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Abstract. Consider the regression model (Yi = b(Xi) + ui, i = 1, . . . , n) with error process
ui =

√
ρε0 +

√
1− ρεi where (εi, i = 0, . . . , n) are independent centered random variables

(r.v.) with unit variance and (X1, . . . , Xn) are independent and identically distributed r.v.
independent of (εi, i = 0, . . . , n). Thus there is a common noise ε0 to all ui’s. We study the
nonparametric estimation of the regression function b on a subset A ⊂ R from the observations
(Xi, Yi, , i = 1, . . . , n) using a projection method on sieves. The standard least-squares contrast
fails to provide consistent estimators. Therefore, we introduce a least-squared contrast taking
into account the covariance matrix of the noise. By minimizing the contrast over a finite
dimensional subspace Sm of L2(A, dx), we obtain a projection estimator and study its risk
measured either as the expectation of the empirical norm or as the expectation of the theoretical
norm associated with the contrast. In the latter case, we study a trimmed estimator. The risk
bounds have a variance term with the usual rate. A specific difficulty occurs for proving that
the empirical and the theoretical norms are equivalent for functions of Sm. The estimators are
implemented on simulated data and show excellent performances when Eb(X1) is known as this
parameter is not identifiable from the model.
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1. Introduction

Consider observations ((Xi, Yi), i = 1, . . . , n) satisfying the regression model

(1) Yi = b(Xi) + ui, Eui = 0, Eu2i = 1,

where (X1, . . . , Xn) are real-valued independent and identically distributed (i.i.d.) random vari-
ables with common density f , (ui, i ≥ 1) is a stationary sequence of real-valued noises, indepen-
dent of (X1, . . . , Xn), the function b : R → R is unknown. It is required to estimate b from the
observations ((Xi, Yi), i = 1, . . . , n).
The nonparametric estimation of the regression function b is a very old statistical problem that
has been the subject of innumerable contributions especially when (ui) is a sequence of i.i.d.
random variables (see e.g., Nadaraya (1964), Watson (1964), Tsybakov (2009) and the references
therein). To estimate b, we privilege the sieves method, proposed by Birgé and Massart (1998,
2007), Barron et al. (1999), Barron (2002), which provides directly an estimator of b on an
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2 F. COMTE, V. GENON-CATALOT

estimation set A ⊂ R and can be briefly described as follows. Choosing a family (Sm,m ∈ Mn)
of finite-dimensional subspaces of L2(A, dx), the standard least-squares contrast

(2) γstn (t) =
1

n

n∑
i=1

(Yi − t(Xi))
2,

is used to build for each m an estimator b∗m ∈ Sm by minimizing γstn over Sm. Then, an appropri-
ate selection procedure allows to define a data-driven choice ofm leading to an adaptive estimator
realizing automatically the bias-variance compromise for the risk. The risk of an estimator b∗ is
measured either as the expectation of the empirical norm ∥b∗−b∥2n = n−1

∑n
i=1(b

∗(Xi)−b(Xi))
2

or as the expectation of ∥b∗−b∥2f where ∥.∥2f is the L2(A, f(x)dx)-norm. The study of the risks is
simplified when the estimation set A is assumed to be compact. Nevertheless, recent references
have relaxed this constraint (see e.g. Comte and Genon-Catalot (2019)). A specific difficulty
encountered in the sieves method is to prove the equivalence between the empirical norm ∥.∥2n
and the L2- norm ∥.∥2f for functions of Sm.
This programm has been successfully carried out when (ui) is composed not only of independent
variables but also of correlated variables provided that the autocorrelation of the sequence satis-
fies some constraints. Caron et al. (2021) investigate several situations of dependence from short
range to long range dependence. In the case of long range dependence, they require that the
autocorrelation function of the noise process satisfies cu(k) = Corr(ui, uk+i) ≤ κk−γ for some
constant κ > 0 and 0 < γ < 1. In particular, they need γ > 0 implying cu(k) → 0 as k tends to
infinity.
In the present paper, we assume that

(3) ui =
√
ρ ε0 +

√
1− ρ εi, i = 1, . . . , n, 0 < ρ < 1,

where ρ is known, ε0, ε1, . . . , εn are i.i.d. centered with unit variance, i.e. there is a common
noise ε0 to all ui’s. It is a way to capture the effect of some random external force influencing
simultaneously all individuals such as environment or constraints of energetic or economic type.
Such idea has been developped in the theory of mean field games and control for models of
stochastic differential equations with common noise (see e.g. Carmona et al. (2016), Lacker et
al. (2002), Maillet (2025), Delarue et al. (2024)). Indeed, these authors consider a system of
stochastic differential equations of the form:

(4) dXi(t) = b(Xi(t)) dt+
√
ρdW0(t) +

√
1− ρdWi(t), Xi(0) = x, i = 1, . . . , n,

where W0,W1, . . . ,Wn are n + 1 independent Brownian motions. Thus, W0 is common to all
equations and this creates identically distributed but correlated processes. Therefore, this leads
to consider the corresponding regression model with a common noise (3) as a toy model in a first
step; this turns out to be an interesting question in itself.
Computing the autocorrelation function of (3), we find that cu(k) = ρ is a fixed quantity. Thus,
case (3) is not covered by Caron et al. (2021). Up to our knowledge, this kind of autocorrelation
function for the noises has not been studied. As a matter of fact, the classical program using
(2) fails to provide consistent estimators. Therefore, we consider here a least-squares contrast
taking into account the specific dependency, given by:

γn(t) =
1

n

[
t(X)⊤R−1 t(X)− 2Y⊤R−1 t(X)

]
(5)

=
1

n

[
(Y − t(X))⊤R−1 (Y − t(X))−Y⊤R−1Y

]
where t(X) = (t(X1), . . . , t(Xn))

⊤,Y = (Y1, . . . , Yn)
⊤, M⊤ denotes the transpose of any matrix

M and R−1 is the inverse of the covariance matrix R of u = (u1, . . . , un)
⊤. The contrast (5) is
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inspired by the exact log-likelihood of (X,Y). It turns out that R is positive definite for any
ρ ∈]0, 1[ and that R−1 is simple and explicit, so γn(t) is explicit when ρ is known. We define the
empirical norm:

(6) ∥t∥2n,R :=
1

n
t(X)⊤R−1 t(X),

together with its theoretical counterpart ∥t∥2R = E(∥t∥2n,R).
Due to the common noise, the quantity Eb(X1) is not identifiable in this model. Consequently,
we assume that it is known and set Eb(X1) = 0.
In Section 2, we build the minimum contrast estimator b̂m by minimizing γn(t) over a m-
dimensional subspace Sm of L2(A, dx). In Proposition 1, we give a bound for the risk of the
estimator b̂m defined as the expectation of the empirical norm (6). We stress that, contrary to
the risk bounds in Caron et al. (2021), our risk bound has a variance term m/n, similar to one
in the case of i.i.d. noises. Therefore, the estimator reaches the usual rate of convergence on
classical regularity spaces. Section 3 is devoted to the risk defined as the expectation of the the-
oretical norm. To this end, we introduce a restriction on the dimension of the projection space
whichleads to a new stability condition and define a trimmed estimator b̃m where the cut-off
corresponds to the empirical version of the stability condition. To study the risk of the trimmed
estimator, we introduce a set Ωm on which the empirical and the theoretical norms defined above
are equivalent for functions of Sm. Theorem 1 is devoted to prove that P(Ωcm) is negligible and
Theorem 2 gives the bound for the risk of b̃m measured as the expectation of the theoretical
norm. The proof of Theorem 1 is especially long and tough and is obtained via a series of Lem-
mas. Assuming that ρ is known is a constraint that can be overcome. Indeed, in Section 4, we
propose another contrast when ρ is unkown obtained by replacing the covariance matrix which
depends on ρ by another well-chosen and known matrix S. This yields another estimator b̂m,S
and its corresponding trimmed version b̃m,S . The results of the previous sections are extended
to the new estimators without any loss of variance (Proposition 5 and Theorem 3). In Section 5,
we briefly explain why the standard least-squares contrast fails to provide adequate estimators.
Section 6 is devoted to numerical results on simulated data. The method is computationally fast
and works in a very convincing way for known E(b(X1)). An extension if this term is unknown
is proposed but requires additional observations. In Section 7, we give some concluding remarks.
Section 8 is devoted to proofs. In Section 9, some complementary results are given.

2. Minimum contrast estimator

In the following, ∥.∥2,p denotes the euclidean norm in Rp. For A ⊂ R, ∥.∥A denotes the integral
norm in L2(A, dx), ∥.∥f the integral norm in L2(A, f(x)dx) and ∥.∥∞ the supremum norm on A.
For any real-valued function h, hA = h1A and we denote h(X) = (h(X1), . . . , h(Xn))

⊤.

2.1. The covariance matrix of the noise. We have

R := Var(u) = Σn(1, ρ) where Σn(a, b) =


a b . . . . . . b
b a b . . . b
...

. . . . . . . . .
...

b . . . b a b
b . . . . . . b a

 ∈ Mn(R).

Some general properties of the matrices Σn(a, b) are given in Section 9. The matrix R has 2
eigenvalues: 1 − ρ with multiplicity n − 1 and 1 + (n − 1)ρ with multiplicity 1 and associated
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eigenvector 1⊤ = (1, . . . 1)⊤. It is positive definite for any ρ ∈]0, 1[ and

(7) R−1 = Σn(αn, βn), αn =
1 + (n− 2)ρ

(1− ρ)(1 + (n− 1)ρ)
, βn = − ρ

(1− ρ)(1 + (n− 1)ρ)
.

The eigenvalues of R−1 are the inverse of those of R:

(8) αn − βn =
1

1− ρ
(multiplicity n− 1) and αn + (n− 1)βn := cn =

1

1 + (n− 1)ρ
,

which has the same eigenvector 1. It is easily seen that:

(9) R−1 =
1

1− ρ

(
Idn −

ρ

1 + (n− 1)ρ
11⊤

)
Moreover, for any x = (x1, . . . , xn)

⊤,y = (y1, . . . , yn)
⊤ vectors of Rn, the following holds:

1

n
x⊤R−1y =

1

n

αn n∑
i=1

xiyi + βn
∑
i ̸=j

xiyj


=

1

1− ρ

(
1

n

n∑
i=1

xiyi −
nρ

1 + (n− 1)ρ

(
1

n

n∑
i=1

xi

)(
1

n

n∑
i=1

yi

))
.(10)

2.2. Identifiability constraint on the regression function. An intrinsic property of model
(2) due to the presence of the common noise ε0 for all the Y ′

i s is that the quantity m = E(b(X1))
is not identifiable. The model can be written

Y = b(X) +
√
ρε01+

√
1− ρ ε.

and the standard estimator of m is biased: m̂n = Ȳn = 1
n

∑n
i=1 Yi →a.s. m+

√
ρε0.

For this reason, in what follows, we will assume that

(11) E[b(X1)] = 0.

We propose in the simulation section a way to overcome this problem.

