computed on a m-dimensional projection space. We
develop in Section 3 a study of the mean integrated squared error (MISE) of the estimators,
based on Bernstein’s type concentration inequalities developed for random matrices (see Tropp
(2015)). Then, we discuss the resulting rates of convergence on specific subspaces of L2(R+),
called Laguerre-Sobolev spaces with index s > 0, defined in Bongioanni and Torrea (2009). Our
strategy is especially well fitted for estimating functions belonging to a collection of mixed Gamma
densities. In Section 4, we define a data driven choice of the projection space by using a contrast
penalization criterion and we prove an oracle inequality for the final data driven estimator. In
Section 5, we study of the adaptive estimators through simulation experiments. Numerical results
are presented and compared to the performances of the direct case (direct observation of the
Xi’s) and to the case of known g. The results show that our procedure works well and that the
cutoff introduced for the estimation of g plays an interesting role. In the concluding Section 6 we
give further possible developments or extensions of the method. All the proofs are postponed to
Section 7.
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2. Estimation procedure

2.1. Model, assumptions and notations. We consider the model

Zi = Xi + Yi, i = 1, . . . , n, (2.1)

where the Xi’s are i.i.d. nonnegative variables with unknown density f . The Yi’s are also i.i.d.
nonnegative variables with unknown density g. We denote by h the density of the Zi’s. The Xi’s
and the Yi’s are assumed to be independent. Moreover, we assume in all the following that we
have at hand an auxiliary sample of the noise distribution

(Y ′1 , . . . , Y
′
n0

) and (Y ′i )1≤i≤n0 independent of (Xi, Yi)1≤i≤n, (2.2)

where the Y ′i ’s are also i.i.d. nonnegative variables with unknown density g. Our target is the
estimation of the density f when the Zi’s and Y ′i ’s are observed.

Now we fix some notations. For two real numbers a and b, we denote a ∨ b = max(a, b) and
a ∧ b = min(a, b). For two functions ϕ, ψ : R+ → R belonging to L2(R+), we denote ‖ϕ‖ the L2

norm of ϕ defined by ‖ϕ‖2 =
∫
R+ |ϕ(x)|2dx, 〈ϕ,ψ〉 the scalar product between ϕ and ψ defined by

〈ϕ,ψ〉 =
∫
R ϕ(x)ψ(x)dx.

Let d be an integer, for two vectors ~u and ~v belonging to Rd, we denote ‖~u‖2,d the Euclidean
norm defined by ‖~u‖22,d = t~u~u where t~u is the transpose of ~u. The scalar product between ~u and

~v is 〈~u,~v〉2,d = t~u~v = t~v~u.
We introduce the operator norm of a matrix A defined by ‖A‖op = max‖~u‖2=1 ‖A~u‖2 =√
λmax ( tAA) where λmax

(
tAA

)
is the largest eigenvalue of tAA in absolute value, along with

the Frobenius norm defined by ‖A‖F =
√∑

i,j a
2
ij .

2.2. Laguerre basis and spaces. We define the Laguerre basis as

∀k ∈ N, ∀x ≥ 0, ϕk(x) =
√

2Lk(2x)e−x with Lk(x) =
k∑
j=0

(−1)j
(
k

j

)
xj

j!
. (2.3)

The Laguerre polynomials Lk defined by Equation (2.3) are orthonormal with respect to the
weight function x 7→ e−x on R+. In other words,

∫
R+ Lk(x)Lk′(x)e−x dx = δk,k′ where δk,k′ is the

Kronecker symbol. Thus (ϕk)k≥0 is an orthonormal basis of L2(R+). We can also notice that the
Laguerre basis verifies the following inequality for any integer k

sup
x∈R+

|ϕk(x)| = ‖ϕk‖∞ ≤
√

2. (2.4)

Lemma 2.1. Let D1 be a random variable with density τ . Assume that τ ∈ L2(R+) and E(D
−1/2
1 ) <

+∞. For m ≥ 1,
m−1∑
k=0

∫ +∞

0
[ϕk(x)]2τ(x)dx ≤ c?

√
m,

where c? is a constant depending on E(D
−1/2
1 ) and ‖τ‖.

This result is a particular case of a Lemma proved in a work in progress by Comte and
Genon-Catalot; for sake of completeness, the proof is recalled in the Section 7. The condition

E(D
−1/2
1 ) < +∞ is rather weak and is satisfied by all classical densities. In particular, it holds if τ

takes a finite value in 0. Note that if one uses (2.4), one bounds
∑m−1

k=0 E(ϕ2
j (D1)) by 2m while with

Lemma 2.1, the bound becomes c?
√
m, which is an improvement provided that E(D

1/2
1 ) < +∞

and c? is not too large.
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We also introduce the space Sm = Span{ϕ0, . . . , ϕm−1}. For a function p in L2(R+), we note

p(x) =
∑
k≥0

ak(p)ϕk(x) where ak(p) =

∫
R+

p(u)ϕk(u) du.

According to formula 22.13.14 in Abramowitz and Stegun (1964), what makes the Laguerre basis
relevant in our deconvolution setting is the relation

ϕk ? ϕj(x) =

∫ x

0
ϕk(u)ϕj(x− u) du = 2−1/2 (ϕk+j(x)− ϕk+j+1(x)) (2.5)

where ? stands for the convolution product.
Classically, to derive the rates of convergence of estimators, we need to evaluate the order of

the bias term, which depends on the smoothness of the signal. To that aim, we consider Laguerre-
Sobolev regularity spaces associated to the basis, and defined by

W s(R+, L) =

p : R+ → R, p ∈ L2(R+),
∑
k≥0

ksa2
k(p) ≤ L < +∞

 with s ≥ 0 (2.6)

where ak(p) = 〈p, ϕk〉. Bongioanni and Torrea (2009) have introduced Laguerre-Sobolev space but
the link with the coefficients of a function on a Laguerre basis was done by Comte and Genon-
Catalot (2015). Indeed, let s be an integer, for p : R+ → R and f ∈ L2(R+), we have that∑

k≥0 k
sa2
k(p) < +∞ is equivalent to the fact that p admits derivatives up to order s − 1 with

p(s−1) absolutely continuous and for 0 ≤ k ≤ s, xk/2(p(x)ex)(k)e−x ∈ L2(R+). For more details we
refer to section 7 of Comte and Genon-Catalot (2015). Thus, for f ∈W s(R+, L) defined by (2.6),
and fm its orthogonal projection

‖f − fm‖2 =
∞∑
k=m

a2
k(f) =

∞∑
k=m

a2
k(f)ksk−s ≤ Lm−s. (2.7)

2.3. Projection estimator of the density when g is known. Here we briefly recall the pro-
jection estimator of f when g is known established in Mabon (2017). The principle of a projection
method for estimation is to reduce the question of estimating f to the one of estimating fm the
projection of f on Sm. We write

fm(x) =
m−1∑
k=0

ak(f)ϕk(x).

Model (2.1) implies that h = f ? g. If all the functions f, g, h belong to L2(R+), then we have∑
j≥0

aj(h)ϕj =
∑
k≥0

∑
`≥0

ak(f)a`(g)ϕk ? ϕ`.

Thus, applying Equation (2.5) with convention a−1(g) = 0, implies that∑
j≥0

aj(h)ϕj =
∑
k≥0

k∑
`=0

2−1/2(ak−`(g)− ak−`−1(g))a`(f)ϕk.

This yields the following infinite linear triangular system ~h∞ = G∞ ~f∞, with ~hm = t(a0(h), . . . , am−1(h)),
~fm = t(a0(f), . . . , am−1(f)) and

[Gm]i,j =


2−1/2a0(g) if i = j,

2−1/2 (ai−j(g)− ai−j−1(g)) if j < i,

0 otherwise.

(2.8)

We can notice that Gm is a lower triangular an Toeplitz matrix.

Thus for any m we can write ~hm = Gm
~fm. Moreover

a0(g) = 〈g, ϕ0〉 =
√

2

∫
R+

g(u)e−u du =
√

2E[e−Y ] > 0.
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So Gm is invertible and G−1
m
~hm = ~fm. Finally for any k ≥ 0 ak(h) = E[ϕk(Z1)] can be estimated

from the observations and we obtain the projection of f on Sm can be estimated by

f̂m(x) =
m−1∑
k=0

âkϕk(x) with ~̂fm = G−1
m
~̂hm and âk(Z) =

1

n

n∑
i=1

ϕk(Zi) (2.9)

with ~̂hm = t(â0(Z), . . . , âm−1(Z)) and ~̂fm = t(â0, . . . , âm−1).

2.4. Projection estimator of the density when g is unknown. Thanks to (2.2) we can easily
derive an estimate of Gm by replacing its coefficients by their empirical version,

[Ĝm]i,j =


2−1/2â0(Y ′) if i = j,

2−1/2 (âi−j(Y
′)− âi−j−1(Y ′)) if j < i,

0 otherwise,

(2.10)

where âk(Y
′) = (1/n0)

∑n0
`=1 ϕk(Y

′
` ). It is clear that E[Ĝm] = Gm. It is worth noting that Ĝm is

still a lower triangular Toeplitz matrix and that, as â0(Y ′) = n−1
0

∑n0
i=0 exp(−Y ′i ) > 0, it is also

invertible. However, in order to bound the distance between the inverse of Ĝm and G−1
m , we have

to introduce a cutoff. Thus we define an inverse of Ĝm as follows

G̃−1
m =

Ĝ−1
m if ‖Ĝ−1

m ‖op ≤
√

n0

m logm

0 otherwise.

(2.11)

Under this definition of G̃−1
m , if we denote by spr(A) the spectral radius (largest eigenvalue in

absolute value) of A, we have
√

2/|â0(Y ′)| = spr(Ĝ−1
m ) ≤ ‖Ĝ−1

m ‖op (2.12)

(see Theorem 5.6.9 in Horn and Johnson (1990)). Note that, for any threshold t > 0, ‖G−1
m ‖op ≤ t

implies 2−1/2a0(g) ≥ t−1 and ‖Ĝ−1
m ‖op ≤ t implies 2−1/2|â0(Y ′)| ≥ t.

Finally, we estimate the projection fm of f on the space Sm as

f̃m(x) =
m−1∑
k=0

ãkϕk(x) with ~̃fm = G̃−1
m
~̂hm (2.13)

with ~̂hm be defined by(2.9), G̃−1
m by (2.11) and ~̃fm = t(ã0, . . . , ãm−1)

3. Study of the L2 risk

In this section, we want to derive upper bounds on the MISE of f̃m defined by Equation (2.13).
Using the isomorphism between the Euclidean norm and the L2-norm, we show that

E‖fm − f̃m‖2 = ‖f − fm‖2 + E‖fm − f̃m‖2 = ‖f − fm‖2 + E‖~fm − ~̃fm‖22,m (3.1)

= ‖f − fm‖2 + E‖G−1
m
~hm −G−1

m
~̂hm + G−1

m
~̂hm − G̃−1

m
~̂hm‖22,m (3.2)

≤ ‖f − fm‖2 + 2E‖G−1
m (~hm − ~̂hm)‖22,m + 2E‖(G−1

m − G̃−1
m )~̂hm‖22,m. (3.3)

The first two terms correspond to the squared bias term and the variance term appearing in Mabon
(2017) when the density g is assumed to be known. The difficulty in this problem lies in bounding
the second variance term. We need to study how large the average squared error is when we

estimate G−1
m by G̃−1

m . For that we use some tools of random matrix theory and particularly
matrix concentration inequalities (see Tropp (2015)), and Paulsen dilatation trick (see the proof
of Corollary 7.3).
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3.1. Upper bounds on the MISE. First we state a lemma useful to bound the L2 risk of f̃m,
along with an important corollary.

