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Abstract. We study non parametric drift estimation for an ergodic diffusion process
from discrete observations. The drift is estimated on a set A using an approximate
regression equation by a least squares contrast, minimized over finite dimensional sub-
spaces of L2(A, dx). The novelty is that the set A is non compact and the diffusion
coefficient unbounded. Risk bounds of a L2-risk are provided where new variance terms
are exhibited. A data-driven selection procedure is proposed where the dimension of the
projection space is chosen within a random set contrary to usual selection procedures.
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1. Introduction

Non parametric drift estimation for ergodic diffusion processes whether from contin-
uous or from discrete observations is a widely investigated subject and to some extent
thoroughly known. Nevertheless, gaps in this field remain and the aim of this paper is to
fill some of these. Two approaches are classically investigated. First, one can estimate the
drift function by kernel. This is done, for instance, by Kutoyants (2004), Dalalyan (2005)
or more recently by Aeckerle-Willems and Strauch (2018), Strauch (2015, 2016), Nickl
and Ray (2020). With this method, the estimation of the drift is not direct: one has to
estimate the product of the drift by the invariant density of the process and then divide
the resulting estimator by an estimator of the invariant density. There are no support
constraints with kernels but authors rather study pointwise risks than global L2-risks thus
getting around some difficulties. The second approach is based on least-squares and sieves.
An estimation set A is fixed and a collection of finite-dimensional subspaces of L2(A, dx)
is chosen. This leads by minimization of a least-squares contrast on each subspace, to a
collection of estimators of the drift restricted to the estimation set, indexed by the di-
mension of the projection space. The estimators of the drift are defined directly but here,
there is a support constraint as the drift is not estimated outside the estimation set. This
method was initiated by Birgé and Massart (1998), Barron et al. (1999), Baraud (2002),
for regression models, by Hoffmann (1999) and Comte et al. (2007) for diffusions. The
estimation set A is assumed to be compact and the drift function square integrable on
this set. This is a drawback of this approach. Moreover, on a compact set, the diffusion
coefficient which is a continuous function, is obviously bounded.
In this paper, we investigate the sieves method approach relaxing the compactness con-
straint on the estimation set. The estimation set may be equal to R+ or the whole real line.
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More precisely, we consider discrete observations with sampling interval ∆, (Xi∆)1≤i≤n+1,
of the one-dimensional diffusion process (Xt)t≥0, solution of

(1) dXt = b(Xt)dt+ σ(Xt)dWt, X0 = η,

where (Wt) is a Wiener process and η is a random variable independent of (Wt). Assume
that model (1) is in stationary regime with marginal distribution π(x)dx and exponentially
β-mixing. The asymptotic framework is that, as n tends to infinity, the sampling interval
∆ = ∆n tends to 0 while the total length time of observations n∆n tends to infinity
(high frequency data). The functions b, σ are unknown and we are concerned here with
nonparametric estimation of b. We only assume moment assumptions for b(X0), σ(X0)
and in particular, these two functions need not be bounded.

Drift estimation for diffusion models in high frequency framework share some features
with heteroscedastic regression function estimation. Setting

(2) Yi∆ =
X(i+1)∆ −Xi∆

∆
, Zi∆ =

1

∆
σ(Xi∆)

(
W(i+1)∆ −Wi∆

)
yields Yi∆ = b(Xi∆) + Zi∆ + residual term, where the expression of the residual term is
obtained using equation (1). This approximate regression equation is used to build a least-
squares contrast leading by minimization to a collection of estimators on an unrestricted
estimation set. Because the estimation set is unrestricted, the method quite differs from
the one in Comte et al. (2007). Estimators are expressed using non compactly supported
bases and the dimensions of the projection spaces are subject to a constraint which does
not exist in the compact case. A similar constraint was introduced by Cohen et al. (2013)
in the homoscedastic regression framework to obtain accuracy of regression function esti-
mators. We study L2-risk bounds for our drift estimators on a fixed projection space and
then propose a data-driven choice of the dimension by means of a random penalty. It is
noteworthy that decomposition (2) is not the same as in Comte et al. (2007) (see Remark
3.1). This allows us to obtain novelties especially in the variance terms of the L2-risk
bounds and in the penalty terms of the model selection procedure. Indeed, the penalty
involves no longer upper or lower bounds of unknown functions, but only terms which can
be more easily estimated.