2.3. Projection estimator. Consider model (1) with noises satisfying (3). We assume that
Eε4i < ∞ for i = 0, 1, . . . , n and Eb4(X1) =

∫
b4(x)f(x)dx < +∞. Let A ⊂ R and let (φj , j =

1, . . . ,m) be an orthonormal system of A-supported continuous functions belonging to L2(A, dx).
We assume that for all j, ∥φj∥∞ ≤ θ. Define Sm = span(φ1, . . . , φm), the linear space spanned
by (φ1, . . . , φm). We denote by bA := b1A.

The estimator b̂m of bA on Sm is defined by

b̂m = arg min
t∈Sm

γn(t)

where γn(t) is the contrast (5) which takes into account the covariance matrix of the noise
(ui, i = 1 . . . , n). Let us set

(12) Ψ̂(R)
m :=

1

n
Φ̂⊤
mR

−1Φ̂m, Φ̂m = (φj(Xi))1≤i≤n,1≤j≤m and Ψ(R)
m := E[Ψ̂(R)

m ].

To be concrete, for j, ℓ ∈ {1, . . . ,m}, we have

[Ψ̂(R)
m ]j,ℓ =

1

n
φj(X)TR−1φℓ(X).
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For any function h, we set ∥h∥2n,R = n−1h(X)R−1h(X) and ∥h∥2R = E∥h∥2n,R. When t(x) =∑m
j=1 ajφj(x) ∈ Sm and a = (a1, . . . , am)

⊤ ∈ Rm, we have

∥t∥2n,R = aT Ψ̂(R)
m a and ∥t∥2R = aTΨ(R)

m a.

Replacing Y by b(X) + u, for u = (u1, . . . , un)
⊤ yields

γn(t) = ∥b− t∥2n,R − ∥b∥2n,R − 2νn(t), νn(t) =
1

n
u⊤R−1t(X).

As E(νn(t)) = 0, we obtain E[γn(t)] = ∥t− b∥2R − ∥b∥2R which is minimal for t = bA.
By minimizing γn over Sm, we obtain that

b̂m =

m∑
j=1

âjφj

where, provided that Ψ̂
(R)
m is invertible, âm = (â1, . . . , âm)

⊤ is given by

(13) âm = (Ψ̂(R)
m )−1Ẑm, Ẑm =

1

n
Φ̂⊤
mR

−1Y.

More precisely, for j ∈ {1, . . . ,m}, [Ẑm]j = (1/n)φj(X)TR−1Y. Note that

Ẑm =
1

n
Φ̂TmR

−1b(X) +
1

n
Φ̂TmR

−1u

=
1

n
Φ̂TmR

−1b(X) +

√
1− ρ

n
Φ̂TmR

−1ε+
√
ρε0

cn
n
Φ̂Tm1,

where ε = (ε1, . . . , εn)
T and 1 = (1, . . . , 1)T ∈ Rn, u =

√
ρε01 +

√
1− ρ ε and we recall that

R−11 = cn1. The first two terms of Ẑm correspond to standard nonparametric regression when
ρ = 0 (so R−1 = Idn). If n is large, R−1 tends to Idn and cn tends to 0.

2.4. Risk bound as expectation of the empirical norm. We can prove the following bound.

Proposition 1. Assume that Ψ̂(R)
m is invertible. The risk bound of b̂m expressed as the expectation

of the empirical norm ∥.∥n,R satisfies

E[∥b̂m − bA∥2n,R] ≤ inf
t∈Sm

∥t− bA∥2R +
m

n
.

It is noteworthy that in spite of the common noise, we obtain a risk bound similar to the usual
case with a preserved variance term m/n. For expliciting the bias, we state a simple Lemma.

Lemma 1. The following properties hold:
(1) ∥t∥2n,R ≥ 0 with

1

1 + (n− 1)ρ
∥t∥2n ≤ ∥t∥2n,R ≤ 1

1− ρ
∥t∥2n

where ∥t∥2n = 1
n

∑n
i=1 t

2(Xi).
(2) ∥t∥2R ≥ 0 with

1

1 + (n− 1)ρ
E[t2(X1)] ≤ ∥t∥2R ≤ 1

1− ρ
E[t2(X1)].
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Obviously, Lemma 1 implies

inf
t∈Sm

∥t− bA∥2R ≤ 1

1− ρ
inf
t∈Sm

∥t− bA∥2f

If in addition, the density f of X1 is bounded, we get

inf
t∈Sm

∥t− bA∥2R ≤ ∥f∥∞
1− ρ

∥bm − bA∥2

where bm is the orthogonal projection of bA on Sm. Thus, we can make the standard bias variance
compromise and obtain usual nonparametric rates for the risk bound of Proposition 1.

3. Risk bound expressed as expectation of the theoretical norm

The aim of this section is to handle the integrated risk with respect to the squared norm ∥.∥2R.
It appears that this task is really far from simple is the context of regression with common noise.

3.1. First properties of the empirical and the theoretical norms. Set

(14) Ψm = (cov(φj(X1), φk(X1))1≤j,k≤m .

Let us stress that in the classical regression (ρ = 0), the reference matrix is not a matrix of
covariances, but is equal to (E(φj(X1)φk(X1)))1≤j,k≤m, see Baraud (2000), Cohen et al. (2013,
2019), Comte and Genon-Catalot (2019) and references therein.

Proposition 2.
• For the theoretical norm, the following decomposition holds.

∥t∥2R = αnVar(t(X1)) + cn{E[t(X1)]}2,
where cn = αn + (n− 1)βn = 1

1+(n−1)ρ .
For t(x) =

∑m
j=1 ajφj(x),

(15) ∥t∥2R = aTΨ(R)
m a = αn aTΨma+ cna

TΞma

where Ξm = (Eφj(X1)Eφk(X1))1≤j,k≤m and Ψm is defined by (14).
• For the empirical norm, the following decomposition holds.

(16) ∥t∥2n,R = αnZn(t) + cn{E[t(X1)]}2 + 2cnE[t(X1)]Vn(t) + (n− 1)βnUn(t),

with

(17) Zn(t) =
1

n

n∑
i=1

[t(Xi)− E(t(Xi))]
2, Vn(t) =

1

n

n∑
i=1

[t(Xi)− E(t(Xi))]

(18) Un(t, s) =
1

n(n− 1)

∑
1≤i ̸=k≤n

[t(Xi)− E(t(Xi))][s(Xk)− E(s(Xk))], Un(t) = Un(t, t).

Moreover

∥t∥2n,R = aT Ψ̂(R)
m a →n→∞

1

1− ρ
aTΨma, almost surely.

Note that ∥t∥2R and Ψ
(R)
m are deterministic but still depend on n. However, for any function t,

lim
n→+∞

∥t∥2R =
1

1− ρ
Var[t(X1)] =

1

1− ρ
aTΨma.

From Proposition 2, we have ∥t∥2R ≥ 0. If ∥t∥2R = 0, then Var(t(X1)) = 0 and E(t(X1)) = 0.
This implies that E[t2(X1)] = 0, which in turn implies that t(x) = 0 almost surely on the support
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of the distribution of X1. If the support of X1 contains an interval and if t ∈ Sm, as the basis
functions are continuous, t = 0.

If one of the basis functions, say φ1 is constant, then cov(φ1(X1), φj(X1)) = 0 for j = 1, . . . ,m.
In such a case, Ψm is not inversible. Therefore, it is mandatory to choose a basis which does
not contain any constant function. This is why we exclude the trigonometric basis and choose
in Section 6 the Hermite basis which does not contain any constant function.

Moreover, we have

∥t∥2n,R =
1

1− ρ

1

n

n∑
i=1

[
t(Xi)−

1

n

n∑
i=1

t(Xi)

]2
+ cn

(
1

n

n∑
i=1

t(Xi)

)2

.

and therefore ∥t∥n,R = 0 implies t(Xi) = 0 a.s., for i = 1, . . . , n. If t ∈ Sm, n ≥ m and there
exists a m-sub-sample {Xi1 , . . . , Xim} ⊂ {X1, . . . , Xn} such that det((φj(Xik))1≤j,k≤m) ̸= 0,
then t = 0. In that case, Ψ̂(R)

m is invertible and the estimator is well-defined.
We stress that decomposition (16)-(18) is crucial for the comparison of Ψ̂(R)

m and Ψ
(R)
m .

3.2. Equivalence of norms and trimmed estimator. We assume that

(19) L(m) := sup
x∈R

m−1∑
j=0

φ2
j (x) < +∞

and that L(m) ≥ 1 (otherwise it is possible to change L(m) into L(m)∨ 1 everywhere). In most
classical bases, L(m) is of order m, see e.g. Comte and Genon-Catalot (2019); for the Hermite
basis, L(m) is of order

√
m, see Lemma 1 in Comte and Lacour (2023)

As proved in Cohen et al. (2013, 2019), in order to ensure stability of a least-squares estimator,
a restriction on the possible dimensions of the projection space is mandatory. In our context,
the stability condition takes the following form. We consider m such that

(20) L(m)(∥(Ψ(R)
m )−1∥op ∨ 1) ≤ c⋆

n

log(n)
,

where c⋆ is a constant which will be precised later on.
Note that by Lemma 1 (2), the eigenvalues of Ψ

(R)
m belong to

[
1

1+(n−1)ρ ,
1

1−ρ

]
. Therefore,

Ψ
(R)
m is invertible and the eigenvalues of (Ψ(R)

m )−1 belong to [1− ρ, 1 + (n− 1)ρ]. Consequently,
condition (20) is a true restriction. Moreover, although Ψ

(R)
m is invertible, Ψm may be non

invertible. Nevertheless, exploiting the link between the matrix Ψ
(R)
m and the matrix Ψm defined

by (14), we can prove that the stability condition (20) implies that Ψm is invertible and that
moreover the following holds:

Proposition 3. Under condition (20), for n ≥ n0 = exp
(
2c⋆∥f∥2

ρ

)
∨ 3, it holds

L(m)∥Ψ−1
m ∥op ≤ 4c⋆(1− ρ)

n

log(n)
.

We now introduce a cutoff for the estimator, which represents the empirical version of the
stability condition (20). We set

(21) b̃m = b̂m1Λm , Λm =

{
L(m)(∥(Ψ̂(R)

m )−1∥op ∨ 1) ≤ kc⋆
n

log(n)

}
where k is an integer to be chosen below (namely k = 4, see Proposition 4).

The classical method to study the integrated risk of the trimmed estimator, is to define a set
Ωm on which the empirical norm ∥t∥2n,R and the deterministic norm ∥t∥2R are equivalent for all
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functions of Sm and such that Ωcm has small probability (see e.g. Cohen et al. (2013, 2019),
Baraud (2002), Comte and Genon-Catalot (2019)). This part is especially difficult in our context.
Let us define

(22) Ωm =

{
∀t ∈ Sm, t ̸= 0,

∣∣∣∣∣∥t∥2n,R∥t∥2R
− 1

∣∣∣∣∣ ≤ 3

4

}
.