Lemma 3.1. For G̃−1
m defined by Equation (2.11), ‖g‖∞ < ∞ and m logm ≤ n0, then for any

integer p there exists a positive constant Cop,p such that

E
[
‖G−1

m − G̃−1
m ‖2pop

]
≤ Cop,p

(
‖G−1

m ‖2op ∧ logm‖G−1
m ‖4op

m

n0

)p
. (3.4)

Corollary 3.2. Under the Assumptions of Lemma 3.1, there exists a positive constant CE such
that

E
[
‖(G−1

m − G̃−1
m )~hm‖22,m

]
≤ CE

(
1 ∧ logm

m

n0
‖G−1

m ‖2op

)
. (3.5)

Clearly, the first bound is very general and used at several steps of the proof. It is also worth
noting that Corollary 3.2 provides a better result than a rough application of Lemma 3.1 relying

on ‖(G−1
m − G̃−1

m )~hm‖22,m ≤ ‖G−1
m − G̃−1

m ‖2op‖h‖2. Relying on these key results, we can prove the
main result of this subsection:

Proposition 3.3. If f and g belong to L2(R+), ‖g‖∞ <∞, for f̃m defined by (2.13) the following
result holds

E‖f − f̃m‖2 ≤ ‖f − fm‖2 +
C

n

(
τm‖G−1

m ‖2op ∧ ‖h‖∞‖G−1
m ‖2F

)
+ 4CE logm

m

n0
‖G−1

m ‖2op (3.6)

with C = 4 + Cop,1. Moreover, here and in all the sequel, τm = 2m in the general case and
τm = c?

√
m if E(1/

√
Z1) < +∞ and c? is a constant depending on E(1/

√
Z1).

Let us comment the terms in the right hand side of Equation (3.6).

• The first two terms correspond to the upper bound on the mean integrated risk when the
matrix G−1

m is known (see Proposition 3.1 in Mabon (2017), where τm = 2m).
– The first term, ‖f − fm‖2, one is the squared bias term which gets smaller when m

increases.
– The second term n−1

(
τm‖G−1

m ‖2op ∧ ‖h‖∞‖G−1
m ‖2F

)
has the order of the variance term

when g is known, see Mabon (2017) where τm = 2m. Thanks to Lemma 3.4 in Mabon
(2017), we know that the spectral norm of G−1

m grows with the dimension m, and thus
that this term is increasing with m.

• The third term, of order m log(m)‖G−1
m ‖2op/n0 is due to the estimation of the matrix G−1

m .
This last term seems to deteriorate the rate compared to known noise case in particular if
n = n0. However the factor m, which can not be reduced to

√
m, corresponds to the fact

that the number of estimated terms in Gm is of order m2 (while there are only m in ~̂hm).
This term is also increasing in m.

We illustrate hereafter that the bound in Proposition 3.3 implies upper rates of estimation.

3.2. Rates of convergence and examples. We have stated the bias order under regularity
assumptions in (2.7). Now we have to evaluate the variance terms of Equations (3.6) which means
assess the order of ‖G−1

m ‖2op and ‖G−1
m ‖2F. First we define an integer r ≥ 1 such that r = 1 if

g(0) = B1 6= 0 and for r ≥ 2,

dj

dxj
g(x) |x=0= 0 if j = 0, 1, . . . , r − 2 and

dr−1

dxr−1
g(x) |x=0= Br 6= 0.

Comte et al. (2015) give conditions on the density g giving the exact order of the Frobenius and
spectral norms of G−1

m .

Lemma 3.4 (Comte et al. (2015)). Let r be defined as above. If Assumptions

(C1) g ∈ L1(R+) is r times differentiable and g(r) ∈ L1(R+).
(C2) The Laplace transform of g, G(s) = E(e−sY1), has no zero with non negative real parts

except for the zeros of the form s =∞+ ib.



LAGUERRE DECONVOLUTION WITH UNKNOWN MATRIX OPERATOR 7

are satisfied, then

c1m
2r ≤ ‖G−1

m ‖2op ≤ ‖G−1
m ‖2F ≤ c2m

2r.

where c1 ≤ c2 are constants independent of m.

We can check that, if g is a Γ(q, µ) density, then g satisfies (C1) and (C2) with r = q and thus
the variance term

(
τm‖G−1

m ‖2op ∧ ‖h‖∞‖G−1
m ‖2F

)
/n has order m2q/n.

Optimizing the squared bias and the variance terms in the upper bounds stated in Propositions
3.3 imply the following result.

Proposition 3.5. If f belongs to W s(R+, L) and g satisfies (C1)-(C2) for r ≥ 1, then f̃mopt

defined by (2.13) with mopt ∝ n1/s+2r ∧ (n0/ log n0)1/s+2r+1 satisfies

sup
f∈W s(R+,L)

E‖f − f̃mopt‖2 ≤ C1(s, L)n−s/s+2r ∨
(

n0

log n0

)−s/s+2r+1

(3.7)

where C1(s, L) is a positive constant.

In n and n0 have the same order, the rate is given by the term (n0/ log n0)−s/s+2r+1. If n0 is
much larger than n0, we can recover the rate corresponding to the known noise case: more precisely,
if n0 ≥ n3/2, then choosing mopt ∝ n1/s+2r yields supf∈W s(R+,L) E‖f − f̃mopt‖2 ≤ C2(s, L)n−s/s+2r

where C2(s, L) is a positive constant.

Remark. Note that if there is no noise, then the second variance term disappears and we should
have in the first variance term Gm equal to Im, the m×m identity matrix, so that, τm‖G−1

m ‖2op ∧
‖G−1

m ‖2F = τm ∧m = O(
√
m) if E(1/

√
X1) < +∞. This order allows to recover a classical rate of

order O(n−2s/(2s+1)) on Sobolev balls W s(R+, L).

3.3. Comparison with Fourier rates on some examples. In this section we denote by ψ∗(x) =∫
e−iuxψ(u) du the Fourier transform of an integrable function ψ. The Fourier estimator of f in

the model defined by (2.1)-(2.2) is in fact an estimator of fm,Fo(x) = (2π)−1
∫ πm
−πm f

∗(u) du, the

orthogonal projection of f on the space Sm = {ψ ∈ L1(R)∩L2(R), support(ψ∗) ⊂ [−πm, πm]}. It
is given by

f̂m,Fo(x) =
1

2π

∫ πm

−πm
eiux

ĥ∗(u)

g̃∗(u)
du

with

ĥ∗(u) =
1

n

n∑
j=1

e−iuZj , ĝ∗(u) =
1

n0

n0∑
j=1

e−iuY
′
j ,

1

g̃∗(u)
=
1{|ĝ∗(u)| ≥ n−1/2

0 }
ĝ∗(u)

.

The risk bound obtained in Neumann (1997) can be written as follows,

E‖f − f̂m,Fo‖2 ≤ ‖f − fm,Fo‖2 + C1
∆(m)

n
+ (4C1 + 2)

∆f (m)

n0
(3.8)

with C1 a constant and

∆(m) =
1

2π

∫ πm

−πm

1

|g∗(u)|2
du, ∆f (m) =

1

2π

∫ πm

−πm

|f∗(u)|2

|g∗(u)|2
du.

The structure of the Fourier and Laguerre estimators are similar, with here a cutoff required for
safe inversion of the noise characteristic function. The structure of the upper bound (3.8) is also
similar to (3.6) and involves a squared bias term ‖f − fm,Fo‖2, a variance term corresponding to
known g, ∆(m)/n and the price for estimating g, ∆f (m)/n0.

There are also several differences. The bias term does not refer to the same regularity. It
is known (see Mabon (2017)) that, if f is a Gamma density γ(p, θ), then the bias is of order
‖f−fm,Fo‖2 = O(m−2p+1) in the Fourier setting while it is exponentially decreasing in the Laguerre

setting, namely of order ‖f − fm‖2 = O(m2(p−1) exp(−ρm)), with ρ = ρ(θ) > 0). Thus, most
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reasonably, our method, dedicated to R+-supported function estimation, performs at best for
Gamma and all types of mixed Gamma densities (see Section 2.3.3 in Mabon (2017)).

The first variance term is simpler in the Fourier setting than in the Laguerre setting in the sense
that there is no choice between two quantities, and the characteristic function of the noise is better
known than the trace and operator norms of G−1

m . However, for g following a Gamma or a beta
distribution, it is checked in Mabon (2017) that both variance terms ∆(m)/n and ‖G−1

m ‖2F /n have
the same order with respect to m in Laguerre and Fourier settings: if g follows a γ(q, µ) density,
both upper bounds have order less than m2q/n; if g follows a β(a, b) density with b > a ≥ 1, both
variance upper bounds have order less than m2a/n.

For the variance term due to unknown noise density, it is straightforward, in the Fourier setting,
that ∆f (m) ≤ ∆(m) and thus the estimation of g does not change the Fourier risk as soon as
n0 ≥ n. This is simpler than in the Laguerre setting.

As a consequence, the Laguerre estimator has smaller upper bounds on the rates than the Fourier
methods when the function f under estimation belongs to a class of mixed Gamma densities: the
exponential decrease of the Laguerre bias, implies that choice of small m’s (namely m = c log(n)
for large enough constant c) are possible, and make also the variance small. In this case, the rates
are of order (log n)α/n with α > 0. However, the Fourier method remains more general and can
be used for both R- or R+-supported functions.

Now, as we are about to deal with model selection, we can mention that in the Laguerre method,
the quantity m to be selected is a dimension and is therefore searched among a set of integers, while
in the Fourier method, fractional m’s are often considered and it is a real difficulty to determine
which set of values is wise to be visited in the selection procedure.

4. Model selection and adaptation

The aim of this section is to select an integer m that enables us to compute an estimator of the
unknown density f with the L2 risk as close as possible to the oracle risk infm E‖f − f̂m‖2. We
follow the model selection paradigm (see Massart (2003)) and choose the dimension of projection
spaces m as the minimizer of a penalized criterion.