Section 2 gives the framework and assumptions on the model. Section 3 concerns the
estimation of the drift function and is divided in several subsections. First, the approxi-
mate regression model is precised. Then, the projection estimators of b1A are built using a
collection of finite-dimensional subspaces of L2(A, dx) where the estimation set A is a gen-
eral Borel subset of R. Risk bounds are obtained based on the expectation of an empirical
norm and of the L2(A, π(x)dx)- norm. The variance term is completely new and differs
from the one obtained in Comte et al. (2007). Rates of convergence are discussed showing
that, in the case where σ is a bounded function, for an appropriate choice of the projection
dimension, our estimator is optimal. Comparison is done with respect to existing results
in the litterature. A data-driven procedure to select among the collection of estimators is
proposed. In the selection procedure, the dimension is selected via a penalization crite-
rion within a random set which is non standard in these methods and induces difficulties
in proofs. Section 4 is devoted to a simulation study. The examples of non compactly
supported bases that we propose are the Laguerre bases for A = R+ and the Hermite
bases for A = R which have been used in various contexts for nonparametric estimation
(see Comte and Genon-Catalot, 2015, Belomestny et al., 2016, Comte and Genon-Catalot,
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2020a-b, Comte et al., 2017, Mabon, 2017). Some concluding remarks are given in Section
5. Proofs are given in Section 6.

2. Assumptions on the diffusion model

Consider discrete observations with sampling interval ∆, (Xi∆)1≤i≤n+1, of the diffusion
process (Xt)t≥0, solution of (1) where (Wt) is a Wiener process and η is a random variable
independent of (Wt). The drift function b(.) is unknown and our aim is to propose non-
parametric estimators for it, relying on the sample (Xi∆)1≤i≤n+1. The diffusion coefficient
σ2(.) is also unknown and our estimation procedure will not depend on it. The asymptotic
setting is: ∆ = ∆n tends to 0 and n∆n tends to infinity as n tends to infinity. Without loss
of generality, we assume log(n∆n) ≥ 1. To simplify notations, we only write ∆ without
the subscript n. However, when speaking of constants, we mean quantities that depend
neither on n nor on ∆. We consider the following assumptions.

(A1) b, σ ∈ C1(R) and there exists L ≥ 0, such that, for all x ∈ R, |b′(x)|+ |σ′(x)| ≤ L.
(A2) The scale density

s(x) = exp

{
−2

∫ x

0

b(u)

σ2(u)
du

}
satisfies

∫
−∞ s(x)dx = +∞ =

∫ +∞
s(x)dx and the speed densitym(x) = 1/(σ2(x)s(x))

satisfies
∫ +∞
−∞ m(x)dx = M < +∞.

(A3) X0 = η has distribution π(x)dx given by π(x) = M−1m(x).

Under (A1), Equation (1) has a unique strong solution adapted to the filtration (Ft =
σ(η,Ws, s ≤ t), t ≥ 0). The functions b, σ have linear growth:

(3) ∃K,∀x ∈ R, |b(x)|+ |σ(x)| ≤ K(1 + |x|).

Under the additional assumption (A2), Model (1) admits a unique invariant probability
π(x)dx. And under (A3), (Xt) is strictly stationary and ergodic.

(A4) (Xt) is geometrically β-mixing: there exist constants K > 0 and θ > 0 such that:

(4) βX(t) ≤ Ke−θt,

where βX(t) =
∫ +∞
−∞ π(x)dx‖Pt(x, dx′) − π(x′)dx′‖TV denotes the β-mixing coef-

ficient of (Xt). The norm ‖.‖TV is the total variation norm and Pt denotes the
transition probability.

(A5) ‖π‖∞ < +∞ (‖π‖∞ = supx∈A π(x) denotes the sup norm on A).