Proposition 4. We have Ωm =
{
∥((Ψ(R)

m )−1/2Ψ̂
(R)
m (Ψ

(R)
m )−1/2 − Idm∥op ≤ 3

4

}
and under condi-

tion (20), by setting k = 4 in the definition of Λm given in (21), we have: Λcm ⊂ Ωcm.

Theorem 1 below relies on several steps and decomposition (16) is a key tool to prove it.

Theorem 1. Recall that the basis functions are bounded by θ and take m ≤ c†n/ log(n) for some
constant c† > 0. Assume that condition (20) holds with

(23) c⋆ =
1

4(1− ρ)

(
cp(

1

2
) ∧ 1

16c1

)
, cp(

1

2
) =

1− 3 log(3/2)

8(p+ 1)
, c1 = 48c0(θ

2 ∨ 1)(c† ∨ 1)(p+2)2,

where c0 is a numerical constant (c0 = 62.3). Then, for

(24) n ≥ n0 := exp

(
2c⋆∥f∥2

ρ

)
∨ 192

ρ
,

it holds that P(Ωcm) ≤ Cn−p.

The sketch of the proof is as follows. For proving that P(Ωm)c ≲ n−p, we introduce two sets
Ω
(1)
m and Ω

(2)
m . We take Ω

(1)
m = Ω

(1)
m (1/2) where for 0 < δ < 1,

(25) Ω(1)
m (δ) :=

{
sup

t∈Sm,Var(t(X1))̸=0

∣∣∣∣ Zn(t)

Var(t(X1))
− 1

∣∣∣∣ ≤ δ

)
.

We also define, for c0 is a numerical constant (c0 = 62.3) and m ≤ c†n/ log(n),

(26) Ω(2)
m :=

{
sup

t∈Sm,∥t∥≠0

∣∣∣∣Un(t, t)∥t∥2

∣∣∣∣ ≤ 24c0(θ
2 ∨ 1) (p+ 2)2(L(m) + c†)

log(n)

n

}
(see (16)). We prove that for n ≥ n0, P(Ω

(1)
m )c ≲ n−p (Lemma 3) and P(Ω(2)

m )c ≲ n−p (Lemma
4). We conclude by proving that Ω

(1)
m ∩ Ω

(2)
m ⊂ Ωm hence P(Ωcm) ≲ n−p.

On Ωm, the empirical and the theoretical norms are equivalent for functions of Sm. Now, we
can state:

Theorem 2. Assume that m ≤ c†n/ log(n) and that condition (20) holds with c⋆ defined in (23)
below with p ≥ 6. Then for n ≥ n0 (see (24)), it holds that

E[∥b̃m − bA∥2R] ≤ C1

(
inf
t∈Sm

∥t− bA∥2R +
m

n

)
+
C2

n

where C1 is a numerical positive constant (C1 = 18 suits) and C2 > 0 depends on ∥f∥∞, ρ.

4. Another contrast if ρ is unknown

Now, we replace R−1 by S−1 = Σn(1,− 1
n) and consider the contrast

(27) Γn(t) =
1

n

[
t(X)⊤S−1 t(X)− 2Y⊤S−1 t(X)

]
,
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The matrix S−1 is positive definite with eigenvalues 1+ 1
n (with multiplicity n−1) and 1− n−1

n =
1
n . We define

∥t∥2n,S = t(X)⊤S−1 t(X), ∥t∥2S = E∥t∥2n,S , νn,S(t) =
1

n
u⊤S−1 t(X).

Note that S = Σ(2n/(n + 1), n/(n + 1)). All computations of Lemma 2 hold provided (αn, βn)
is replaced by (1,− 1

n) and ( 1
1−ρ ,

1
1+(n−1)ρ) is replaced by (1 + 1

n ,
1
n).

When minimizing Γn over Sm, we obtain b̂m,S =
∑m

j=1 â
S
j φj with âSm = (âS1 , . . . , â

S
m)

⊤:

âSm =
(
Φ̂⊤
mS

−1 Φ̂m

)−1
Φ̂⊤
mS

−1Y = (Ψ̂(S)
m )−1

(
1

n
Φ̂⊤
mS

−1Y

)
,

where as previously, Φ̂m = (φj(Xi))1≤i≤n,1≤j≤m ∈ Mn,m(R), and here

Ψ̂(S)
m = Φ̂⊤

mS
−1 Φ̂m, Ψ(S)

m = E[Ψ̂(S)
m ].

We can prove the following result:

Proposition 5. In model (1), the estimator b̂m,S satisfies:

E[∥b̂m,S − bA∥2n,S ] ≤ inf
t∈Sm

∥t− bA∥2S +
2m

n
.

For the integrated S-norm, we define the stability condition:

(28) L(m)(∥(Ψ(S)
m )−1∥op ∨ 1) ≤ c⋆S

n

log(n)
, c⋆S =

1

2
inf

{
cp(1/2),

1

8c1

}
,

where, cp(1/2), c1 are given by (23), and by convention, ∥(Ψ(S)
m )−1∥op = +∞ whenever Ψ

(S)
m is

not invertible. We introduce a cutoff for the estimator and set

(29) b̃m,S = b̂m,S1Λm,S
, Λm,S =

{
L(m)(∥(Ψ̂(S)

m )−1∥op ∨ 1) ≤ 4c⋆S
n

log(n)

}
.

Proposition 3 and Theorem 3 are extended as follows.

Lemma 2. Under condition (28), for n ≥ n0 = exp
(
2c⋆∥f∥2

)
, it holds

L(m)∥Ψ−1
m ∥op ≤ 2c⋆S

n

log(n)
.

Theorem 3. Assume that m ≤ c†n/ log(n) and that condition (20) holds with c⋆ defined in (23)
with p ≥ 6. Then for n ≥ exp(2c⋆S∥f∥2) ∨ 192, it holds that

E[∥b̃m,S − bA∥2S ] ≤ C ′
1

(
inf
t∈Sm

∥t− bA∥2S +
m

n

)
+
C ′
2

n

where C ′
1 is a numerical positive constant (C ′

1 = 18 suits) and C ′
2 > 0 depends on ∥f∥∞.

5. Comparison with the standard least squares

In this paragraph, we consider the standard contrast γstn (see (2)) and look at the corresponding
minimum contrast estimators. The empirical and theoretical norms corresponding to γstn are

∥t∥2n = n−1t(X)⊤t(X), E∥t∥2n = ∥t∥2f .

For t(x) =
∑m

j=1 ajφj(x), ∥t∥2n = a⊤Ψ̂st
ma with Ψ̂st

m = n−1Φ̂⊤
mΦ̂m and

E[Ψ̂st
m] = Ψst

m = (E(φj(X1)φk(X1))1≤j,k≤m.
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We can write γn(t) = ∥b− t∥2n − ∥b∥2n − 2νstn (t) where

νstn (t) = n−1u⊤t(X) = n−1(
√
ρ ε01

⊤t(X) +
√

1− ρ ε⊤t(X)).

We have Eνstn (t) = 0 and some easy computations lead to

E[νstn (t)]2 =
1

n
Var(t(X1)) + ρ[E(t(X1)]

2.

The variance of νstn (t) does not tend to 0 unless E(t(X1)) = 0.

Define b̂stm as the minimizer of γstn on Sm. To study this estimator, we simply replace R−1 by
Idn and cn by 1. Mimicking the proof of Proposition 1 with R−1 = Idn and cn = 1, we have
b̂stm =

∑m
j=1 â

st
j φj with

̂mathbfa
st

m = (Ψ̂st
m)−1Ẑstm where Ẑstm =

1

n
Φ̂⊤
mY.

With Zstm = 1
n Φ̂

⊤
mb(X), we have Ẑstm = Zstm +

√
ρε0

1
n Φ̂

⊤
m1+

√
1− ρ 1

n Φ̂
⊤
mε and

(30) ∥b− b̂stm∥2n = inf
t∈Sm

∥b− t∥2n + Vm(n), where

Vm(n) := (Ẑstm − Zstm)⊤(Ψ̂st
m)

−1(Ẑstm − Zstm) = u⊤ 1

n
Φ̂m(

1

n
Φ̂⊤
mΦ̂m)

−1 1

n
Φ̂⊤
mu

Thus,

EVm(n) = ETr[
1

n
Φ̂m(Ψ̂

st
m)

−1 1

n
Φ̂⊤
muu

⊤]

where Euu⊤ = (1− ρ)Idn + ρ11⊤. Consequently,

EVm(n) = (1− ρ)
m

n
+ ρEBm(n), where Bm(n) = n−11⊤Φ̂m(n

−1Φ̂⊤
mΦ̂m)

−1n−1Φ̂⊤
m1.

Clearly, Bm(n) tends as n tends to infinity to a fixed limit equal to

Bm = E[φ(X1)
⊤] (Ψst

m)
−1E[φ(X1)] > 0,

where φ(X1)
⊤ = (φ1(X1), . . . , φm(X1)). It holds that Bm > 0 if ∃j0 ∈ {1, . . . ,m} such that

E[φj0(X1)] ̸= 0; in particular Bm > 0 in all the examples of Section 6. Therefore, looking at
(30), we see that the risk bound contains an additional term which is not present in the standard
case of i.i.d. noises.

6. Numerical simulation results

In this section, we consider first the case where E[b(X1)] is known and choose functions and the
density f such that it is nul. Then, we consider additional observations leading to a consistent
estimation of E[b(X1)] that we use in the estimation procedure based on n trajectories. The
basis functions is the Hermite basis (see e.g. Comte and Genon-Catalot, 2018).
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ρ = 0 ρ = 0.25 ρ = 0.75
n = 250 n = 1000 n = 250 n = 1000 n = 250 n = 1000
R O R O R S O R S O R S O R S O

MSE 6.42 4.97 1.73 1.33 7.06 7.16 6.02 1.84 1.88 1.54 4.00 4.12 3.55 1.09 1.32 1.02
b1 std 3.54 2.82 0.94 0.75 4.45 4.72 4.12 1.19 1.20 1.06 3.63 3.51 3.46 1.08 1.10 1.07

dim 8.06 9.19 9.13 10.2 8.27 8.03 9.28 9.37 9.01 10.3 8.79 7.89 10.1 10.1 8.65 11.0

MSE 10.0 8.36 2.76 2.17 11.0 11.0 9.63 2.97 3.00 2.45 6.08 6.17 5.53 1.55 1.94 1.45
b2 std 5.56 4.46 1.37 1.10 7.00 6.98 6.64 1.93 1.95 1.70 5.67 5.66 5.53 1.44 1.47 1.38

dim 8.29 9.11 8.91 9.91 8.35 8.16 9.31 9.23 8.82 10.2 8.84 8.01 9.97 10.0 8.84 10.8

MSE 15.0 10.3 3.73 3.02 13.3 14.6 10.7 3.58 3.36 3.01 6.87 7.16 6.19 1.97 1.83 1.68
b3 std 12.0 6.33 2.29 1.81 10.2 12.0 7.19 2.16 2.13 1.86 5.59 7.43 5.43 1.46 1.44 1.35

dim 5.95 6.53 6.50 7.23 6.24 5.86 6.77 6.62 6.24 7.31 6.39 5.91 7.33 7.10 6.01 8.49

MSE 5.06 3.98 1.28 1.07 5.75 5.95 4.82 1.47 1.48 1.28 3.29 3.79 3.03 0.86 0.87 0.80
b4 std 2.54 2.01 0.67 0.53 3.72 3.84 3.23 0.99 1.01 0.90 3.18 3.21 3.11 0.90 0.91 0.90

dim 8.84 9.85 8.84 9.95 9.03 8.80 10.0 10.2 10.1 11.2 9.63 8.46 10.9 10.3 9.96 11.9

Table 1. Results for beta noise with 400 repetitions, for three values of ρ (ρ =

0, 0.25, 0.75), two sample sizes (n=250, 1000), and the method with R−1 (’R’), the one
with S−1 (’S’), compared to the oracle (’O’), for functions defined in (31). MSE is 1000×
Relative MISE, std is 1000×std, and ’dim’ is the mean of the selected dimensions.