First, we consider the following sets of integers:

M̂ =
{

1 ≤ m ≤ C bn/ log nc ∧ bn0/ log n0c, m logm‖G̃−1
m ‖2op ≤ n ∧ n0

}
,

M =
{

1 ≤ m ≤ C bn/ log nc ∧ bn0/ log n0c, 4m logm‖G−1
m ‖2op ≤ n ∧ n0

}
,

with C a positive constant. Next, we define the two parts of the random penalty

p̂en1(m) := 2κ1C(‖h‖∞ ∨ 1)
log n

n

(
τm‖G̃−1

m ‖2op ∧ ‖G̃−1
m ‖2F

)
p̂en2(m) := 8κ2(‖g‖∞ ∨ 1) log n0

m

n0
‖G̃−1

m ‖2op,

where we recall that τm = 2m or c?
√
m if E(Z

−1/2
1 ) < +∞. Then we set the random penalty as

p̂en(m) := p̂en1(m) + p̂en2(m). (4.1)

We also define the deterministic counterparts

pen1(m) := 2κ1C(‖h‖∞ ∨ 1)
log n

n

(
2m‖G−1

m ‖2op ∧ ‖G−1
m ‖2F

)
pen2(m) := 8κ2(‖g‖∞ ∨ 1) log n0

m

n0
‖G−1

m ‖2op

and set the deterministic penalty as

pen(m) := pen1(m) + pen2(m) (4.2)

where κ1 and κ2 are numerical constants, see our comment in Illustration Section of Supplementary
Material. Then we can prove the following result.
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Theorem 4.1. Assume that f and g ∈ L2(R+) with ‖g‖∞ <∞. Let f̂m̂ be defined by (2.13) and

m̂ = arg min
m∈M̂

{
−‖f̃m‖2 + p̂en(m)

}
with p̂en defined by (4.1), then there exists a positive numerical constant κ1 such that

E‖f − f̃m̂‖2 ≤ Cad inf
m∈M

{
‖f − fm‖2 + pen(m)

}
+

C

n ∧ n0
,

where Cad is a numerical constant and C depends on ‖f‖ and ‖g‖, pen is defined by (4.2).

This Theorem gives an oracle inequality which establishes a non asymptotic oracle bound. It shows
that the squared bias variance trade-off is automatically made up to a loss of logarithmic factor
and a multiplicative constant. Theorem 4.1 is derived under mild assumptions.

Some comments for practical use are in order. Indeed in the penalty terms p̂en1 and p̂en2, there
are four quantities which deserve some explanations: κ1, κ2, ‖g‖∞ and ‖h‖∞. It follows from the
proof that κ1 = 196 and κ2 = 5/2 would suit. But in practice, values obtained from the theory are
generally too large and constants are calibrated by simulations. Once chosen, they remain fixed
for all simulation experiments. There are still two unknown terms in the penalty, ‖g‖∞ and ‖h‖∞,
that must be estimated. We have to check that we can derive an oracle inequality when those
terms are estimated, which is done in the following Corollary.

Beforehand let us define projection estimators of h and g

ĥD1(x) =

D1−1∑
k=0

âk(Z)ϕk(x) with âk(Z) = (1/n)
n∑
i=1

ϕk(Zi), (4.3)

ĝD2(x) =

D2−1∑
k=0

âk(Y
′)ϕk(x) with âk(Y

′) = (1/n0)

n0∑
i=1

ϕk(Y
′
i ). (4.4)

We can see that ĥD1 and ĝD2 are respectively unbiased estimators of hD1(x) =
∑D1−1

k=0 ak(h)ϕk(x)

and gD2(x) =
∑D2−1

k=0 ak(g)ϕk(x).

Corollary 4.2. Assume that f and g ∈ L2(R+) with ‖g‖∞ <∞. Let f̃m̃ be defined by (2.13) and

m̃ = arg min
m∈M̂

{
−‖f̃m‖2 + p̃en(m)

}
with p̃en defined by p̃en(m) := p̃en1(m) + p̃en2(m) with

p̃en1(m) := 4κ1 log nC(‖ĥD1‖∞ ∨ 1)
(
τm‖G̃−1

m ‖2op ∧ ‖G̃−1
m ‖2F

)
/n

p̃en2(m) := 16κ2(‖ĝD2‖∞ ∨ 1) log n0m‖G̃−1
m ‖2op/n0,

where ĥD1 and ĝD2 are given by (4.3) and (4.4), D1 and D2 satisfy log n ≤ D1 ≤ ‖h‖∞n/(128
√

2 log3 n)

and log n0 ≤ D2 ≤ ‖g‖∞n0/(128
√

2 log3 n0). Then there exist positive numerical constants κ1 and
κ2 such that

E‖f − f̃m̃‖2 ≤ Cad inf
m∈M

{
‖f − fm‖2 + pen(m)

}
+

C

n ∧ n0
,

where Cad is a positive constant.

Note that the constraint on D1 and D2 are fulfilled respectively for n and n0 large enough as soon
as D1 '

√
n and D2 '

√
n0 for instance. In this sense Corollary 4.2 has rather an asymptotic

flavor.
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5. Numerical illustration

The whole implementation is conducted using Matlab software. The integrated squared error
‖f − f̃m̃‖2 is computed via a standard approximation and discretization (over 100 points) of the
integral on an interval of R+ denoted by If . Then the mean integrated squared error (MISE)

E‖f − f̃m̃‖2 is computed as the empirical mean of the approximated ISE over 200 simulation
samples.

5.1. Simulation setting. We consider the following six densities with unit variance.

. An exponential density E(1) with parameter 1, on If = [0, 5]

. A Gamma density X = 2γ(4, 1/4), on If = [0, 10]

. A mixed Gamma X/c with X ∼ 0.4γ(2, 1/2) + 0.6γ(16, 1/4), with c =
√

2.96,

. A Weibull density, X/c with f(x) = kxk−1e−x
k
1R+(x) with c =

√
Γ(7/3)− Γ(5/3)2 on

If = [0, 5],
. A Rayleigh density X ∼ f with f(x) = (x/σ2) exp(−x2/(2σ2)) with σ2 = 2/(4 − π) on
If = [0, 5],

. A beta density X/c with X ∼ β(4, 5), c =
√

2/9 on If = [0, 1/c].

We also consider two types of noises Y with same variance, namely an exponential density E(λ)
with λ = 2, and a gamma density γ(2, 1/λ′) with λ′ = 2

√
2. In both cases, the variance is equal

to 1/4.
In the case where the noise density is assumed to be known, we can compute analytically the

matrix Gm and use the exact formulae:

. For Y ∼ E(λ)

[Gm]i,j = λ/(1 + λ)1i=j − 2λ
(λ− 1)i−j−1

(λ+ 1)(i−j+1)
1j<i (5.1)

. For Y ∼ γ(2, µ)

[Gm]i,j = (µ/(1 + µ))21i−1=j − 4µ2/(1 + µ))31i=j + 4(i− j − µ)µ2 (µ− 1)i−j−2

(µ+ 1)(i−j+2)
1j+1<i (5.2)

5.2. Practical estimation procedure. As in Mabon (2017), to illustrate the loss implied by the
noise, we apply the density estimation method on the true Xi’s, for comparison, with a specific
κ̃0 = 0.25 in the penalty; more precisely, the case called ”direct” hereafter relies on the estimator

f̂
(0)
m̂ with f̂

(0)
m =

∑m−1
j=0 â

(0)
j ϕj , â

(0)
k = n−1

∑n
i=1 ϕk(Xi) and

m̂0 = arg min
m∈{0,1,...,n}

{
−
m−1∑
k=0

(â
(0)
k )2 +

2κ̃0m

n

}
.

We chose the general τm = 2m instead of its improvement, to allow comparison with the results
obtained by Mabon (2017).

To study if the estimation of Gm implies a loss, we implement the ”known noise” case. We
compute Gm as given by (5.1) and (5.2) and we apply the procedure described in Mabon (2017).
We compute the estimator as given by (2.6) and select

m̂1 = arg min
m‖G−1

m ‖2op≤n/ log(n)

{
−‖f̂m‖2 +

κ̃1

n

(
2m‖G−1

m ‖2op ∧ log(n)(‖g‖∞ ∨ 1)‖G−1
m ‖2F

)}
.

We set κ̃1 = 0.03 in the penalty for known noise density, this is the value calibrated in Mabon
(2017), and ‖g‖∞ is known in this setting.

For the case of estimated Gm which is specifically studied in the present work, we compute

f̃m̃ with f̃m given by (2.9) and m̃ given by m̃ = arg min
m∈M̂

{
−‖f̃m‖2 + p̃en(m)

}
, with p̃en(m)

defined as in Corollary 4.2 with τm = 2m. The constant calibrations were done with intensive
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Y Exponential Y Gamma
direct Known Noise Noise Known Noise Noise

noise sample sample noise sample sample
f n0 = 50 n0 = 200 n0 = 50 n0 = 200

Exp(1) MISE 0.5 8.2 2.1 3.3 4.2 1.9 2.2
(std) (0.9) (33) (3.1) (6.4) (23) (3.3) (4.1)

Oracles 0.10 0.13 0.25 0.15 0.13 0.29 0.16
(std) (0.1) (0.2) (0.3) (0.2) (0.2) (0.5) (0.2)

Gamma MISE 0.37 1.0 1.6 0.8 2.2 1.2 1.7
(std) (0.4) (0.7) (0.7) (0.6) (0.3) (0.3) (0.7)

Oracles 0.2 0.3 0.5 0.4 0.4 1.5 0.4
(std) (0.2) (0.3) (0.4) (0.4) (0.4) (0.7) (0.3)

Mixed MISE 1.0 4.0 6.7 2.7 7.3 7.5 7.2
Gamma (std) (0.4) (2.6) (1.9) (2.1) (0.8) (1.1) (0.8)

Oracles 0.7 1.6 5.1 2.0 2.4 7.0 6.1
(std) (0.4) (1.1) (1.8) (1.3) (1.5) (1.0) (1.0)

Weibull MISE 0.4 0.8 1.1 0.9 1.0 1.1 0.9
(std) (0.4) (0.8) (1.1) (1.1) (0.9) (0.7) (0.8)

Oracles 0.3 0.4 0.6 0.5 0.5 0.8 0.5
(std) (0.2) (0.4) (0.6) (0.5) (0.5) (0.9) (0.5)

Rayleigh MISE 0.4 0.8 1.0 0.6 1.1 1.1 1.0
(std) (0.4) (0.4) (0.3) (0.5) (0.2) (0.2) (0.3)

Oracles 0.2 0.3 0.4 0.4 0.3 0.4 0.3
(std) (1.2) (1.5) (1.6) (0.3) (0.3) (0.3) (0.3)

Beta MISE 0.3 1.4 1.7 0.8 1.7 1.8 1.7
(std) (0.2) (0.6) (0.3) (0.6) (0.1) (0.2) (0.1)

Oracles 0.2 0.3 0.5 0.3 0.4 1.7 0.6
(std) (0.2) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3)

Table 1. Results after 200 iterations of simulations of the six considered densities,
for sample sizes n = 200 and n0 = 50, n0 = 200. For each density : first two lines,
MISE× 100 with (std × 100) in parenthesis; third and fourth lines, mean with std
in parenthesis of oracles. First column, direct observations of the Xi’s. Columns 2,
3 and 4, noise is E(λ) with λ = 2 (mean 1/2). Columns 5, 6 and 7, noise is γ(2, λ′)
with λ′ = 2

√
2 (mean 1/(2

√
2)).

preliminary simulations, including other densities than the ones mentioned above (to avoid over-
fitting): the selected values are κ1 = 0.01 and κ2 = 0.01/4. It can be noted that the values of
κ1 and κ2 are much smaller than what comes in theory. The infinite norms ‖h‖∞ and ‖g‖∞ are
estimated by taking the maximum of a projection estimator in the Laguerre basis of the density
of Z (resp. of Y ′) with dimension taken as the integral part of

√
n/3.