In Veretennikov (1988) or Pardoux and Veretennikov (2001), sufficient conditions ensuring
(A4) may be found. Assumption (A5) is only used in Section 3.6. The following result
is used below (see Proposition A, in Gloter (2000)):

Proposition 2.1. Assume (A1)-(A3) and let f : R→ R be C1 and such that there exists
a constant γ ≥ 0 such that, for all x ∈ R, |f ′(x)| ≤ c(1 + |x|γ). If, for k an interger,

E|η|k(1+γ) < +∞,

(5) E( sup
s∈[t,t+h]

|f(Xs)− f(Xt)|k) ≤ chk/2(1 + E|η|k(1+γ)).

In particular, Proposition 2.1 applies for b and σ with γ = 0, under (A1).
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3. Drift estimation

In what follows, for a function h, we denote hA := h1A, ‖.‖ denotes the L2-norm, ‖.‖π
the norm in L2(π(x)dx) and ‖.‖2,m the Euclidian norm in Rm.

3.1. Approximate regression model for the drift. Consider Yi∆, Zi∆ defined in (2)

and set Ri∆ := R
(1)
i +R

(2)
i ,

R
(1)
i =

1

∆

∫ (i+1)∆

i∆
(σ(Xs)− σ(Xi∆))dWs, R

(2)
i =

1

∆

∫ (i+1)∆

i∆
(b(Xs)− b(Xi∆))ds.

The process (1) satisfies the following relation:

(6) Yi∆ = b(Xi∆) + Zi∆ +Ri∆.

Equation (6) is close to an heteroscedastic regression equation where Zi∆ plays the role
of the noise and Ri∆ is an additional residual term to take into account. This leads us
to apply part of the tools proposed for regression function estimation on non compact
support in Comte and Genon-Catalot (2020a-b) to the present diffusion context.

Remark 3.1. Decomposition (6) is slightly different from the one used in Comte et

al. (2007) which was Yi∆ = b(Xi∆) + Z̃i∆ + Ri∆,2, where Z̃i∆ = ∆−1
∫ (i+1)∆
i∆ σ(Xs)dWs.

The ”new” noise Zi∆ has simpler structure than Z̃i∆. This is important for the technical
tools used in the proofs (Talagrand deviation inequalities with coupling method instead
of direct martingale deviations).

3.2. Definition of the projection estimator of the drift. In this section, several
definitions and notations are common or close to the ones used in Comte and Genon-
Catalot (2020a-b) inducing some unavoidable repetitions for the text to be self-contained.
Consider model (1) with observations (Xi∆)1≤i≤n+1 decomposed as in (6). Let A ⊂ R and
let (ϕj , j = 0, . . . ,m−1) be an orthonormal system of A-supported functions belonging to
L2(A, dx). Define Sm = span(ϕ0, . . . , ϕm−1), the linear space spanned by (ϕ0, . . . , ϕm−1).
The ϕj ’s may depend on m but this is omitted in notations for simplicity.
We will use further on the following assumption:

(A6) For all j,
∫
ϕ2
j (x)π(x)dx < +∞, thus Sm ⊂ L2(A, π(x)dx), and the collection of

models Sm is nested, i.e. m ≤ m′ ⇒ Sm ⊂ Sm′ .
Define an estimator of the drift function b on A, element of Sm, by:

b̂m = arg min
t∈Sm

γn(t)

where γn(t) is a least-squares contrast given by

(7) γn(t) =
1

n

n∑
i=1

[
t2(Xi∆)− 2Yi∆t(Xi∆)

]
.

For functions s, t, we set

‖t‖2n =
1

n

n∑
i=1

t2(Xi∆), 〈s, t〉n :=
1

n

n∑
i=1

s(Xi∆)t(Xi∆) and 〈~u, t〉n =
1

n

n∑
i=1

uit(Xi∆)
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when ~u is the vector (u1, . . . , un)′, ~u ′ the transpose of ~u, and t a function. Let

Φ̂m = (ϕj(Xi∆))1≤i≤n,0≤j≤m−1,

and

(8) Ψ̂m = (〈ϕj , ϕk〉n)
0≤j,k≤m−1

=
1

n
Φ̂′mΦ̂m, Ψm =

(∫
ϕj(x)ϕk(x)π(x)dx

)
0≤j,k≤m−1

= E(Ψ̂m).