6.1. Case E[b(X1)] is known. If E[b(X1)] is known, then the variables Yi are replaced by the
Yi − E[b(X1)], the function estimated is thus b(X1) − E[b(X1)], and the constant can be finally
added to the estimate to recover the right level for b. This is why we consider hereafter examples
where E[b(X1)] = 0.

We consider four examples of odd functions

(31) b1(x) = 2x, b2(x) = 3 sin(0.8πx), b3(x) =
4x

1 + x2
, b4(x) = 1.75x3 exp(−0.5|x|)

where the multiplicative constants are such that the empirical standard deviation of bi(X) is of
order 2 (or slightly less), as a measure of the signal to noise ratio (the noise has unit variance).
The Xi’s follow a symmetric distribution so that E[bi(X1)] = 0: either 6 × (β(3, 3) − 0.5) or a
N (0, 1). The εi are Gaussian N (0, 1).

We consider the estimator based on matrix R, abbreviated as the ’R-procedure’ in the sequel.
We propose a model selection procedure to get a data-driven choice m̂ of the dimension m. The
selection of m is performed among dimensions m = 1, . . . , 20, such that the constraint defined
for Λm in (21) is fulfilled, that is

M̂(R)
n =

{
m ∈ {1, . . . , 20},

√
m(∥(Ψ̂(R)

m )−1∥op ∨ 1) ≤ c0
1− ρ

n

log(n)

}
, c0 = 8× 64

n

log(n)
.

Then, we apply the classical procedure

m̂(R) = arg min
m∈M̂(R)

n

{
−∥b̂m∥2n,R + pen(m)

}
, pen(m) = κ

m

n
,
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Figure 1. For lines i = 1 to 4, 40 estimated bi, for ρ = 0.25, the R-procedure
first and the oracle next, n = 250 for the first two columns, and n = 1000 for the
last two columns.

where −∥b̂m∥2n,R usually stands for an estimation of the square bias term, and the penalization
pen(m) is proportional to the variance term. The constant κ is numerical and calibrated from
preliminary simulations (see e.g. Comte and Genon-Catalot, 2019). For the estimator based on



REGRESSION WITH COMMON NOISE 13

matrix S, called ’S-procedure’, we proceed similarly

M̂(S)
n =

{
m ∈ {1, . . . , 20},

√
m(∥(Ψ̂(S)

m )−1∥op ∨ 1) ≤ c1
n

log(n)

}
, c1 = 8× 256

n

log(n)
,

and
m̂(S) = arg min

m∈M̂(S)
n

{
−∥b̂(S)m ∥2n,S + pen(m)

}
, pen(m) = κ

m

n
.

The penalization constant is calibrated in all cases to κ = 2.5.
The use of the n×n matrix R−1 involves numerical difficulties which lead us to compute Ψ̂

(R)
m

with a formula relying of the fact that R−1 = (αn − βn)Idn + βn11
⊤, and thus

Ψ̂(R)
m = (αn − βn)

(
1

n
Φ̂⊤
mΦ̂m

)
+ nβn

(
1

n

n∑
i=1

φj(Xi)

)⊤

1≤j≤m

(
1

n

n∑
i=1

φj(Xi)

)
1≤j≤m

.

The same type of computation is done for Ψ̂
(S)
m .

The estimators are computed at points x1, . . . , xK which are regularly spaced on an interval
corresponding to the 1% and 99% quantiles of the observations, and the error (MSE) of an
estimator b̂ of a function b is computed as the mean over 400 repetitions of the ratios

(32)
∑K

k=1(̂b(xk)− b(xk))
2∑K

k=1 b
2(xk)

.

In other word, we consider relative errors in order to keep a common scale for all examples. The
results of the R and S data-driven procedure are compared the the performance of the so-called
oracle, that is the smallest risk obtained over the models among which the selection is done; this
procedure utilizes the knowledge of the true function b, this explains the term "oracle".

The results are given in Table 1, and only for X following the centered beta-type distribution;
the result corresponding to Gaussian Xi being very similar, they are not reported. We can see
that the risk decreases by a factor of order 4 when the sample size is multiplied by 4 (from n = 250
to n = 1000). The case ρ = 0 corresponds to the standard nonparametric least squares contrast
procedure, and we can see that the order of the MSE is preserved when ρ ̸= 0. Surprisingly,
increasing ρ from 0.25 to 0.75 does not deteriorate the results but rather improves them. It
is interesting to see that the method which does not require the knowledge of ρ and relies on
S−1 works as well as the one requiring ρ: this could be expected from formula (9) which shows
that Ψ̂

(R)
m is equivalent for large n to (1/(1 − ρ))Ψ̂

(S)
m , and the factor 1 − ρ cancels in Formula

(13) giving the coefficients of the estimator for the R-procedure. Therefore, the estimator and
the procedure of model selection are mainly independent of ρ. We can also note that, in mean,
the selected dimensions are always smaller than the ones of the oracles. But, it is known that
for model selection, choosing slightly too small dimensions is much safer than too large models;
so it is not likely that this should be changed with different choices of κ or cutoff levels. The
procedures and the results here are very stable.

We represent in Figure 1 the four functions and illustrate the quality of the estimators obtained
by the R-procedure compared to the oracles, for n = 250 and n = 1000, in case ρ = 0.25. The
beams of 40 estimators are in dotted-blue, and the true function in bold-red. It is worth stressing
that the estimations are excellent, and there are no side-effects.

6.2. Case E[b(X1)] is unknown. If E[b(X1)] is unknown, additional obervations are required
to make this term identifiable. We assume here that we also observe, for j = 1, . . . , P , and
i = 1, . . . , n,

Yi,j = b(Xi) +
√
ρε0,j +

√
1− ρεi,j .
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Figure 2. For line i, 40 estimated b4+i, for ρ = 0.5, the R-procedure first with
P = 5 and P = 25 next, n = 250 for the first two columns, and n = 1000 for the
last two columns.

Then we apply the procedure to the Y ⋆
i defined by

Y ⋆
i = Yi − Ȳ , Ȳ =

1

nP

P∑
j=1

n∑
i=1

Yi,j ,
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ρ = 0 ρ = 0.25 ρ = 0.75
n = 250 n = 1000 n = 250 n = 1000 n = 250 n = 1000
R O R O P=5 P=25 P=5 P=25 P=5 P=25 P=5 P=25

MSE 4.29 2.95 1.17 0.93 6.19 3.74 3.57 1.53 8.69 3.16 8.14 2.06
b5 std 2.64 1.46 0.53 0.39 5.19 2.47 3.64 1.01 9.54 2.66 11.8 2.11

dim 9.36 10.7 11.5 13.9 9.31 9.26 11.5 11.6 9.94 9.82 11.7 11.7

MSE 3.54 2.46 0.83 0.59 5.18 2.82 3.27 1.19 10.0 2.74 9.53 1.92
b6 std 4.55 0.96 0.90 0.29 5.07 1.89 3.86 0.99 12.9 2.78 12.3 2.35

dim 10.2 11.9 12.3 14.4 5.95 5.84 7.16 7.19 6.61 6.80 7.96 7.96

MSE 7.93 5.13 2.00 1.45 9.93 6.79 5.33 2.37 18.4 5.76 14.1 3.36
b7 std 8.02 3.04 1.24 0.85 8.04 4.63 6.04 1.79 19.2 5.63 20.0 3.51

dim 9.58 11.2 12.0 13.8 9.67 9.67 12.1 12.0 9.93 9.94 12.4 12.3

Table 2. Estimation results by R-procedure when E(b(X1)) ̸= 0 for functions
b5, b6, b7, 400 repetitions, and P = 5 or P = 25 for ρ = 0.25 and ρ = 0.75. The
benchmark is given for ρ = 0, for risk (column R) and oracle (column O). The
relative MSE are computed with average of (32) and multiplied by 1000, std is
also multiplied by 1000, dim is the average of selected dimensions.

and consider the relative MSE for b̂m̂ + Ȳ . We intend to see how large P must be to preserve
the results obtained when the mean is known.

We consider the three additional functions, for Gaussian N (0, 1) variables Xi:

b5(x) = 3.25|x|, b6(x) = 4x2 exp(−x2/4), b7(x) = 5.5 sin2(2x).

The results of the new experiments are given in Table 2. We first compute the relative risk as
described previoulsy for one sample with ρ = 0, relying on standard nonparametric least-squares
procedure denoted by ’R’, and on the oracle denoted by ’O’. This provides a benchmark to
evaluate the other cases, corresponding to ρ = 0.25 and ρ = 0.75, and R-procedure. The Y ⋆

i are
obtained with P = 5 or P = 25. In all cases, 400 experiments are averaged. Let us mention that,
with no correction, the error would explode up to orders of 100 (with the same multiplication by
1000 as in the tables), for any choice of n. We can deduce from Table 2 that the improvement
is observed even for small P = 5, but the value of ρ has more impact here. Clearly, the case
ρ = 0.75 is much more difficult for estimation purpose than ρ = 0.25, contrary to what was
observed in the centered case. Also, the improvement when increasing n is attenuated, which
suggests that larger P would keep improving the results. More specifically, we see that if P is
too small, the estimation does not benefit from the increase of n: the MSE does not improve in
the adequate factor from n = 250 to n = 1000 when P = 5 (see also the first and third columns
in Figure 2, which are rrather similar). This means that the bias of order E(b(X1)) is not enough
corrected when P = 5, which is not so surprising. Note that the selected dimensions do not
depend on P . Figure 2 allows to visualize the results, for 40 repetitions and ρ = 0.5. Each line
corresponds to a function, b5, b6 and b7, and the first columns corresponds to n = 250 and P = 5,
the second to the same n and P = 25, the last two columns are associated with n = 1000, again
with P = 5 and next P = 25. In all these plots again, there are no side-effects at the borders,
and the Hermite basis adapts to any form of function.
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7. Concluding remarks