5.3. Simulation results. As in Mabon (2017), we consider two sample sizes n = 200 and n =
2000. For each distribution, we present in Tables 1 and 2 the MISE computed over 200 repetitions,
together with the standard deviation, both being multiplied by 100 for small sample size 200 (Table
1) and by 1000 for larger sample size (Table 2). For simplicity, the dimension is selected in all
cases among 30 values. We also provide ”oracles”, with mean values and standard deviations also
multiplied by the same factor as the MISE: we compute over 200 repetitions the MISE which would
be obtained if we were choosing the best proposal in our family of thirty estimators. These oracles
use the knowledge of the true, that we do not have in practice, and they are computed on other
samples than the MISE of model selection.

We can see by comparing Tables 1 and 2 (recall that the multiplying factor is 100 for the first
table and 1000 for the second), that the results are improved when n increases. Estimating the
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Y Exponential Y Gamma
direct Known Noise Noise Known Noise Noise

noise sample sample noise sample sample
f n0 = 400 n0 = 2000 n0 = 400 n0 = 2000

Exp(1) MISE 0.6 3.8 2.3 3.4 1.2 1.8 2.1
(std) (1.2) (14.2) (8.1) (8.8) (3.8) (3.8) (5.2)

Oracles 0.10 0.14 0.36 0.17 0.15 0.30 0.17
(std) (0.1) (0.2) (0.6) (0.2) (0.2) (0.4) (0.2)

Gamma MISE 0.6 0.8 1.6 0.8 3.4 4.6 2.3
(std) (0.3) (0.3) (1.6) (0.4) (1.4) (2.1) (1.7)

Oracles 0.3 0.6 0.7 0.6 0.7 1.1 0.8
(std) (0.3) (0.4) (0.4) (0.4) (0.5) (0.9) (0.6)

Mixed MISE 1.6 7.2 8.4 7.0 9.0 38.2 9.1
Gamma (std) (0.8) (1.6) (1.7) (1.6) (3.7) (20.8) (3.8)

Oracles 1.0 2.9 4.8 3.5 4.8 24.5 7.6
(std) (0.6) (1.9) (2.0) (1.9) (2.4) (8.0) (2.6)

Weibull MISE 0.9 1.2 1.2 1.3 1.1 1.5 1.1
(std) (0.4) (0.9) (0.8) (0.6) (5.0) (1.3) (0.6)

Oracles 0.7 1.0 1.2 1.0 1.1 1.3 1.5
(std) (0.3) (0.5) (0.8) (0.5) (0.6) (0.8) (1.1)

Rayleigh MISE 0.5 0.9 0.9 0.3 1.1 1.5 1.1
(std) (0.3) (0.4) (0.8) (0.4) (0.6) (1.3) (0.6)

Oracles 0.3 0.5 0.6 0.5 0.6 0.8 0.6
(std) (0.2) (0.3) (0.4) (0.3) (0.4) (0.5) (0.4)

Beta MISE 0.5 1.9 3.0 1.9 3.0 10.0 3.0
(std) (0.2) (0.2) (0.5) (0.3) (0.4) (6.6) (0.4)

Oracles 0.3 0.5 0.5 0.5 0.5 2.1 0.6
(std) (0.2) (0.3) (0.3) (0.3) (0.3) (0.4) (0.3)

Table 2. Results after 200 iterations of simulations of the six considered densities,
for sample sizes n = 2000 and n0 = 400, n0 = 2000. For each density : first two
lines, MISE× 1000 with (std × 1000) in parenthesis; third and fourth lines, mean
with std in parenthesis of oracles. First column, direct observations of the Xi’s.
Columns 2, 3 and 4, noise is E(λ) with λ = 2 (mean 1/2). Columns 5, 6 and 7,
noise is γ(2, λ′) with λ′ = 2

√
2 (mean 1/(2

√
2)).

matrix Gm does not seem to really increase the error when we compare with the case where it is
known; it even sometimes happens that the estimation of Gm improves the MISE. In deconvolution
setting, the same remark had been made by Comte and Lacour (2011), it seems that the cutoff in
the estimation procedure is often safe. For fixed n and estimated Gm, increasing n0 systematically
improves the results, except in the case where f is exponential with parameter 1. But this case
corresponds to a best estimation proportional to ϕ0, a simplicity which seems to be difficult for
the estimation algorithm. We can also see that the mixed Gamma distribution has the highest
errors and is clearly more difficult to estimate: n = 200 seems too small to get a good account of
the bimodality. We can also see that increasing the degree of the inverse problem when going from
Exponential to Gamma distribution for Y always increases the errors, even if the signal-to-noise
ratio is unchanged.

6. Concluding remarks

In this work, we have defined a projection estimator of the density f of unobserved i.i.d. random
variables Xi, i = 1, . . . , n, when data (Zi)1≤i≤n from model (2.1) are available, together with an
independent sample (Y ′i )1≤i≤n0 of the nuisance process Y . All quantities related to the common
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density g of the (Yi)1≤i≤n0 and the (Y ′i )1≤i≤n0 are estimated thanks to the independent (Y ′i )-n0-
sample. This means that we estimate a matrix whose inverse is involved in the definition of the
coefficients of the estimator. Therefore the main difficulty is to measure the distance between the
inverse of a random matrix and the inverse of its expectation. Our strategy is inspired by the one
initiated by Neumann (1997) and developed by Kappus and Mabon (2014) in the Fourier context,
with help of tools related to random matrices taken in Tropp (2015); its relies on the use of a
relevant cutoff for the inversion of the estimated matrix. We obtain risk bounds generalizing the
case where g is known and showing that, if both sample sizes n and n0 have the same order, it is
possible that no loss in the order of the upper bound occurs. We also provide a model selection
procedure for which a risk bound states that the bias-variance compromise is adequately performed,
in a non-asymptotic setting.

There remains additional questions that may be worth answering. First, in Mabon (2017), the
problem of survival function estimation for known g is also studied: the question is left open here,
to determine if the strategy developed in the present work could be extended to this context.
Moreover, our framework is mainly nonasymptotic, but if we are interested in asymptotics, the
question of lower bounds may be studied.

7. Proofs

7.1. Preliminary results.

7.2. Proof of Lemma 2.1. The proof is a particular case of a Lemma proved in Comte and
Genon-Catalot (2017). From Askey and Wainger (1965), we have for ν = 4k + 2, and k large
enough

|ϕk(x/2)| ≤ C



a) 1 if 0 ≤ x ≤ 1/ν

b) (xν)−1/4 if 1/ν ≤ x ≤ ν/2
c) ν−1/4(ν − x)−1/4 if ν/2 ≤ x ≤ ν − ν1/3

d) ν−1/3 if ν − ν1/3 ≤ x ≤ ν + ν1/3

e) ν−1/4(x− ν)−1/4e−γ1ν
−1/2(x−ν)3/2 if ν + ν1/3 ≤ x ≤ 3ν/2

f) e−γ2x if x ≥ 3ν/2

where γ1 and γ2 are positive and fixed constants. From these estimates, we can prove

Lemma 7.1. Assume that a random variable R has density fR square-integrable on R+, and that
E(R−1/2) < +∞. For k large enough,∫ +∞

0
[ϕk(x)]2fR(x)dx ≤ c√

k
,

where c > 0 is a constant depending on E(R−1/2).

The result of Lemma 2.1 follows from Lemma 7.1. �

Proof of Lemma 7.1. Hereafter, we denote by x . y when there exist a constant C such that
x ≤ Cy and recall that ν = 4k + 2. We have six terms to compute to find the order of∫ +∞

0
[ϕk(x)]2fR(x)dx = (1/2)

∫ +∞

0
[ϕk(u/2)]2fR(u/2)du :=

6∑
`=1

I`.

a) I1 .
1

2

∫ 1/ν

0
fR(u/2)du . ‖fR‖ν−1/2 . ‖fR‖k−1/2.

b) I2 . ν
−1/2

∫ ν/2

1/ν
fR(u/2)u−1/2du . k−1/2E(R−1/2).

c) I3 . ν
−1/2ν−1/6

∫ ν−ν1/3

ν/2
fR(u/2)du = o(1/

√
k), as ν − u ≥ ν1/3.
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d) I4 . ν
−2/3

∫ ν+ν1/3

ν−ν1/3
fR(u/2)du = o(1/

√
k).

e) I5 . ν
−1/2

∫ 3ν/2

ν+ν1/3
(u− ν)−1/2fR(u/2)du . ν−1/2ν−1/6 = o(1/

√
k),

(exp is bounded by 1, u− ν ≥ ν1/3).

f) I6 . e
−γ2(3ν/2) = o(1/

√
k).

The result of Lemma 2.1 follows from these orders. �

7.2.1. Bounds on the spectral norm.

Proposition 7.2. For Ĝm defined by Equation (2.10) and ‖g‖∞ <∞ , n0 ∈ N \ {0}, then for all
t > 0

P
[
‖Gm − Ĝm‖op ≥ t

]
≤ 2m exp

(
− n0t

2/4

‖g‖∞m+ (
√

2/3)mt

)
.

Corollary 7.3. Under the Assumptions of Proposition 7.2, for all q ≥ 2, it holds that

E
[
‖Gm − Ĝm‖qop

]
≤ Cq(logm)q/2

mq/2

n
q/2
0

∨ (logm)q
mq

nq0

with Cq = 2q−1eq/2‖g‖q/2∞ (q + 2)q/2 + 22q−1+q/2(q + 2)q/2.

Proof of Proposition 7.2. To get the announced result, we apply a Bernstein matrix inequality (see

Theorem 8.2). Thus we write Ĝm as a sum of a sequence of independent matrices

Ĝm =
1

n0

n0∑
i=1

Km(Y ′i ), Km(Y ′i ) =


2−1/2ϕ0(Y ′i ) if i = j,

2−1/2 (ϕi−j(Y
′
i )− ϕi−j−1(Y ′i )) if j < i,

0 otherwise.

We put

Sm =
1

n0

n0∑
i=1

Km(Y ′i )− E
[
Km(Y ′i )

]
.

• Bound on L(Km) = ‖Km(Y ′1)− E [Km(Y ′1)] ‖op/n0.
First using the equivalence between the spectral and trace norms

A ∈ Rm×m,
1√
m
‖A‖F ≤ ‖A‖op ≤ ‖A‖F (7.1)

we have by Equation (7.1) that L(Km) ≤ (1/n0)‖Km(Y ′1)−E [Km(Y ′1)] ‖F, and using Equation (2.4)

‖Km(Y ′1)− E
[
Km(Y ′1)

]
‖2F =

∑
1≤i,j≤m

|[Km(Y ′1)]i,j − E
[
Km(Y ′1)

]
i,j
|2

≤ 1

2

∑
1≤i≤m

|ϕ0(Y ′1)− E[ϕ0(Y ′1)]|2 +
1

2

∑
1≤j<i≤m

|ϕi−j(Y ′1)− ϕi−j−1(Y ′1)− E[ϕi−j(Y
′

1)− ϕi−j−1(Y ′1)]|2

≤ 1

2
m|e−Y ′1 − E[e−Y

′
1 ]|2 +

1

2

∑
1≤j<i≤m

(4
√

2)2 ≤ m

2
+ 42m(m− 1)

2
=

16m2 − 16m+m

2
≤ 8m2.

So we get that L(Km) ≤ 2
√

2m

n0
.
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• Bound on ν(Sm) = ‖
∑n0

i=1 E
[
t(Km(Y ′i )− E [Km(Y ′i )])(Km(Y ′i )− E [Km(Y ′i )])

]
‖op/n

2
0.