Set
−→
Y = (Y∆, . . . , Yn∆)′. Assuming that Ψ̂m is invertible almost surely (a.s.) yields

(9) b̂m =
m−1∑
j=0

â
(m)
j ϕj , with ~̂a(m) = (Φ̂′mΦ̂m)−1Φ̂′m

−→
Y =

1

n
Ψ̂−1
m Φ̂′m

−→
Y ,

where ~̂a(m) = (â
(m)
0 , . . . , â

(m)
m−1)′.

In what follows, the matrices Ψ̂m and Ψm play a central role for the comparability of
the norms ‖.‖π and ‖.‖n uniformly over a space Sm. Key tools are deviation inequalities
proved in Cohen al. (2013, 2019) and Comte and Genon-Catalot (2020a) for independent
sequences of random variables. We extend these to a discretely observed diffusion process.

3.3. Risk bounds for the drift estimator.
Notations. For M a matrix, we denote by ‖M‖op the operator norm defined as the square
root of the largest eigenvalue of MM ′. If M is symmetric, it coincides with sup{|λi|} where
λi are the eigenvalues of M .
Decomposition (6) allows to handle a not necessarily bounded volatility function. It in-
volves the empirical processes:

νn(t) =
1

n∆

n∑
i=1

t(Xi∆)σ(Xi∆)(W(i+1)∆ −Wi∆), Rn,k(t) =
1

n

n∑
i=1

t(Xi∆)R
(k)
i , k = 1, 2

(Rn,2 is the same as in Comte et al. (2007)). The following assumption is required:

(10) L(m) := sup
x∈A

m−1∑
j=0

ϕ2
j (x) < +∞.

One easily checks that L(m) does not depend on the choice of the L2(dx)-orthonormal
basis of Sm by taking two orthonormal bases and using the orthogonal matrix linking
them to obtain the same L(m). Note also that L(m) = supt∈Sm‖t‖=1 supx∈A t

2(x). Under

(A6), the spaces Sm are nested, and this implies that the map m 7→ L(m) is increasing.
Assuming Eη2 < +∞ and using (3) and (10), we define

(11) Ψm,σ2 :=

(∫
ϕj(x)ϕk(x)σ2(x)π(x)dx

)
0≤j,k≤m−1

.

To ensure the stability of the least-squares estimator, we must consider a truncated version
of b̂m given by

(12) b̃m = b̂m1{L(m)(‖Ψ̂−1
m ‖op∨1)≤cn∆/ log2(n∆)}, c =

θ(3 log(3/2)− 1)

C0

where C0 is a numerical constant, C0 ≥ 72. Actually, on the set {L(m)(‖Ψ̂−1
m ‖op ∨

1) ≤ cn∆/ log2(n∆)}, the eigenvalues (λi)1≤i≤m of Ψ̂m are such that inf1≤i≤m λi ≥
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L(m) log2(n∆)/(cn∆); thus, the matrix Ψ̂m is invertible.
The choice of c is done in Lemma 6.1, using Proposition 6.1 (i). Due to θ, the constant
c is unknown. To avoid this problem, for n large enough, we can change cn∆/ log2(n∆)
into Cn∆/ log2+ε(n∆) with ε > 0 and a known constant C.

We stress that, if Ψm (resp. Ψ̂m) is invertible, then ‖Ψ−1
m ‖op = supt∈Sm,‖t‖π=1 ‖t‖2 (resp.

‖Ψ̂−1
m ‖op = supt∈Sm,‖t‖n=1 ‖t‖2). Thus under (A6), m 7→ ‖Ψ−1

m ‖op (resp. m 7→ ‖Ψ̂−1
m ‖op)

is non-decreasing (see Proposition 2, Section 2.3 in Comte and Genon-Catalot (2020a)).
We prove:

Proposition 3.1. Let (Xi∆)1≤i≤n be observations drawn from model (6) under assump-
tions (A1)-(A4) and (10), with ∆ ≤ 1, ∆ = ∆n → 0 and n∆ → +∞ when n → +∞.