In this paper we consider the regression model (1) with correlated noises satisfying (3), i.e.
there is a common noise to all the Yi’s. This study is inspired by models of stochastic differential
equations with common noise developped in the theory of mean field games and control for mod-
els (see e.g. Carmona et al. (2016), Lacker et al. (2002), Maillet (2025), Delarue et al. (2024))
which are of the form (4) where W0,W1, . . . ,Wn are n+1 independent Brownian motions. Thus,
W0 is common to all equations and this creates identically distributed but correlated processes.
Up to our knowledge, the regression version of these models with common noise has not been
investigated up to now. It is not easy to handle and yields new results. To estimate the re-
gression function, we proceed by projection method but we do not consider the standard least
squares contrast. Instead, we use a contrast taking into account the covariance matrix of the
noise vector. We study the risk of the minimum contrast estimator measured as the expectation
of the empirical norm and of the theoretical norm associated with our contrast. In both cases, we
obtain risks bounds where the variance term has the usual order m/n, where m is the dimension
of the projection space. A rather tough difficulty occurs when proving that the empirical and the
theoretical norms are equivalent for functions of one projection space. We also propose a con-
trast when ρ is unknown and obtain for it similar results.The theory is illustrated by numerical
simulations. As the parameter Eb(X1) is not identifiable from the observations, we proceed first
by implementing our method for functions such that Eb(X1) = 0 for ρ = 0 (standard regression)
and ρ ̸= 0 for the estimator based on the contrast relying on the knowledge of ρ and for the
contrast which does not require its knowledge. Then, for functions such that Eb(X1) ̸= 0, we
add observations to get an estimation of Eb(X1) and proceed to the implementation using this
estimate. The simulation results are excellent.
Note that the estimation of an unkown parameter in the drift of (4) has been studied in Genon-
Catalot and Larédo (2025). The nonparametric regression model with common noise investigated
here has revealed the specific difficulties of this model and it is now worth studying the nonpara-
metric estimation of the drift in model (4) or in its discretized version.

8. Proofs

8.1. Proof of Proposition 1. Let us express the orthogonal projection bm(X) of the vector
bA(X) on the subspace of Rn spanned by the vectors φj(X), j = 1, . . . ,m w.r.t. the empirical
scalar product ⟨. .⟩n,R. It is given by

bm(X) = (Ψ̂(R)
m )−1Φ̂mR

−1b(X).

As a consequence, by the Pythagoras theorem,

∥bA − b̂m∥2n,R = ∥bA − bm∥2n,R + ∥bm − b̂m∥2n,R
= inf

t∈Sm

∥bA − t∥2n,R + ∥(Ψ̂(R)
m )−1Φ̂mR

−1u∥2n,R(33)

Now, we have

∥(Ψ̂(R)
m )−1Φ̂mR

−1u∥2n,R =
1

n
u⊤R−1Φ̂⊤

m(Ψ̂
(R)
m )−1 Φ̂⊤

mR
−1Φ̂m︸ ︷︷ ︸

=nΨ
(R)
m

(Ψ̂(R)
m )−1Φ̂mR

−1u

= u⊤R−1Φ̂⊤
m(Ψ̂

(R)
m )−1Φ̂mR

−1u.
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This implies that

E(∥(Ψ̂(R)
m )−1Φ̂mR

−1u∥2n,R) =
1

n
E
[
Tr

(
u⊤R−1Φ̂m

(
Φ̂⊤
mR

−1 Φ̂m

)−1
Φ̂⊤
mR

−1u

)]
=

1

n
E
[
Tr

(
R−1Φ̂m

(
Φ̂⊤
mR

−1 Φ̂m

)−1
Φ̂⊤
mR

−1uu⊤
)]

=
1

n
E
[
Tr

(
R−1Φ̂m

(
Φ̂⊤
mR

−1 Φ̂m

)−1
Φ̂⊤
mR

−1R

)]
=

1

n
Tr(Im)

=
m

n
,

where we used the independence of u and X and commuted the matrices inside the trace. Taking
the expectation of (33) and plugging-in this result gives the announced bound. 2

8.2. Proof of Lemma 1. The first property comes from the fact that R is a variance matrix
with known eigenvalues 1−ρ and 1+(n−1)ρ. Its inverse R−1 is diagonalizable in an orthonormal
basis with eigenvalues 1/(1−ρ) and 1/(1+(n−1)ρ). The second property is obtained by taking
expectation. 2

8.3. Proof of Proposition 2. Using formula (7), we have

∥t∥2n,R = αn
1

n

n∑
i=1

t2(Xi) + βn
1

n

∑
1≤i ̸=k≤n

t(Xi)t(Xk).

As the Xi are i.i.d., we get

E(∥t∥2n,R) = αnE[t2(X1)] + (n− 1)βn{E[t(X1)]}2.
As βn < 0, we do not stop our computation here. We further write

E(∥t∥2n,R) = αnVar(t(X1)) + (αn + (n− 1)βn){E[t(X1)]}2,

where now αn > 0 and cn = αn + (n− 1)βn > 0. Thus we have the first point of Proposition 2,
from which point 2 follows straightforwardly.

We have for i = 1, . . . , n, [Φ̂ma]i =
∑m

j=1 φj(Xi)aj . Thus

aT Ψ̂(R)
m a =

1

n

αn n∑
i=1

(
m∑
j=1

φj(Xi)aj)
2 + βn

∑
i ̸=i′

(
m∑
j=1

φj(Xi)aj)(
m∑
k=1

φk(Xi′)ak)


=

1

n

αn ∑
1≤i≤n,1≤j,k≤m

φj(Xi)φk(Xi)ajak + βn
∑

i ̸=i′,1≤j,k≤m
φj(Xi)φk(Xi′)ajak)


= (αn − βn)

∑
1≤j,k≤m

ajak

(
1

n

n∑
i=1

φj(Xi)φk(Xi)

)

+ nβn
∑

1≤j,k≤m
ajak

(
1

n2

n∑
i=1

φj(Xi)
n∑
i=1

φk(Xi)

)
We have αn − βn = 1/(1 − ρ) and nβn → −1/(1 − ρ). Moreover, (1/n)

∑n
i=1 φj(Xi)φk(Xi) →

Eφj(X1)φk(X1)) and (1/n2)
∑n

i=1 φj(Xi)
∑n

i=1 φk(Xi) → Eφj(X1)Eφk(X1). This shows that
aT Ψ̂

(R)
m a → 1

1−ρa
TΨma. This ends the proof of the third point of Proposition 2.

Relation (16) is easily obtained. 2
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8.4. Proof of Propositions 3 and 4.
Proof of Proposition 3. We have (see Proposition 2 and (15)): Ψ

(R)
m = αnΨm + cnΞm. This

implies that

αn(Ψ
(R)
m )−1/2Ψm(Ψ

(R)
m )−1/2 − Idm = −cn(Ψ(R)

m )−1/2Ξm(Ψ
(R)
m )−1/2.

Therefore
∥αn(Ψ(R)

m )−1/2Ψm(Ψ
(R)
m )−1/2 − Idm∥op ≤ |cn|∥(Ψ(R)

m )−1∥op∥Ξm∥op.
We have

∥Ξm∥op = sup
x∈Rm,∥x∥=1

x⊤Ξmx = sup
x∈Rm,∥x∥=1

 m∑
j=1

xjE[φj(X1)]

2

≤ sup
x∈Rm,∥x∥=1

m∑
j=1

x2j

m∑
j=1

(E[φj(X1)])
2 ≤

m∑
j=1

(⟨φj , f⟩])2 ≤ ∥f∥2.

Under condition (20), we find, as cn ≤ 1/(nρ),

∥αn(Ψ(R)
m )−1/2Ψm(Ψ

(R)
m )−1/2 − Idm∥op ≤ c⋆|cn|∥f∥2

n

log(n)
≤ c⋆∥f∥2

ρ

1

log(n)
.

Thus, for log(n) ≥ 2c⋆∥f∥2/ρ, we have

∥αn(Ψ(R)
m )−1/2Ψm(Ψ

(R)
m )−1/2 − Idm∥op ≤ 1

2
.

Consequetly, the eigenvalues of the matrix αn(Ψ
(R)
m )−1/2Ψm(Ψ

(R)
m )−1/2 are in the interval [1/2, 3/2].

Thus, the eigenvalues of [(Ψ(R)
m )−1/2Ψm(Ψ

(R)
m )−1/2]−1 belong to [2/(3αn), 2/αn] implying that

∥Ψ−1
m ∥op = ∥(Ψ(R)

m )−1/2(Ψ(R)
m )1/2Ψ−1

m (Ψ(R)
m )1/2(Ψ(R)

m )−1/2∥op ≤ 2

αn
∥(Ψ(R)

m )−1/2∥2op.

As for n ≥ 3, αn ≥ 1/(2(1− ρ)), we get, for n ≥ exp(2c⋆∥f∥2/ρ) ∨ 3,

L(m)∥Ψ−1
m ∥op ≤ 4(1− ρ)L(m)∥(Ψ(R)

m )−1∥2op ≤ 4c⋆(1− ρ)
n

log(n)
.

This end the proof of Proposition 3. 2

Proof of Proposition 4. The given expression of Ωm is relatively standard. We have

sup
t∈Sm, ∥t∥2R=1

|∥t∥2n,R − ∥t∥2R| = sup
a∈Rm,aTΨ

(R)
m a=1

|aT Ψ̂(R)
m a− aTΨ(R)

m a|

= sup
b∈Rm,b=(Ψ

(R)
m )1/2,bTb=1

|bT (Ψ(R)
m )−1/2Ψ̂(R)

m (Ψ(R)
m )−1/2b− bTb|

= ∥(Ψ(R)
m )−1/2Ψ̂(R)

m (Ψ(R)
m )−1/2 − Idm∥op.

Now, we have two steps. First, under condition (20), on Λcm,

kc⋆
n

log n
< L(m)∥(Ψ̂(R)

m )−1∥op ≤ L(m)∥(Ψ̂(R)
m )−1 − (Ψ(R)

m )−1∥op + L(m)∥(Ψ(R)
m )−1∥op

≤ L(m)∥(Ψ̂(R)
m )−1 − (Ψ(R)

m )−1∥op + c⋆
n

log n

Thus,

(34) Λcm ⊂ {∥(Ψ̂(R)
m )−1 − (Ψ(R)

m )−1∥op ≥ (k − 1)∥(Ψ(R)
m )−1∥op}.
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Second, for all α > 0 and c ∈ (0, 1),

{∥(Ψ̂(R)
m )−1 − (Ψ(R)

m )−1∥op ≥ α∥(Ψ(R)
m )−1∥op}

⊂ {∥(Ψ(R)
m )−1/2Ψ̂(R)

m (Ψ(R)
m )−1/2 − Idm∥op ≥ c ∧ α(1− c)}

Indeed,

∥(Ψ̂(R)
m )−1 − (Ψ(R)

m )−1∥op ≤ ∥(Ψ(R)
m )−1/2∥op∥(Ψ(R)

m )1/2(Ψ̂(R)
m )−1(Ψ(R)

m )1/2 − Idm∥op.