By definition of the operator norm we have

ν(Sm) =
1

n2
0

sup
‖~x‖2,m=1

t~x

n0∑
i=1

E
[
t(Km(Y ′i )− E

[
Km(Y ′i )

]
)(Km(Y ′i )− E

[
Km(Y ′i )

]
)
]
~x

=
1

n0
sup

‖~x‖2,m=1

t~x E
[
t(Km(Y ′1)− E

[
Km(Y ′1)

]
)(Km(Y ′1)− E

[
Km(Y ′1)

]
)
]
~x

=
1

n0
sup

‖~x‖2,m=1
E
∥∥(Km(Y ′1)− E

[
Km(Y ′1)

])
~x
∥∥2

2,m

It yields that, for t~x = (x0, . . . , xm−1), and convention ϕ−1 ≡ 0,

E1 := E
∥∥(Km(Y ′1)− E

[
Km(Y ′1)

])
~x
∥∥2

2,m

=
1

2

m−1∑
i=0

E

 i∑
j=0

(
ϕi−j(Y

′
1)− ϕi−j−1(Y ′1)− E[ϕi−j(Y

′
1)− ϕi−j−1(Y ′1)]

)
xj

2

=
1

2

m−1∑
i=0

Var

 i∑
j=0

(
ϕi−j(Y

′
1)− ϕi−j−1(Y ′1)

)
xj


≤ 1

2

m−1∑
i=0

E

∣∣∣∣∣∣
i∑

j=0

(
ϕi−j(Y

′
1)− ϕi−j−1(Y ′1)

)
xj

∣∣∣∣∣∣
2

=
1

2

m−1∑
i=0

∫ ∣∣∣∣∣∣
i∑

j=0

(ϕi−j(u)− ϕi−j−1(u))xj

∣∣∣∣∣∣
2

g(u) du

Therefore

E1 ≤
‖g‖∞

2

m−1∑
i=0

∫ ∣∣∣∣∣∣
i∑

j=0

(ϕi−j(u)− ϕi−j−1(u))xj

∣∣∣∣∣∣
2

du

=
‖g‖∞

2

m−1∑
i=0

2
∑

1≤j,j′≤i
δj,j′xjxj′ −

∑
1≤j,j′≤i

δj,j′+1xjxj′+1 −
∑

1≤j,j′≤i
δj,j′−1xjxj′−1


≤ 2‖g‖∞m‖x‖22,m.

Then we get that ν(Sm) ≤ 2‖g‖∞m
n0

. In the end applying Theorem 8.2 yields that for all t > 0

P
[
‖Gm − Ĝm‖op ≥ t

]
≤ 2m exp

(
− t2/2

2‖g‖∞m/n0 + (2
√

2/3)mt/n0

)
.

from which we get the result of Proposition 7.2. �

Proof of Corollary 7.3. Before proving the announced result, let us explain how Theorem 8.3 for
Hermitian matrices can be extended to non-Hermitian matrices. This is due to the so-called
Paulsen dilation which corresponds to the following isomorphism trick for a rectangular matrix A

A 7→ H(A) =

(
0 A

A† 0

)
where A† denotes the conjugate transpose of A. Obviously H(A) is an Hermitian matrix. We can
also notice that

H(A)2 =

(
AA† 0

0 A†A

)
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So we get λmax

(
H(A)2

)
= ‖A‖2op and λmax (H(A)) = ‖A‖op.

Under the Assumptions of Proposition 7.2, we can apply Theorem A.1 in Chen et al. (2012) (see
Theorem 8.3) stated for Hermitian matrices, using the above Paulsen dilation as follows. Let Yi

be rectangular matrices and set A =
∑

i Yi it yields that, for q ≥ 2 and r ≥ max(q, 2 logm),

H(A) =

(
0

∑
i Yi∑

i Y
†
i 0

)
=
∑
i

(
0 Yi

Y†i 0

)
=
∑
i

H(Yi).

Thus we get that

[
E‖A‖qop

]1/q
=

[
Eλmax

(
H(
∑
i

Yi)

)q]1/q

≤
√
erλ1/2

max

(∑
i

EH(Yi)
2

)
+ 2er

[
Emax

i
λmax (H(Yi))

q

]1/q

≤
√
ermax (λmax (EAA†) , λmax (EA†A)) + 2er

[
Emax

i
‖Yi‖qop

]1/q

.

Now we apply this result for

A = Gm − Ĝm = Sm =
1

n0

n0∑
i=1

Km(Y ′i )− E
[
Km(Y ′i )

]
.

Using the notations of the proof of Proposition 7.2, we get for q ≥ 2, m ≥ 2 and r = 2 logm

E
[
‖Gm − Ĝm‖qop

]
≤ 2q−1 (erν(Sm))q/2 + 2q−1 (erL(Km))q

≤ 2q−1

(
er
‖g‖∞m
n0

)q/2
+ 2q−1

(
er

2
√

2m

n0

)q

≤ 2q−1eq/2‖g‖q/2∞
(

2 logm
m

n0

)q/2
+ 22q−1+q/2

(
2 logm

m

n0

)q
≤ Cq

(
logm

m

n0

)q/2
∨
(

logm
m

n0

)q
,

with Cq = 2q−1eq/2‖g‖q/2∞ (q + 2)q/2 + 22q−1+q/2(q + 2)q/2. �

7.3. Proofs of results of Section 3.

7.3.1. Proof of Lemma 3.1. First let us define the set

∆m =

{
‖Ĝ−1

m ‖op ≤
√

n0

m logm

}
(7.2)

and notice that

G−1
m − G̃−1

m = 1∆c
m

G−1
m + 1∆m(G−1

m − Ĝ−1
m ) = 1∆c

m
G−1
m − 1∆mĜ−1

m (Gm − Ĝm)G−1
m .

Then we can write that

E
[
‖G−1

m − G̃−1
m ‖2pop

]
= E

[
‖G−1

m ‖2pop1∆c
m

+ ‖Ĝ−1
m (Gm − Ĝm)G−1

m ‖2pop1∆m

]
= ‖G−1

m ‖2popP[∆c
m] + E

[
‖Ĝ−1

m (Gm − Ĝm)G−1
m ‖2pop1∆m

]
. (7.3)

This proof is inspired of the proof of Lemma 2.1 in Neumann (1997), in the sense that we divide
the proof in two cases according to the comparison of ‖G−1

m ‖op with the threshold.
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• First case: ‖G−1
m ‖op >

1
2

√
n0

m logm . Let us prove that E
[
‖G−1

m − G̃−1
m ‖

2p
op

]
. ‖G−1

m ‖
2p
op.

Starting from Equation (7.3) and using the set ∆m, we have that

E
[
‖G−1

m − G̃−1
m ‖2pop

]
≤ ‖G−1

m ‖2pop + ‖G−1
m ‖2popE

[
‖Ĝ−1

m ‖2pop‖Gm − Ĝm‖2pop1∆m

]
≤ ‖G−1

m ‖2pop + ‖G−1
m ‖2pop

(
n0

m logm

)p
E
[
‖Gm − Ĝm‖2pop

]
.

Besides applying Corollary 7.3 for q = 2p yields

E
[
‖G−1

m − G̃−1
m ‖2pop

]
≤ ‖G−1

m ‖2pop + ‖G−1
m ‖2pop

(
n0

m logm

)p
C2p

(
m logm

n0

)p
≤ (1 + C2p)‖G−1

m ‖2pop.

• Second case: ‖G−1
m ‖op <

1
2

√
n0

m logm . We prove E
[
‖G−1

m − G̃−1
m ‖

2p
op

]
.

(
logm‖G−1

m ‖4op

m

n0

)p
.

Starting from (7.3) again, we get

E
[
‖G−1

m − G̃−1
m ‖2pop

]
≤ ‖G−1

m ‖2popP[∆c
m] + ‖G−1

m ‖2popE
[
‖Gm − Ĝm‖2pop‖Ĝ−1

m ‖2pop1∆m

]
. (7.4)

i) Upper bound on E
[
‖Gm − Ĝm‖2pop‖Ĝ−1

m ‖
2p
op1∆m

]
.

First let us notice that

‖Ĝ−1
m ‖2pop ≤ 22p−1‖Ĝ−1

m −G−1
m ‖2pop + 22p−1‖G−1

m ‖2pop.

Moreover applying Corollary 7.3 for q = 2p and q = 4p with the set ∆m, we get

E
[
‖Gm − Ĝm‖2pop‖Ĝ−1

m ‖2pop1∆m

]
≤ 22p−1‖G−1

m ‖2popE
[
‖Gm − Ĝm‖2pop1∆m

]
+ 22p−1E

[
‖Gm − Ĝm‖2pop‖Ĝ−1

m −G−1
m ‖2pop1∆m

]
≤ 22p−1‖G−1

m ‖2popE
[
‖Gm − Ĝm‖2pop1∆m

]
+ 22p−1‖G−1

m ‖2popE
[
‖Gm − Ĝm‖4pop‖Ĝ−1

m ‖2pop1∆m

]
≤ 22p−1C2p‖G−1

m ‖2pop

(
m logm

n0

)p
+ 22p−1‖G−1

m ‖2pop

(
n0

m logm

)p
C4p

(
m logm

n0

)2p

≤ 22p−1(C2p + C4p)‖G−1
m ‖2pop

(
m logm

n0

)p
. (7.5)

ii) Upper bound on P[∆c
m] = P

[
‖Ĝ−1

m ‖op >

√
n0

m logm

]
.

The upper bound is given by the following Lemma proved afterwards.

Lemma 7.4. For ∆m defined by Equation (7.2) and ‖G−1
m ‖op <

1
2

√
n0

m logm , it holds that

P[∆c
m] = P

[
‖Ĝ−1

m ‖op >

√
n0

m logm

]
≤ 22p+1C2p

(
m logm

n0

)p
‖G−1

m ‖2pop. (7.6)

Finally starting from Equation (7.4) and gathering Equations (7.5) with (7.6), we get that

E
[
‖G−1

m − G̃−1
m ‖2pop

]
≤ 22p+1C2p

(
m logm

n0

)p
‖G−1

m ‖4pop + 22p−1(C2p + C4p)‖G−1
m ‖4pop

(
m logm

n0

)p
≤ (22p+1C2p + 22pC4p)

(
logm‖G−1

m ‖4op

m

n0

)p
.

In conclusion, Lemma 3.1 is proved with Cop,p = 22p+1C2p + 22pC4p + 1. �
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Proof of Lemma 7.4. First invoke the triangular inequality

‖Ĝ−1
m ‖op ≤ ‖Ĝ−1

m −G−1
m ‖op + ‖G−1

m ‖op

which implies that

P
[
‖Ĝ−1

m ‖op >

√
n0

m logm

]
≤ P

[
‖Ĝ−1

m −G−1
m ‖op >

√
n0

m logm
− ‖G−1

m ‖op

]
.

Moreover we assume that ‖G−1
m ‖op <

1
2

√
n0

m logm , so

P
[
‖Ĝ−1

m ‖op >

√
n0

m logm

]
≤ P

[
‖Ĝ−1

m −G−1
m ‖op > ‖G−1

m ‖op

]
.