Therefore,{
∥(Ψ̂(R)

m )−1 − (Ψ(R)
m )−1∥op ≥ α∥(Ψ(R)

m )−1∥op
}
⊂ B :=

{
∥(Ψ(R)

m )1/2(Ψ̂(R)
m )−1(Ψ(R)

m )1/2 − Idm∥op ≥ α
}

Now, we write B := B1 ∪B2 with

B1 = B ∩
{
∥(Ψ(R)

m )−1/2Ψ̂(R)
m (Ψ(R)

m )−1/2 − Idm∥op < c
}

B2 = B ∩
{
∥(Ψ(R)

m )−1/2Ψ̂(R)
m (Ψ(R)

m )−1/2 − Idm∥op ≥ c
}

Clearly B2 ⊂
{
∥(Ψ(R)

m )−1/2Ψ̂
(R)
m (Ψ

(R)
m )−1/2 − Idm∥op ≥ c

}
.

Applying Theorem A.1 of Stewart and Sun (1990) (see Appendix) with A = Idm and B =

(Ψ
(R)
m )−1/2Ψ̂

(R)
m (Ψm)

(R))−1/2 − Idm, yields

B1 ⊂

{
∥(Ψ(R)

m )−1/2Ψ̂
(R)
m (Ψ

(R)
m )−1/2 − Idm∥op

1− ∥(Ψ(R)
m )−1/2Ψ̂

(R)
m (Ψ

(R)
m )−1/2 − Idm∥op

≥ α

}
∩
{
∥(Ψ(R)

m )−1/2Ψ̂(R)
m (Ψ(R)

m )−1/2 − Idm∥op < c
}

This implies B1 ⊂
{
∥(Ψ(R)

m )−1/2Ψ̂
(R)
m (Ψ

(R)
m )−1/2 − Idm∥op ≥ α(1− c)

}
.

Thus B1 ∪B2 ⊂
{
∥(Ψ(R)

m )−1/2Ψ̂
(R)
m (Ψ

(R)
m )−1/2 − Idm∥op ≥ c ∧ (1− c)α

}
.

Now, taking into account that α = k − 1 from (34), it remains to choose c and k such that
(k − 1)(1− c) ∧ c = 3/4. This holds for k = 4, c = 3/4. 2

8.5. Proof of Theorem 1. Recall that ∥t∥2R = αnVar(t(X1)) + cn{E[t(X1)]}2. Recall that the
empirical norm can be decomposed as in (16). Theorem 1 is deduced from the following lemmas.

Lemma 3. Assume that

(35) L(m)∥Ψ−1
m ∥op ≤ c⋆p(δ)

n

log(n)
, c⋆p(δ) ≤ cp(δ) =

δ − (1 + δ) log(1 + δ)

4(p+ 1)
,

where Ψm = (cov(φj(X1), φk(X1))1≤j,k≤m. Then, it holds that P((Ω(1)
m (δ))c) ≤ 2n−p.

Lemma 4. Recall that the basis functions are bounded by θ and take m ≤ c†n/ log(n). Then it
holds that P((Ω(2)

m )c) ≤ Cn−p, where C is a positive constant.

We study

(36) Sn(t) = αnZn(t) + cn{E[t(X1)]}2 + 2cnE[t(X1)]Vn(t)

on (Ω
(1)
m )c (Lemma 5) and Un(t, t) on (Ω

(2)
m )c (Lemma 6).

Lemma 5. Set Ω(1)
m = Ω

(1)
m (1/2). On Ω

(1)
m , we have for n ≥ 192/ρ and for Sn(t) defined by (36),

that, ∀t ∈ Sm,

(
1

2
− 1

8
)∥t∥2R ≤ Sn(t) ≤ (

3

2
+

1

8
)∥t∥2R
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Lemma 6. Assume condition (20). On Ω
(2)
m ,

|(n− 1)βnUn(t, t)| ≤
1

8
∥t∥2R.

To conclude, on Ω
(1)
m ∩ Ω

(2)
m , we have proved that

1

4
∥t∥2R =

(
1

2
− 1

8
− 1

8

)
∥t∥2R ≤ ∥t∥2n,R ≤

(
3

2
+

1

8
+

1

8

)
∥t∥2R =

7

4
∥t∥2R.

This means that
Ω(1)
m ∩ Ω(2)

m ⊂ Ωm

and achieves the proof of Theorem 1. 2

8.6. Proof of Lemmas 3, 4, 5 and 6.
Proof of Lemma 3. Set

A = sup
t∈Sm,V ar(t(X1))=1

|Zn(t)−Var(t(X1))|

For t =
∑m

j=1 ajφj ,

Zn(t)−Var(t(X1)) =
1

n

n∑
i=1

 m∑
j=1

aj(φj(Xi)− Eφj(X1))

2

− E

 m∑
j=1

aj(φj(X1)− Eφj(X1))

2

= aT (ψ̂m −Ψm)a

Therefore,

A = sup
a∈Rm,aTΨma=1

|aT (ψ̂m −Ψm)a|

= sup
b∈Rm,bTb=1

bTΨ−1/2
m (ψ̂m −Ψm)Ψ

−1/2
m b = ∥Ψ−1/2

m ψ̂mΨ
−1/2
m − Idm∥op

Therefore, Ω(1)
m (δ)c = ∥Ψ−1/2

m ψ̂mΨ
−1/2
m − Idm∥op > δ). To bound P(∥Ψ−1/2

m ψ̂mΨ
−1/2
m − Idm∥op >

δ), we use the matrix Chernov Inequality (see Tropp (2012)). For this, we define

Km(Xi) = Ψ−1/2
m ((φj(Xi)− E(φj(X1)))φk(Xi)− E(φk(X1)))1≤j,k≤mΨ−1/2

m .

As 1
n

∑n
i=1 EKm(Xi) = Idm, the Tropp inequalities write

P(λmin

(
1

n

n∑
i=1

Km(Xi)

)
≤ 1− δ) ≤ m

[
e−δ

(1− δ)1−δ

]1/r

P(λmax

(
1

n

n∑
i=1

Km(Xi)

)
≥ 1 + δ) ≤ m

[
eδ

(1 + δ)1+δ

]1/r
where λmin (resp. λmax) denotes the smallest (resp largest) eigenvalue of the matrix and r is an
upper bound for the largest eigenvalue of 1

nKm(Xi). This implies

P(Ω(1)
m (δ)c) ≤ 2m exp (−c(δ)/r)
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where c(δ) = (1 + δ) log(1 + δ)− δ.
We must now compute the bound r. For this, we look at

sup
aT a=1

1

n
aTKm(Xi)a =

1

n
sup

b=ψ
−1/2
m a,aT a=1

bT ((φj(Xi)− E(φj(X1)))φk(Xi)− E(φk(X1)))1≤j,k≤m b

=
1

n
sup

b=ψ
−1/2
m a,aT a=1

 m∑
j=1

bj(φj(Xi)− Eφj(X1))

2

≤ 1

n
∥b∥2m

∑
j

(φj(Xi)− Eφj(X1))
2 ≤ 1

n
∥Ψm∥−1

op 4L(m)

Therefore, under the condition L(m)∥Ψm∥−1
op ≤ c⋆p(δ)(n/ log(n)) with c⋆p(δ) ≤

c(δ)
4(p+1) , we obtain

P(Ω(1)
m )(δ)c) ≤ 2n−p. 2

Proof of Lemma 4. We proceed in two steps, first the application of the deviation for U -
statistics to Un(φj , φk) and then the use of the result to handle Un(t) = Un(t, t).

Step 1 We intend to apply Theorem 3.4 in Houdré and Reynaud-Bouret (2003), and prove that,
for δj,k given by (40) below with q = p+ 2,

P (|Un(φj , φk)| ≥ δj,k) ≤
1

np+2
.

We set,

g(Xi, Xℓ) = gi,ℓ(Xi, Xℓ) = [φj(Xi)− E(φj(X1))] [φk(Xℓ)− E(φk(X1))]

+ [φj(Xℓ)− E(φj(X1))] [φk(Xi)− E(φk(X1))] .

It satisfies
E[g(Xi, Xℓ)|Xi] = E[g(Xi, Xℓ)|Xℓ] = 0

and Un(φj , φk) =
∑n

i=2

∑i−1
ℓ=1 g(Xi, Xℓ).

To apply Theorem 3.4 in Houdré and Reynaud-Bouret (2003) to Un(φj , φk), we compute the
terms denoted by A,B,C,D in this paper. First, we find ∥g∥∞ ≤ 8∥φjφk∥∞ ≤ 8θ2 := A.

Next B2 is a bound on

(37) max

{
sup
i,x

i−1∑
ℓ=1

[E(ℓ)(g(x,Xℓ))]
2, sup

ℓ,x

n∑
i=ℓ+1

[E(ℓ)(g(Xi, x))]
2

}
,

where [E(ℓ)(g(Xi, Xℓ)) = E[g(Xi, Xℓ)|Xi] and [E(i)(g(Xi, Xℓ)) = E[g(Xi, Xℓ)|Xℓ]. We find that
(37) is less than

4(n− 1)(∥φj∥2∞Var(φk(X1)) + ∥φk∥2∞Var(φj(X1))) ≤ 4(n− 1)(∥φk∥2∞
∫
φ2
jf + ∥φj∥2∞

∫
φ2
kf)

≤ 4(n− 1)θ2(

∫
φ2
jf +

∫
φ2
kf) := B2.

The third quantity C2 is defined as a bound on
n∑
i=2

i−1∑
ℓ=1

E[g2(Xi, Xℓ)] = n(n− 1)Var(φj(X1))Var(φk(X1)) ≤ n(n− 1)

∫
φ2
jf

∫
φ2
kf.
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Therefore, we take

C2 := n(n− 1)

∫
φ2
jf

∫
φ2
kf.

Lastly the most difficult part is to find D which is defined as an upper bound on

sup

{
E

(
n∑
i=2

i−1∑
ℓ=1

ai(Xi)bℓ(Xℓ)g(Xi, Xℓ)

)
, E

(
n∑
i=2

a2i (Xi)

)
≤ 1,E

(
n−1∑
ℓ=1

b2ℓ (Xℓ)

)
≤ 1

}
.

By the proof below, we obtain

(38) D := 2
√
n(n− 1)

√∫
φ2
jf

∫
φ2
kf.

Proof of the bound for D.
We consider the first half of g. Assume that the functions ai(x), bℓ(x) are such that E

[∑n
i=2 a

2
i (Xi)

]
≤

1 and E
[∑n−1

ℓ=1 b
2
ℓ (Xℓ)

]
≤ 1. We have

E

[
n∑
i=2

i−1∑
ℓ=1

ai(Xi)(φj(Xi)− E(φj(Xi))bℓ(Xℓ)(φk(Xℓ)− E(φk(Xℓ))

]

=
n∑
i=2

i−1∑
ℓ=1

E[ai(Xi)(φj(Xi)− E(φj(Xi))]E[bℓ(Xℓ)(φk(Xℓ)− E(φk(Xℓ))]

= E

[
n∑
i=2

ai(Xi)(φj(Xi)− E(φj(Xi))E[
i−1∑
ℓ=1

bℓ(Xℓ)(φk(Xℓ)− E(φk(Xℓ))]

]
.(39)

Then∣∣∣∣∣E[
i−1∑
ℓ=1

bℓ(Xℓ)(φk(Xℓ)− E(φk(Xℓ))

∣∣∣∣∣ ≤ E

( i−1∑
ℓ=1

b2ℓXℓ)

i−1∑
ℓ=1

(φk(Xℓ)− E(φk(Xℓ))
2

)1/2


≤

[
E

(
i−1∑
ℓ=1

b2ℓ (Xℓ)

)
E

(
i−1∑
ℓ=1

(φk(Xℓ)− E(φk(Xℓ))
2

)]1/2
using that E(

√
UV ) ≤

√
E(U)E(V ) for two random variables U, V ≥ 0. So, we have obtained∣∣∣∣∣E[

i−1∑
ℓ=1

bℓ(Xℓ)(φk(Xℓ)− E(φk(Xℓ))

∣∣∣∣∣ ≤√(i− 1)Var(φk(X1)) ≤

√
(i− 1)

∫
φ2
kf

Plugging this in (39), we get

E

[
n∑
i=2

i−1∑
ℓ=1

ai(Xi)(φj(Xi)− E(φj(Xi))bℓ(Xℓ)(φk(Xℓ)− E(φk(Xℓ))

]

≤

√
(n− 1)

∫
φ2
kf E

[
n∑
i=2

|ai(Xi)(φj(Xi)− E(φj(Xi))|

]
.

Dealing with the above term containing the ai’s as with the term containing the bℓ’s yields

E

[
n∑
i=2

i−1∑
ℓ=1

ai(Xi)(φj(Xi)− E(φj(Xi))bℓ(Xℓ)(φk(Xℓ)− E(φk(Xℓ))

]
≤
√
n(n− 1)

√∫
φ2
kf

∫
φ2
jf.
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This gives the announced bound on D.

Therefore, choosing u = q log(n) and ε = 4 in Theorem 3.4 of Houdré and Reynaud-Bouret (2003),
gives that with probability larger than 1− 2× 2.77n−q,

Un(φj , φk)

n(n− 1)
≤ c0
n(n− 1)

(
C
√
q log(n) +D(q log(n)) +B(q log(n))3/2 +A(q log(n))2

)
,

where c0 is a numerical constant, c0 = 62.3 for ε = 4 (given by the worst constant β(ϵ) for ϵ = 4
in the quoted paper). That is, plugging the values of A,B,C,D given above and using that
∥φj∥∞ ≤ θ,

Un(φj , φk)

n(n− 1)
≤ 8c0 q

2


√∫

φ2
jf
∫
φ2
kf√

n(n− 1)

√
log(n) +

√∫
φ2
jf
∫
φ2
kf√

n(n− 1)
log(n)

+
θ
(√∫

φ2
kf +

√∫
φ2
jf
)

n
√
n− 1

log3/2(n) +
θ2

n(n− 1)
log2(n)

 := δj,k(40)

Step 2. Then, using that for t =
∑m

j=1 ajφj ,

Un(t, t) =
∑

1≤j,k≤m
ajakUn(φj , φk) ≤ ∥t∥2

 ∑
1≤j,k≤m

U2
n(φj , φk)

1/2

,

we have

P

 sup
t∈Sm,t̸=0

∣∣∣∣Un(t, t)∥t∥2

∣∣∣∣ ≥√ ∑
1≤j,k≤m

δ2j,k

 ≤ P

 ∑
1≤j,k≤m

U2
n(φj , φk) ≥

∑
1≤j,k≤m

δ2j,k


≤ P

(
∃j, k, such that U2

n(φj , φk) ≥ δ2j,k
)

≤
∑

1≤j,k≤m
P
(
U2
n(φj , φk) ≥ δ2j,k

)
≤

∑
1≤j,k≤m

P (|Un(φj , φk)| ≥ δj,k) ≤ n−p.

Now as the basis is bounded by θ, q = p+ 2, and δj,k defined by (40), we get that∑
1≤j,k≤m

δ2j,k ≤ 4(8c0)
2 (p+ 2)4

(
2L2(m)

log2(n)

n2
+ 4θ2mL(m)

log3(n)

n3
+ θ4

m2 log4(n)

n4

)

≤ 4(8c0)
2(p+ 2)4

(
4L2(m)

log2(n)

n(n− 1)
+ 3m2θ4

log4(n)

n2(n− 1)2

)
,

where we use that

2θ2mL(m)
log3(n)

n3
= 2

L(m) log(n)√
n(n− 1)

× mθ2 log2(n)

n
√
n(n− 1)

≤ L2(m) log2(n)

n(n− 1)
+
m2θ4 log4(n)

n2(n− 1)2
.

For n ≥ 5, we have 1/(n− 1) ≤ (5/4)(1/n) and thus∑
1≤j,k≤m

δ2j,k ≤ 4(8c0)
2(p+ 2)4

(
5L2(m)

log2(n)

n2
+ 3 (

5

4
)2m2θ4

log4(n)

n4

)
.
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Therefore, for m ≤ c†n/ log(n), we get√ ∑
1≤j,k≤m

δ2j,k ≤ 24c0(θ
2 ∨ 1)(p+ 2)2(L(m) + c†)

log(n)

n
.

We obtain

P

(
sup

t∈Sm,t̸=0

∣∣∣∣Un(t, t)∥t∥2

∣∣∣∣ ≥ 24c0(θ
2 ∨ 1) (p+ 2)2(L(m) + c†)

log(n)

n

)
≤ cn−p,

and this ends the proof of Lemma 4. 2

Proof of Lemma 5. On Ω
(1)
m , we have ∀t ∈ Sm,
1

2
Var(t(X1)) ≤ Zn(t) ≤

3

2
Var(t(X1)).

Therefore,

αn
1

2
Var(t(X1)) +

1

2
cn(Et(X1))

2 ≤ αnZn(t) + cn(Et(X1))
2 ≤ αn

3

2
Var(t(X1)) +

3

2
cn(Et(X1))

2

We thus have

(41)
1

2
∥t∥2R ≤ αnZn(t) + cn(Et(X1))

2 ≤ 3

2
∥t∥2R.

Now, note that

cn =
1

1− ρ+ nρ
≤ 1

nρ
and ∀n ≥ 3, αn =

1

1− ρ

1 + (n− 2)ρ

1 + (n− 1)ρ
≥ 1

2

1

(1− ρ)
.

Then using that 2|xy| ≤ (1/τ)x2 + τy2 for all τ > 0, and V 2
n (t) ≤ Zn(t), we get that, ∀τ > 0,

2cn|E[t(X1)]Vn(t)| = c1/2n 2[c1/2n E[t(X1)]]Vn(t) ≤ c1/2n

(
1

τ
cn(E[t(X1)])

2 + τV 2
n (t)

)
≤ 1

√
nρ

(
1

τ
cn(E[t(X1)])

2 + τZn(t)

)
≤ 1

√
nρ

(
1

τ
cn(E[t(X1)])

2 +
3

2
τVar(t(X1))

)
≤ 1

√
nρ

(
1

τ
cn(E[t(X1)])

2 + 3(1− ρ)ταnVar(t(X1))

)
≤ 1

√
nρ

(
1

τ
cn(E[t(X1)])

2 + 3ταnVar(t(X1))

)
.

Choosing τ = 1/
√
3, we obtain that on Ω

(1)
m

(42) 2cn|E[t(X1)]Vn(t)| ≤
√
3

√
nρ

(
cn(E[t(X1)])

2 + αnVar(t(X1))
)
=

√
3

√
nρ

∥t∥2R.

We choose n such that
√
3√
nρ ≤ 1/8, i.e., n ≥ 192/ρ and joining (41) and (42), we get the result

of Lemma 5. 2

Proof of Lemma 6. Note that for t ∈ Sm, ∥t∥ ≠ 0 and Var[t(X1)] ̸= 0,

sup
t∈Sm

|Un(t, t)|
Var(t(X1))

≤ sup
t∈Sm

|Un(t, t)|
∥t∥2

sup
t∈Sm

∥t∥2

Var(t(X1))
≤ ∥Ψ−1

m ∥op sup
t∈Sm

|Un(t, t)|
∥t∥2

.
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On Ω
(2)
m , we use L(m) + c† ≤ 2(c† ∨ 1)L(m) as L(m) ≥ 1, so that, setting c1 = 2 × 24c0(θ

2 ∨
1) (p+ 2)2(c† ∨ 1), it follows that

|Un(t, t)| ≤ c1∥Ψ−1
m ∥opL(m)

log(n)

n
Var(t(X1)).

So under condition (35), we have that, on Ω
(2)
m ,

|Un(t, t)| ≤ c1c
⋆
p(1/2)Var(t(X1)).

We note that
|(n− 1)βn

αn
| = (n− 1)ρ

1 + (n− 2)ρ
=

(n− 1)ρ

1− ρ+ (n− 1)ρ
≤ 1,

and thus on Ω
(2)
m ,

|(n− 1)βnUn(t, t)| ≤ c1c
⋆
p(1/2)αnVar(t(X1)) ≤ c1c

⋆
p(1/2)∥t∥2R.

We choose c⋆p(1/2) defined by (35) as

c⋆p(1/2) = cp(1/2) ∧ (1/16c1).

By Proposition 3, the stability condition (20) implies L(m)∥Ψ−1
m ∥op ≤ 4c⋆(1 − ρ) n

log(n) . So we
choose

c⋆ =
1

4(1− ρ)

(
cp(1/2) ∧

1

16c1

)
,

and get that on Ω
(2)
m , |(n− 1)βnUn(t, t)| ≤ 1

8∥t∥
2
R as soon as

2c1c
⋆
p(1/2) ≤

1

8
. 2

8.7. Proof of Theorem 2. Using Proposition 4 and Theorem 1:

E[∥b̃m − b∥2R] = E[∥b̂m − b∥2R1Λm ] + ∥b∥2RP(Λcm) ≤ T1 +
∥b∥2R
np

,

where
T1 := E[∥b̂m − b∥2R1Λm ].

For any t ∈ Sm,
T1 ≤ 2T1,1 + 2∥t− b∥2R,

where T1,1 = E[∥b̂m − t∥2R1Λm ]. On Ωm, for all functions t ∈ Sm,
1

4
∥t∥2R ≤ ∥t∥2n,R ≤ 7

4
∥t∥2R.

Therefore, we can write

T1,1 = E[∥b̂m − t∥2R1Λm1Ωm ] + E[∥b̂m − t∥2R1Λm1Ωc
m
]

≤ 4E[∥b̂m − t∥2n,R1Λm1Ωm ] + E[∥b̂m − t∥2R1Λm1Ωc
m
]

≤ 8E[∥b̂m − b∥2n,R1Λm1Ωm ] + 8E[∥b− t∥2n,R] + E[∥b̂m − t∥2R1Λm1Ωc
m
]

Now we use Proposition 1, choose t = ΠSm,Rb as the minimizer of ∥b− t∥2R in Sm and obtain

(43) E[∥b̃m − b∥2R] ≤ 18 inf
t∈Sm

∥t− b∥2R + 16
m

n
+

∥b∥2R
np

+ E[∥b̂m −ΠSm,Rb∥2R1Λm1Ωc
m
].