Now let us rewrite this probability, as

P
[
‖Ĝ−1

m −G−1
m ‖op > ‖G−1

m ‖op

]
= P

[{
‖Ĝ−1

m −G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm −Gm)‖op <
1

2

}]
+ P

[{
‖Ĝ−1

m −G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm −Gm)‖op ≥
1

2

}]
≤ P

[{
‖Ĝ−1

m −G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm −Gm)‖op <
1

2

}]
+ P

[
‖G−1

m (Ĝm −Gm)‖op ≥
1

2

]
. (7.7)

To control the second term of the right hand side of Equation (7.7), we apply Markov inequality
and Corollary 7.3 for q = 2p

P
[
‖G−1

m (Ĝm −Gm)‖op ≥
1

2

]
≤ P

[
‖G−1

m ‖op‖Ĝm −Gm‖op ≥
1

2

]
≤ 22pC2p

(
m logm

n0

)p
‖G−1

m ‖2pop. (7.8)

Next to control the first term on the right hand side of Equation (7.7), we apply Theorem 8.1

(with A = Gm and B = Ĝm −Gm), it yields

P
[{
‖Ĝ−1

m −G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm −Gm)‖op <
1

2

}]
≤ P

[{
‖Ĝm −Gm‖op‖G−1

m ‖2op

1− ‖G−1
m (Ĝm −Gm)‖op

> ‖G−1
m ‖op

}
∩
{
‖G−1

m (Ĝm −Gm)‖op <
1

2

}]

≤ P
[
‖Ĝm −Gm‖op >

1

2
‖G−1

m ‖−1
op

]
, (7.9)

again applying Markov inequality along with Corollary 7.3 gets

P
[{
‖Ĝ−1

m −G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm −Gm)‖op <
1

2

}]
≤ 22pC2p

(
m logm

n0

)p
‖G−1

m ‖2pop

So starting from Equation (7.7) and gathering Equations (7.8) and (7.9) gives

P
[
‖Ĝ−1

m ‖op >

√
n0

m logm

]
≤ 22p+1C2p

(
m logm

n0

)p
‖G−1

m ‖2pop

�
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7.3.2. Useful corollary for the Frobenius norm.

Corollary 7.5. Under the Assumptions of Lemma 3.1, we have

E
[
‖G−1

m − G̃−1
m ‖2F

]
≤ 2‖G−1

m ‖2F

Proof of Corollary 7.5. The proof mainly follows the lines of the proof of of Lemma 3.1. ∆m is
defined by Equation (7.2), then we write

E
[
‖G−1

m − G̃−1
m ‖2F

]
= E

[
‖G−1

m ‖2F1∆c
m

+ ‖Ĝ−1
m (Gm − Ĝm)G−1

m ‖2F1∆m

]
= ‖G−1

m ‖2FP[∆c
m] + E

[
‖Ĝ−1

m (Gm − Ĝm)G−1
m ‖2F1∆m

]
. (7.10)

Let us recall that for two matrices A and B

‖AB‖F ≤ ‖A‖F‖B‖op and ‖AB‖F ≤ ‖A‖op‖B‖F. (7.11)

Then Equations (7.10), (7.11), the definition of ∆m and Lemma 3.1 for q = 2 give

E
[
‖G−1

m − G̃−1
m ‖2F

]
≤ ‖G−1

m ‖2F + ‖G−1
m ‖2FE

[
‖Ĝ−1

m ‖2op‖Gm − Ĝm‖2op1∆m

]
≤ ‖G−1

m ‖2F + ‖G−1
m ‖2F

n0

m logm
E
[
‖Gm − Ĝm‖2op

]
≤ ‖G−1

m ‖2F + ‖G−1
m ‖2F

m logm

n0

n0

m logm
= 2‖G−1

m ‖2F

�

7.3.3. Proof of Corollary 3.2. The proof follows the lines of the proof of of Lemma 3.1. The only
difference lies in the following equation

E‖(G−1
m − G̃−1

m )~hm‖22,m = ‖G−1
m
~hm‖22,mP[∆c

m] + E
[
‖Ĝ−1

m (Gm − Ĝm)G−1
m
~hm‖22,m1∆m

]
= ‖~fm‖22,mP[∆c

m] + E
[
‖Ĝ−1

m (Gm − Ĝm)G−1
m
~hm‖22,m1∆m

]
,

with ∆m defined by Equation (7.2). It yields the following upper bound

E
[
‖(G−1

m − G̃−1
m )~hm‖22,m

]
≤ ‖~fm‖22,mP[∆c

m] + ‖~fm‖22,mE
[
‖Ĝ−1

m ‖2op‖Gm − Ĝm‖2op1∆m

]
.

And following the proof of of Lemma 3.1, we get

E
[
‖(G−1

m − G̃−1
m )~hm‖22,m

]
≤ ‖f‖2Cop

(
1 ∧ logm

m

n0
‖G−1

m ‖2op

)
.

�

7.3.4. Proof of Propositions 3.3.

Proof. By Pythagoras theorem, we have

‖f − f̃m‖2 = ‖f − fm‖2 + ‖fm − f̃m‖2.

Let us rewrite the second term of the above equality:

‖fm − f̃m‖2 = ‖~fm − ~̃fm‖22,m = ‖G−1
m
~hm − G̃−1

m
~̂hm‖22,m

≤ 2‖G−1
m
~hm −G−1

m
~̂hm‖22,m + 2‖G−1

m
~̂hm − G̃−1

m
~̂hm‖22,m. (7.12)

i) Then according to Proposition 3.1 in Mabon (2017) (τm = 2m), and Lemma 2.1 (τm = c?
√
m

under E(1/
√
Z1) < +∞), we get

E‖G−1
m (~hm − ~̂hm)‖22,m ≤

τm
n
‖G−1

m ‖2op ∧
‖h‖∞
n
‖G−1

m ‖2F, (7.13)

where τm is defined in Proposition 3.3.
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ii) Now we turn to the second term on the right-hand-side of Equation (7.12). Let us notice that

‖G−1
m
~̂hm − G̃−1

m
~̂hm‖22,m = ‖(G−1

m − G̃−1
m )(~̂hm − ~hm) + (G−1

m − G̃−1
m )~hm‖22,m

≤ 2‖(G−1
m − G̃−1

m )(~̂hm − ~hm)‖22,m + 2‖(G−1
m − G̃−1

m )~hm‖22,m. (7.14)

a) The first term of (7.14) can be bounded in two ways: since (Y ′1 , . . . , Y
′
n0

) is independent of
(Z1, . . . , Zn), we get that

E‖(G−1
m − G̃−1

m )(~̂hm − ~hm)‖22,m ≤ E‖G−1
m − G̃−1

m ‖2opE‖~̂hm − ~hm‖22,m (7.15)

Again according to Proposition 3.1 in Mabon (2017) and Lemma 2.1,

E‖~̂hm − ~hm‖22,m ≤
1

n

m∑
j=1

E[ϕ2
j (Z1)] ≤ τm

n
.

Applying Lemma 3.1 gives that

E‖(G−1
m − G̃−1

m )(~̂hm − ~hm)‖22,m ≤
τm
n
Cop,1‖G−1

m ‖2op (7.16)

b) Under the assumption that (Y ′1 , . . . , Y
′
n0

) is independent of (Z1, . . . , Zn) and Proposition 3.1
in Mabon (2017), we obtain

E
[
‖(G−1

m − G̃−1
m )(~̂hm − ~hm)‖22,m

]
≤ E

[
‖G−1

m − G̃−1
m ‖2F

] ‖h‖∞
n

.

And applying Corollary 7.5

E
[
‖(G−1

m − G̃−1
m )(~̂hm − ~hm)‖22,m

]
≤ 2‖G−1

m ‖2F
‖h‖∞
n

. (7.17)

For the second term of (7.14), we have according to Corollary 3.2

E‖(G−1
m − G̃−1

m )~hm‖22,m ≤ CE logm‖G−1
m ‖2op

m

n0
. (7.18)

Finally starting from Equation (7.12) and gathering Equations (7.13), (7.15), (7.16), (7.17) and
(7.18) yields

E‖fm − f̃m‖2 ≤ (4 + Cop,1)

(
τm
n
‖G−1

m ‖2op ∧
‖h‖∞
n
‖G−1

m ‖2F
)

+ 4CE logm‖G−1
m ‖2op

m

n0
.

To conclude

E‖fm − f̃m‖2 ≤ ‖f − fm‖2 + C

(
τm
n
‖G−1

m ‖2op ∧
‖h‖∞
n
‖G−1

m ‖2F
)

+ 4CE logm‖G−1
m ‖2op

m

n0
.

�

7.3.5. Proof of Proposition 3.5. For f ∈W s(R+, L) defined by (2.6), we have

‖f − fm‖2 =
∞∑
k=m

a2
k(f) =

∞∑
k=m

a2
k(f)ksk−s ≤ Lm−s,

and according to Lemma 3.4 ‖G−1
m ‖2F � ‖G−1

m ‖2op � m2r. It yields that the MISE is upper bounded
as follows

E‖f − f̃m‖2 ≤ Lm−s + 2C

(
τm
n
m2r ∧ ‖h‖∞

n
m2r

)
+ 2CC log(m)

m2r+1

n0
(7.19)

Now we have to counterbalance the bias and the variance terms as follows

Lm−s + 2C(2 + ‖h‖∞)
m2r

n
⇒ mopt1 ∝ n1/s+2r

Lm−s + 2CC log(m)
m2r+1

n0
⇒ mopt2 ∝ (n0/ log(n0))1/s+2r+1
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For mopt ∝ n1/s+2r ∧ (n0/ log(n0))1/s+2r+1 we get

E‖f − f̃mopt‖2 . n−s/s+2r ∨
(

n0

log n0

)−s/s+2r+1

.

which ends the proof of Proposition 3.5. �

7.4. Proof of Theorem 4.1. First for m ∈M, let us define the associated subspaces Smd1 ⊆ Rd1

Smd1 =
{
~tm ∈ Rd1 /~tm = t (a0(t), a1(t), . . . , am−1(t), 0, . . . , 0)

}
.

This space is defined to give nested models. When we increase the dimension from m to m+ 1 we
only compute one more coefficient. Then for any ~t ∈ Rd1 , we define the following contrast for the
density estimation

γn(~t) = ‖~t‖22,d1 − 2〈~t, G̃−1
d1
~̂hd1〉2,d1 .

Let us notice that for ~tm ∈ Smd1 , thanks to the null coordinates of ~tm and the lower triangular form

of G̃d1 and G̃m, we have

〈~tm, G̃−1
d1
~̂hd1〉2,d1 = 〈~tm, G̃−1

m
~̂hm〉2,m = 〈~tm, ~̃fm〉2,m.

So we clearly have that

~̃fm = argmin
~tm∈Smd1

γn(~tm).

Now let m, m′ ∈M, ~tm ∈ Smd1 and ~sm′ ∈ Sm
′

d1
. Notice that

γn(~tm)− γn(~sm′) = ‖~tm − ~f‖22,d1 − ‖~sm′ − ~f‖22,d1 − 2〈~tm − ~sm′ , G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1
and due to orthonormality of Laguerre basis, for any m we have the following relations between
the L2 norm and the Euclidean norms,

‖f̃m− f‖2 = ‖ ~̃fm− ~f‖22,d1 +

∞∑
j=d1

(aj(f))2 and ‖fm− f‖2 = ‖~fm− ~f‖22,d1 +

∞∑
j=d1

(aj(f))2 (7.20)

We set νn(~t) = 〈~t, G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1 for ~t ∈ Rd1 .