Let us show that the last term is negligible.

E[∥b̂m −ΠSm,Rb∥2R1Λm1Ωc
m
] ≤ 2E[∥b̂m∥2R1Λm1Ωc

m
] + 2∥b∥2RP(Ωcm).
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The last term is negligible: 2∥b∥2RP(Ωcm) ≲ n−p. First note that (see (12)) (Φ̂TmR
−1Φ̂m)

−1 =
1
n(Ψ̂

(R)
m )−1 and recall (13). On Λm,

∥b̂m∥2R = â⊤mΨ
(R)
m âm =

1

n2
Y ⊤R−1Φ̂m

(
Ψ̂(R)
m

)−1
Ψ(R)
m

(
Ψ̂(R)
m

)−1
Φ̂TmR

−1Y

≤ 1

n2
∥
(
Ψ̂(R)
m

)−1
∥2op∥Ψ(R)

m ∥op∥Φ̂TmR−1Y ∥22

≤ 1

n2
∥
(
Ψ̂(R)
m

)−1
∥2op∥Ψ(R)

m ∥op∥R−1∥2op∥Φ̂TmΦ̂m∥op∥Y ∥2

≤ 1

n2

(
c⋆

n

L(m) log(n)

)2

∥Ψ(R)
m ∥op

(
1

1− ρ

)2

∥Φ̂TmΦ̂m∥op∥Y ∥2.

We have

∥Φ̂TmΦ̂m∥op = sup
x∈Rm,∥x∥=1

 n∑
i=1

 m∑
j=1

xjφj(Xi)

2
≤ sup

x∈Rm,∥x∥=1

 n∑
i=1

m∑
j=1

x2j

m∑
j=1

φ2
j (Xi)

 ≤ nL(m).

Moreover

∥Ψ(R)
m ∥op =

1

n
sup

x∈Rm,∥x∥=1
E
[
xT Φ̂TmR

−1Φ̂mx
]
≤ 1

n
∥R−1∥op∥Φ̂TmΦ̂m∥op ≤ L(m)

1− ρ
.

Therefore, on Λm,

∥b̂m∥2R ≤ (c⋆)2

(1− ρ)3
n

(log(n))2
∥Y ∥2.

Next, we have

E[∥b̂m∥2R1Λm1Ωc
m
] ≤ (c⋆)2

(1− ρ)3
n

(log(n))2
E1/2(∥Y ∥4)

√
P(Ωcm).

As E(∥Y ∥4) = E
[(∑n

i=1 Y
2
i

)2] ≤ nE
[∑n

i=1 Y
4
i

]
= n2E[Y 4

1 ], we obtain

E[∥b̂m∥2R1Λm1Ωc
m
] ≤ (c⋆)2

(1− ρ)3
n2

(log(n))2
E1/2(Y 4

1 )
√

P(Ωcm).

This term is therefore of order n−(p/2)+2/ log2(n), that is less than 1/n for p ≥ 6. Plugging this
in (43), we obtain that, for p ≥ 6,

E[∥b̃m − b∥2R] ≤ 18 inf
t∈Sm

∥t− b∥2R + 16
m

n
+
C

n

for some positive constant C. This gives the result of Theorem 2. 2

8.8. Proofs of the results of Section 4.

Proof of Proposition 5. The line is the same as the proof of Proposition 1. Let us express the
orthogonal projection b(S)m (X) of the vector bA(X) on the subspace of Rn spanned by the vectors
φj(X), j = 1, . . . ,m w.r.t. the empirical scalar product ⟨. .⟩n,S . It is given by

b(S)m (X) = (Ψ̂(S)
m )−1Φ̂mS

−1b(X).
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As a consequence, by the Pythagoras theorem,

∥bA − b̂m,S∥2n,S = ∥bA − b(S)m ∥2n,S + ∥b(S)m − b̂m,S∥2n,S
= inf

t∈Sm

∥bA − t∥2n,S + ∥(Ψ̂(S)
m )−1Φ̂mS

−1u∥2n,S

Now, we have

∥(Ψ̂(S)
m )−1Φ̂mS

−1u∥2n,S =
1

n
u⊤S−1Φ̂⊤

m(Ψ̂
(S)
m )−1 Φ̂⊤

mS
−1Φ̂m︸ ︷︷ ︸

=nΨ
(S)
m

(Ψ̂(S)
m )−1Φ̂mS

−1u

= u⊤S−1Φ̂⊤
m(Ψ̂

(S)
m )−1Φ̂mS

−1u.

This implies that

Vm := E(∥(Ψ̂(S)
m )−1Φ̂mS

−1u∥2n,S) =
1

n
E
[
Tr

(
u⊤S−1Φ̂m

(
Φ̂⊤
mS

−1 Φ̂m

)−1
Φ̂⊤
mS

−1u

)]
=

1

n
E
[
Tr

(
S−1Φ̂m

(
Φ̂⊤
mS

−1 Φ̂m

)−1
Φ̂⊤
mS

−1uu⊤
)]

=
1

n
E
[
Tr

(
S−1Φ̂m

(
Φ̂⊤
mS

−1 Φ̂m

)−1
Φ̂⊤
mS

−1R

)]
.

We write it as Vm =
1

n
E
[
Tr
(
R1/2S−1Φ̂m(Φ̂

⊤
mSΦ̂m)

−1Φ̂⊤
mS

−1R1/2
)]
, whereR1/2 is a symmet-

ric square root of R. Now, R and S−1 are diagonalisable in the same orthonormal basis, meaning
that there exist P ∈ Mn(R) such that P⊤P = PP⊤ = In and R = PD1P

⊤, S−1 = PD2P
⊤

with D1 = diag((1− ρ), . . . , (1− ρ), 1+ (n− 1)ρ) and D2 = diag(1+ 1/n, . . . , 1+ 1/n, 1/n) (See
section 9). As as consequence

R1/2S−1 = P∆P⊤, ∆ = diag

(√
1− ρ(1 +

1

n
), . . . ,

√
1− ρ(1 +

1

n
),

√
1 + (n− 1)ρ

n

)
Now we note that for M a symmetric nonnegative matrix

Tr(P∆P⊤MP∆P⊤) = Tr(∆P⊤MP∆) =
n∑
i=1

∆2
i

[
PMP⊤

]
i,i
.

It is easy to see that PMP⊤ is also symmetric and nonnegative and thus
[
PMP⊤]

i,i
≥ 0. As

∆i ≤
√
2[D2]i using that√

(1− ρ)(1 +
1

n
) ≤

√
2,

√
1 + (n− 1)ρ

n
=

√
ρ+

1− ρ

n
≤ 1,

we obtain Tr(P∆P⊤MP∆P⊤) ≤ 2Tr(PD
1/2
2 P⊤MPD

1/2
2 P⊤). As a consequence,

Tr
(
R1/2S−1Φ̂m(Φ̂

⊤
mS

−1Φ̂m)
−1Φ̂⊤

mS
−1R1/2

)
≤ 2Tr

(
S−1/2Φ̂m(Φ̂

⊤
mS

−1Φ̂m)
−1Φ̂⊤

mS
−1/2

)
= 2m.

It follows that Vm ≤ 2m/n which gives the result.2
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Proof of Theorem 3.
To prove Theorem 3, we follow the same steps of in the proof of Theorem 2. Let us define

(44) Ωm,S =

{
∀t ∈ Sm, t ̸= 0,

∣∣∣∣∣∥t∥2n,S∥t∥2S
− 1

∣∣∣∣∣ ≤ 3

4

}
.

As in Proposition 4, it holds that

Ωm,S =

{
∥((Ψ(S)

m )−1/2Ψ̂(S)
m (Ψ(S)

m )−1/2 − Idm∥op ≤ 3

4

}
and under condition (28), we have: Λcm,S ⊂ Ωcm,S . Following the line of the proof of Theorem 2,
we get that the first part holds, as we can bound ∥b̂m,S∥2S by

∥b̂m∥2S ≤ (c⋆S)
2 n

(log(n))2
∥Y ∥2.

Then we just need to prove that P(Ωcm,S) ≤ cn−p.
The lines of the proof of Theorem 1 can also be followed with (16) which writes now

(45) ∥t∥2n,S = Zn(t) +
1

n
{E[t(X1)]}2 +

2

n
E[t(X1)]Vn(t)− (1− 1

n
)Un(t)

where Zn(t), Vn(t) and Un(t) are unchanged. As a consequence, we still rely on Ω
(1)
m and Ω

(2)
m

and Lemmas 3 and 4, leading to Ω
(1)
m ∩ Ω

(2)
m ⊂ Ωm,S . 2

Proof of Lemma 2. The proof of the Lemma follows the line of the proof of Proposition 3,
where we replace αn by 1 and cn by 1/n, as Ψ

(S)
m = Ψm + 1

nΞm. 2

9. Appendix

9.1. Properties of some Matrices. We state properties of matrices Σn(a, b) = (aij)1≤i,j≤n
such that aii = a for i = 1, . . . , n and aij = b for 1 ≤ i ̸= j ≤ n. The matrix Σn(a, b) is
symmetric and

Σn(a, b)− (a− b)In = Σn(b, b)

has rank 1, while Σn(a, b)1 = (a + (n − 1)b)1 Thus, (a − b) is eigenvalue of order n − 1 and
a+ (n− 1)b is the other eigenvalue. Therefore, Σn(a, b) is positive definite if and only if

(46) a− b > 0, a+ (n− 1)b > 0.

We obtain Σn(a, b)
−1 by solving the system Σn(a, b)x = y and find Σn(a, b)

−1 = Σn(α, β) with

(47) α =
a+ (n− 2)b

(a− b)[a+ (n− 1)b]
, β = − b

(a− b)[a+ (n− 1)b]

The eigenvalues of Σn(a, b)−1 are (a− b)−1, (a+ (n− 1)b)−1.
The product of two matrices Σn(a, b) and Σn(a

′, b′) is equal to Σn(A,B) with A = aa′ + (n−
1)bb′, B = ab′ + a′b+ (n− 2)bb′.

All matrices Σn(a, b) can be diagonalized using the same eigenbasis: ϵ1 = (1/
√
n)1, and

(ϵi)2≤i≤n an orthonormal basis of (Vect(ϵ1))⊥.
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9.2. Useful result. A proof of the following theorem can be found in Stewart and Sun (1990).

Theorem 4. Let A, B be (m × m) matrices. If A is invertible and ∥A−1B∥op < 1, then
Ã := A+B is invertible and it holds

∥Ã−1 −A−1∥op ≤
∥B∥op∥A−1∥2op
1− ∥A−1B∥op
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