According to the definition of m̂ ∈ M̂, for any m in the model collection M, we have the
following inequality

γn( ~̃fm̂) + p̂en(m̂) ≤ γn(~fm) + p̂en(m).

It yields that

‖ ~̃fm̂ − ~f‖22,d1 − ‖~fm − ~f‖22,d1 − 2νn( ~̃fm̂ − ~fm) ≤ p̂en(m)− p̂en(m̂)

which implies

‖ ~̃fm̂ − ~f‖22,d1 ≤ ‖~fm − ~f‖22,d1 + 2νn( ~̃fm̂ − ~fm) + p̂en(m)− p̂en(m̂).

Let us notice that νn( ~̃fm̂ − ~fm) = ‖ ~̃fm̂ − ~fm‖2,d1νn

(
~̃fm̂ − ~fm

‖ ~̃fm̂ − ~fm‖2,d1

)
and due to the relation

2ab ≤ a2/4 + 4b2, we have the following inequalities

‖ ~̃fm̂ − ~f‖22,d1 ≤ ‖~fm − ~f‖22,d1 + 2‖ ~̃fm̂ − ~fm‖2,d1 sup
~t∈B(m,m̂)

νn(~t) + p̂en(m)− p̂en(m̂)

≤ ‖~fm − ~f‖22,d1 +
1

4
‖ ~̃fm̂ − ~fm‖22,d1 + 4 sup

~t∈B(m,m̂)

ν2
n(~t) + p̂en(m)− p̂en(m̂)
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where B(m, m̂) =
{
~tm∨m̂ ∈ Sm∨m̂d1

, ‖~tm∨m̂‖2,d1 = 1
}

. Now notice that

‖ ~̃fm̂ − ~fm‖22,d1 ≤ 2‖ ~̃fm̂ − ~f‖22,d1 + 2‖~fm − ~f‖22,d1
we then have

‖ ~̃fm̂− ~f‖22,d1 ≤ ‖~fm− ~f‖22,d1 +
1

2
‖ ~̃fm̂− ~f‖22,d1 +

1

2
‖~f − ~fm‖22,d1 + 4 sup

~t∈B(m,m̂)

ν2
n(~t) + p̂en(m)− p̂en(m̂)

which implies

‖ ~̃fm̂ − ~f‖22,d1 ≤ 3‖~f − ~fm‖22,d1 + 2p̂en(m) + 8 sup
~t∈B(m,m̂)

ν2
n(~t)− 2p̂en(m̂).

Using Equation (7.20), we have

‖f̂m̂ − f‖2 −
∞∑
j=d1

(aj(f))2 ≤ 3

‖f − fm‖2 − ∞∑
j=d1

(aj(f))2

+ 2p̂en(m) (7.21)

+ 8 sup
~t∈B(m,m̂)

ν2
n(~t)− 2p̂en(m̂). (7.22)

(7.23)

Now let p̂ be a function such that for any m, m′, we have : 4p̂(m,m′) ≤ p̂en(m) + p̂en(m′).

‖f̃m̂ − f‖2 ≤ 3‖f − fm‖2 + 4p̂en(m) + 8

[
sup

~t∈B(m,m̂)

ν2
n(~t)− p̂(m, m̂)

]
+

Let us define m∗ = m ∨ m̂ and

ξ2
1,n(~t) = |〈~tm∗ , G̃−1

d1
(~̂hd1 − ~hd1)〉2,d1 |2 p̂1(m,m′) = 2p̂en1(m ∨m′) (7.24)

ξ2
2,n(~t) = |〈~tm∗ , (G̃−1

d1
−G−1

d1
)~hd1〉2,d1 |2 p̂2(m,m′) = 2p̂en2(m ∨m′) (7.25)

(7.26)

Let us notice that[
sup

~t∈B(m,m̂)

ν2
n(~t)− p(m, m̂)

]
+

≤

[
sup

~t∈B(m,m̂)

|〈~tm∗ , G̃−1
d1

(~̂hd1 − ~hd1) + (G̃−1
d1
−G−1

d1
)~hd1〉2,d1 |2 − p̂1(m, m̂)− p̂2(m, m̂)

]
+

≤ 2

[
sup

~t∈B(m,m̂)

ξ2
1,n(~t)− 1

2
p̂1(m, m̂)

]
+

+ 2

[
sup

~t∈B(m,m̂)

ξ2
2,n(~t)− 1

2
p̂2(m, m̂)

]
+

,

it yields that

‖f̃m̂ − f‖2 ≤ 3‖f − fm‖2 + 4p̂en(m) + 16
∑
m′∈M̂

[
sup

~t∈B(m,m′)

ξ2
1,n(~t)− 1

2
p̂1(m,m′)

]
+

+ 16

[
sup

~t∈B(m,m̂)

ξ2
2,n(~t)− 1

2
p̂2(m, m̂)

]
+

We now use the three following results which ensure the validity of Theorem 4.1.

Proposition 7.6. For m ∈M, it holds that

E [p̂en(m)] ≤ Cpen(m), with C = (2 + 2(Cop ∨ 2)).
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Proposition 7.7. Under the assumptions of Theorem 4.1, there exists a constant C1 > 0 depending
on ‖h‖∞ such that for p̂1(m,m′) = 2p̂en1(m ∨m′)

E

 ∑
m′∈M̂

{
sup

~t∈B(m,m′)

ξ2
1,n(~t)− 1

2
p̂1(m,m′)

}
+

 ≤ C1

n
.

Proposition 7.8. Under the assumptions of Theorem 4.1, there exists a constant C2 > 0 depending
on ‖h‖∞ such that for p̂2(m,m′) = 2p̂en2(m ∨m′)

E

[
sup

~t∈B(m,m̂)

ξ2
2,n(~t)− 1

2
p̂2(m, m̂)

]
+

≤ C2

(
1

n0
+ pen2(m)

)
.

In the end:

E‖f − f̂m̃‖2 ≤ 4C inf
m∈Mn

{
‖f − fm‖2 + pen(m)

}
+
C1

n
+
C2

n0
,

as soon as κ1 ≥ 196 and κ2 ≥ 5/2. �

7.4.1. Proof of Proposition 7.6. Let m be in the model collection M. By definition we have

E [p̂en(m)] = E [p̂en1(m) + p̂en2(m)]

= 2Cκ1 log nE
[
τm‖h‖∞

n
‖G̃−1

m ‖2op ∧
(‖h‖∞ ∨ 1)

n
‖G̃−1

m ‖2F
]

+ 8κ2CE(‖g‖∞ ∨ 1)
m

n0
log n0E

[
‖G̃−1

m ‖2op

]
.

Applying Lemma 3.1 for p = 1, we get that

E
[
‖G̃−1

m ‖2op

]
≤ 2‖G−1

m ‖2op + 2E
[
‖G−1

m − G̃−1
m ‖2op

]
≤ 2‖G−1

m ‖2op + 2Cop,1‖G−1
m ‖2op.

Similarly, applying now Corollary 7.5, we get that E
[
‖G̃−1

m ‖2F
]
≤ 2‖G−1

m ‖2F + 4‖G−1
m ‖2F. Finally

E [p̂en(m)] ≤ (2 + 2(Cop,1 ∨ 2))pen(m).

�

7.4.2. Proof of Proposition 7.7. First let us notice{
sup

~t∈B(m,m′)

|〈~tm∗ , G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1 |2 −
1

2
p̂1(m,m′)

}
+

=

{
sup

~t∈B(m,m′)

|〈~tm∗ , G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1 |2 −
1

2
p̂1(m,m′)

}
+

1m′>m

+

{
sup

~t∈B(m,m′)

|〈~tm∗ , G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1 |2 −
1

2
p̂1(m,m′)

}
+

1m′≤m1∆m

+

{
sup

~t∈B(m,m′)

|〈~tm∗ , G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1 |2 −
1

2
p̂1(m,m′)

}
+

1m′≤m1∆c
m

=

{
sup

~t∈B(m,m′)

|〈~tm∗ , G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1 |2 −
1

2
p̂1(m,m′)

}
+

1m′>m

+

{
sup

~t∈B(m,m′)

|〈~tm∗ , G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1 |2 −
1

2
p̂1(m,m′)

}
+

1m′≤m1∆m
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Since ∆m′ ⊂ M̂ and ∆m ⊂ M̂ for m,m′ ∈ M̂, it yields that{
sup

~t∈B(m,m′)

|〈~tm∗ , G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1 |2 −
1

2
p̂1(m,m′)

}
+

=

{
sup

~t∈B(m,m′)

|〈~tm∗ , Ĝ−1
d1

(~̂hd1 − ~hd1)〉2,d1 |2 −
1

2
p̂1(m,m′)

}
+

1∆m∗ .

Since ∆m∗ ⊂ M̂ for m′ ∈ M̂, it yields that{
sup

~t∈B(m,m′)

|〈~tm∗ , G̃−1
d1

(~̂hd1 − ~hd1)〉2,d1 |2 −
1

2
p̂1(m,m′)

}
+

=

{
sup

~t∈B(m,m′)

|〈~tm∗ , Ĝ−1
m∗(

~̂hm∗ − ~hm∗)〉2,m∗ |2 −
1

2
p̂1(m,m′)

}
+

.

Now, if we define E1

E1 = E

{ sup
~t∈B(m,m′)

|〈~tm∗ , Ĝ−1
m∗(

~̂hm∗ − ~hm∗)〉2,m∗ |2 −
1

2
p̂1(m,m′)

}
+

∣∣∣Y ′
 , (7.27)

then, conditionally on Y ′, the bound follows from the proof of Proposition 7.1 in Mabon (2017) with

Gm∗ replaced by Ĝm∗ ,M by M̂ and ξ2 = 1/2 in the first case i) increased as ξ2 = a‖h‖∞/K1 log n
with K1 = 1/6 (to avoid Assumption (A2)). Note also that the proof remains valid for 2m replaced
by τm. Then, as all bounds are independent of the random terms, the conditional expectation can
be integrated with respect to the law of the sample (Y ′i )1≤i≤n0 without change. �

7.4.3. Proof of Proposition 7.8. Let us define

E2 :=

[
sup

~t∈B(m,m̂)

ξ2
2,n(~t)− 1

2
p̂2(m, m̂)

]
+

with
1

2
p̂2(m, m̂) = p̂en2(m ∨ m̂).

• First case : m̂ ≥ m. Since m̂ ∈ M̂, G̃−1
m̂ = Ĝ−1

m̂ , it yields that

E21m̂≥m =

[
sup

~t∈B(m,m̂)

|〈~tm̂, (G̃−1
m̂ −G−1

m̂ )~hm̂〉|2 −
1

2
p̂en2(m̂)

]
+

1m̂≥m

≤
[
‖(Ĝ−1

m̂ −G−1
m̂ )~hm̂‖22,m̂ −

1

2
p̂en2(m̂)

]
+

≤
[
‖Ĝ−1

m̂ (Gm̂ − Ĝm̂)G−1
m̂
~hm̂‖22,m̂ −

1

2
p̂en2(m̂)

]
+

≤
[
‖f‖2‖Ĝ−1

m̂ ‖
2
op‖Gm̂ − Ĝm̂‖2op −

1

2
p̂en2(m̂)

]
+

Let us define the set Mmax such that

Mmax = {m ∈ J1, nK,m ≤ C bn/ log nc ∧ bn0/ log n0c} . (7.28)

We now introduce the favorable set

Em =

{
‖Gm − Ĝm‖op ≤

√
κ24(‖g‖∞ ∨ 1) log n0

m

n0

}
, κ2 > 0. (7.29)

and set

E = ∩
m∈Mmax

Em. (7.30)
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Thus we can notice that for m̂ ∈ M̂ ⊂Mmax. It yields that

E21E1m̂≥m ≤
[
‖f‖2‖Ĝ−1

m̂ ‖
2
opκ24(‖g‖∞ ∨ 1) log n0

m̂

n0
− 1

2
p̂en2(m̂)

]
+

1E

=

[
‖Ĝ−1

m̂ ‖
2
opκ24(‖g‖∞ ∨ 1) log n0

m̂

n0
− 1

2
p̂en2(m̂)

]
+

1E = 0.

On the complementary set we have that

E
[
E21m̂≥m1Ec

]
≤ E

[
‖(G̃−1

m̂ −G−1
m̂ )~hm̂‖22,m̂1Ec

]
≤ E

[
sup

m∈Mmax

‖(G̃−1
m −G−1

m )~hm‖22,m1Ec
]

≤
∑

m∈Mmax

2E
[
(‖G̃−1

m
~hm‖22,m + ‖G−1

m
~hm‖22,m)1Ec

]
≤

∑
m∈Mmax

2E
[
(‖G̃−1

m ‖2op‖~hm‖22,m + ‖~fm‖22,m)1Ec
]

≤
∑

m∈Mmax

2E
[
(‖~hm‖22,m + ‖~fm‖22,m)n01Ec

]
≤ Cn0|Mmax|P [Ec]

and applying the following Lemma for p = 3

Lemma 7.9. For all p ≥ 1, there exists κ2 ≥ (p+ 2)/2 and Cp ≥ 1 such that P [Ec] ≤ Cp
np0
,

gives that E [E21Ec ] ≤
C3

n0
.

• Second case: m̂ ≤ m. We have that

E21m̂≤m =

[
sup

~t∈B(m,m)

|〈~tm(G̃−1
m −G−1

m )~hm〉|2 − p̂en2(m)

]
+

(1∆m + 1∆c
m

)

=

[
sup

~t∈B(m,m)

|〈~tm(Ĝ−1
m −G−1

m )~hm〉|2 − p̂en2(m)

]
+

1∆m + sup
~t∈B(m,m)

|〈~tm, ~fm〉|21∆c
m
.

It implies that for Em defined by (7.29)

E[E21m̂≤m] ≤ E

[ sup
~t∈B(m,m)

|〈~tm(Ĝ−1
m −G−1

m )~hm〉|2 − p̂en2(m)

]
+

1∆m1Em

+ ‖f‖2P[∆c
m].

According to Lemma 6.3,

‖f‖2P[∆c
m] ≤ ‖f‖28C2 logm‖G−1

m ‖2op

m

n0
≤ ‖f‖28C2 log n0‖G−1

m ‖2op

m

n0
. pen2(m)

and

E

[ sup
~t∈B(m,m)

|〈~tm(Ĝ−1
m −G−1

m )~hm〉|2 − p̂en2(m)

]
+

1Em

 ≤ C3

n0

On Ecm, we have

E
[
E21m̂≤m1Ecm

]
≤ E

[
‖(G̃−1

m −G−1
m )~hm‖22,m1Ecm

]
≤ 2E

[
(‖G̃−1

m
~hm‖22,m + ‖G−1

m
~hm‖22,m)1Ecm

]
≤ 2E

[
(‖G̃−1

m ‖2op‖~hm‖22,m + ‖~fm‖22,m)1Ecm

]
≤ 2E

[
(‖~hm‖22,m + ‖~fm‖22,m)n01Ecm

]
≤ Cn0P [Ecm]

Besides E ⊂ Em which implies that P [Ecm] ≤ P [Ec]. Then applying Lemma 7.9, we get that

E
[
E21m̂≤m1Ecm

]
≤ C2

n0

�
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Proof of Lemma 7.9. We apply Proposition 6.1 for t =

√
4κ2(‖g‖∞ ∨ 1) log n0

m

n0

P [Ec] = P
[
∃m ∈Mmax, ‖Gm − Ĝm‖op >

√
4κ2(‖g‖∞ ∨ 1) log n0

m

n0

]
≤
∑
m≤n0

P
[
‖Gm − Ĝm‖op >

√
4κ2(‖g‖∞ ∨ 1) log n0

m

n0

]

≤ 2
∑
m≤n0

m exp

−1

2

4κ2(‖g‖∞ ∨ 1) log n0m

‖g‖∞m+ (2
√

2/3)m
√

4κ2(‖g‖∞ ∨ 1) log n0

√
m

n0


≤ 2

∑
m≤n0

m exp

(
−4κ2(‖g‖∞ ∨ 1) log n0

2

(
1

‖g‖∞
∧ 3

2
√

2
√

4κ2(‖g‖∞ ∨ 1) log n0

√
n0

m

))

≤ C
∑
m≤n0

m exp

(
−4κ2(‖g‖∞ ∨ 1) log n0

2‖g‖∞

)
≤ C

∑
m≤n0

me−2κ2 logn0 ≤ Cn2
0e
−2κ2 logn0 .

Finally we get P [Ec] ≤ Cn2
0 exp (−κ22 log n0) = C/n2κ2−2

0 = C/np0 with p ≥ 1 if κ2 ≥ (p+2)/2. �

7.5. Proof of Corollary 4.2. The beginning of the proof follows exactly the same lines as in
Theoremn 4.1 except that p̂en and m̂ are respectively replaced by p̃en and m̃.

Starting from Equation (7.22), we get

‖f̂m̃ − f‖2 ≤ 3‖f − fm‖2 + 2p̃en(m) + 8 sup
~t∈B(m,m̃)

ν2
n(~t)− 2p̃en(m̂)

≤ 3‖f − fm‖2 + 2(p̃en(m)− p̂en(m)) + 2p̂en(m) + 8 sup
~t∈B(m,m̃)

ν2
n(~t)− 2p̂en(m̃)

+ 2(p̂en(m̃)− p̃en(m̃))

We now apply Proposition 7.10 hereafter and we get the final result. �

Proposition 7.10. (i) E|p̂en(m)− p̃en(m)| . pen(m) + 1/n0 + 1/n,
(ii) E(p̂en(m̃)− p̃en(m̃)) . 1/n0 + 1/n.

Proof of Proposition 7.10. The proof relies on the introduction of the set so that the estimators of
the sup-norms of h and g are under control around their true values. As it works exactly the same
for both functions, we only detail the proof for g.

Let us define the set Λ(g) =

{
|‖ĝD‖∞ − ‖g‖∞| ≤

‖g‖∞
2

}
.

(i) It yields that

E|p̂en2(m)− p̃en2(m)|1Λ(g) = 8κ2E
[
|(2‖ĝD‖∞ ∨ 1)− (‖g‖∞ ∨ 1)| log n0

m

n0
‖G̃−1

m ‖2op1Λ(g)

]
≤ 8κ2E

[
4(‖g‖∞ ∨ 1) log n0

m

n0
‖G̃−1

m ‖2op1Λ(g)

]
Moreover applying Proposition 7.6, we get that

E|p̂en2(m)− p̃en2(m)|1Λ(g) ≤ Cpen2(m)

On the set Λc(g) with the definition of M, we have

E|p̂en2(m)− p̃en2(m)|1Λc(g) = 8κ2E
[
|(2‖ĝD‖∞ ∨ 1)− (‖g‖∞ ∨ 1)| log n0

m

n0
‖G̃−1

m ‖2op

]
≤ 8κ2E [|(2‖ĝD‖∞ ∨ 1)− (‖g‖∞ ∨ 1)|]
≤ 8κ2E

[
(2‖ĝD‖∞ ∨ 1)1Λc(g)

]
+ E

[
(‖g‖∞ ∨ 1)1Λc(g)

]
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Yet ‖ĝD‖∞ ≤ ‖
∑

k ϕk‖∞ ≤ 2D ≤ 2n0, then

E|p̂en2(m)− p̃en2(m)|1Λc(g) ≤ CP[Λc(g)]

Now applying Lemma 5.2 in Mabon (2016), it holds that for all p > 0 and log n0 ≤ D ≤
‖g‖∞/(128

√
2)n0/(log n0)p, we get P[Λc(g)] ≤ 2D/np0.

The proof follows exactly the same lines for controlling E|p̂en1(m)− p̃en1(m)| by defining Λ(h)
and replacing n0 by n.

(ii) On Λ(g), we have ‖g‖∞− 2‖ĝD‖∞ ≤ 0 which yields that (‖g‖∞ ∨ 1)− 2(‖ĝD‖∞ ∨ 1) ≤ 0, thus
(p̂en2(m̃)− p̃en2(m̃))1Λ(g) ≤ 0. Moreover

E[(p̂en2(m̃)− p̃en2(m̃))1Λc(g)] ≤ E[|p̂en2(m̃)− p̃en2(m̃)|1Λc(g)] ≤ CP[Λc(g)], (7.31)

as above since m̃ ∈ M̂. This gives the result for p̂en2. The same reasoning holds for p̂en1(m̃) −
p̃en1(m̃) �

8. Useful results

A proof of the following theorem can be found in Stewart and Sun (1990).

Theorem 8.1. Let A, B be (m × m) matrices. If A is invertible and ‖A−1B‖op < 1, then

Ã := A + B is invertible and it holds

‖Ã−1 −A−1‖op ≤
‖B‖op‖A−1‖2op

1− ‖A−1B‖op

Theorem 8.2 (Bernstein Matrix inequality). Consider a finite sequence {Sk} of independent,
random matrices with common dimension d1 × d2. Assume that

ESk = 0 and ‖Sk‖op ≤ L for each index k.

Introduce the random matrix Z =
∑

k Sk. Let ν(Z) be the the variance statistic of the sum: ν(Z) =
max{λmax

(
E[Z tZ]

)
, λmax

(
E[ tZZ]

)
}. Then

E‖Z‖op ≤
√

2ν(Z) log(d1 + d2) +
1

3
L log(d1 + d2).

Furthermore, for all t ≥ 0

P [‖Z‖op ≥ t] ≤ (d1 + d2) exp

(
− t2/2

ν(Z) + Lt/3

)
.

A proof can be found in Tropp (2012) or Tropp (2015).

Theorem 8.3 (Matrix moment inequality, Theorem A.1 in Chen et al. (2012)). Suppose that q ≥ 2
and fix r ≥ max(q, 2 log p). Consider a finite sequence {Yi} of independent, symmetric, random,
self-adjoint matrices with dimension p× p. Then[

Eλmax

(∑
i

Yi

)q]1/q

≤

√√√√erλmax

(∑
i

EY2
i

)
+ 2er

[
Emax

i
λqmax (Yi)

]1/q

.

A proof can be found in Chen et al. (2012).
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