Assume that E(η4) < +∞. Consider the estimator b̃m of bA. Then for m such that

(13) L(m)(‖Ψ−1
m ‖op ∨ 1) ≤ cn∆

2 log2(n∆)
and m ≤ n∆

with c given in (12), we have

E[‖b̃m − bA‖2n] ≤ 7 inf
t∈Sm

‖bA − t‖2π +
64

n∆
Tr[Ψ−1/2

m Ψm,σ2Ψ−1/2
m ] + c1∆ +

c2

n∆
,

E[‖b̃m − bA‖2π] ≤ c3{ inf
t∈Sm

‖bA − t‖2π +
1

n∆
Tr[Ψ−1/2

m Ψm,σ2Ψ−1/2
m ] + ∆ +

1

n∆
},

where c1, c2, c3 are positive constants.

Condition (13) is a stability condition analogous to the one proposed by Cohen et al. (2013,
2019). If m is too close to n∆, the least squares approximation becomes inaccurate. Note

that, as for Ψ̂m, for m satisfying condition (13), Ψm is invertible and its eigenvalues are
lower bounded by 2L(m) log2(n∆)/cn∆. The condition m ≤ n∆ is actually included in
the first part of (13): indeed, if (θj , j = 0, . . . ,m− 1) is an orthonormal basis of Sm with

respect to L2(A, π(x)dx), and K(m) = supx∈A
∑m−1

j=0 θ2
j (x), then K(m) ≥ m and one can

prove that K(m) ≤ L(m)‖Ψ−1
m ‖op (see Lemma 4, section 6.3, in Comte and Genon-Catalot

(2020a)).
Under (A6), the bias term, inft∈Sm ‖bA−t‖2π decreases when m increases. The terms c1∆+
c2/(n∆) are residual terms tending to zero under our asymptotic framework. The novelty is

the variance term Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ]. It is non-decreasing and can be upper bounded in

several manners (see Proposition below). Note that if σ(x) ≡ σ, then Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m =

σ2Idm and Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ] = σ2m.

Proposition 3.2. Let m be an integer. Assume that Ψm is invertible and Eη2 < +∞.

(1) Under (A6), m 7→ Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ] is non-decreasing.

(2) If σ is bounded on A, Tr[Ψ−1/2
m Ψm,σ2Ψ−1/2

m ] ≤ ‖σA‖2∞m.
(3) Assume that (10) holds, then Tr[Ψ

−1/2
m Ψm,σ2Ψ

−1/2
m ] ≤ E[σ2

A(X0)]L(m)‖Ψ−1
m ‖op.

From (2), if σ is bounded on A (compact or not), we recover the result of Comte et al.
(2007), see the penalty term in Theorem 1 therein (which has order ‖σA‖∞m/(n∆)).
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3.4. Rates in the compact case. In this paragraph, we assume that A is compact.
Then we can work under

(14) 0 < π0 ≤ π(x) ≤ π1, ∀x ∈ A,
where π0 and π1 are two unknown fixed constants.

Proposition 7 in Comte and Genon-Catalot (2020a, Section 3.3) implies that

‖Ψ−1
m ‖op ≤ 1/π0.

In such a case, condition (13) contains all indices up to order n∆/ log2(n∆).
When A is compact, we can also assume that bA is square-integrable and that ‖σA‖∞ <

∞. Therefore

(15) inf
t∈Sm

‖bA − t‖2π ≤ π1 inf
t∈Sm

‖bA − t‖2 and Tr[Ψ−1/2
m Ψm,σ2Ψ−1/2

m ] ≤ ‖σA‖2∞m.

The result of Proposition 3.1 thus encompasses the result given in Proposition 1 of Comte
et al. (2007). Note that, in the latter paper, only the empirical risk is studied.

A benchmark for comparison with our framework is the result of Hoffmann (1999) and
we also refer to it in our paper Comte et al. (2007). Hoffmann considers a compact estima-
tion set A and a class of drift functions belonging to a ball of the Besov space Bα,2,∞(A).

He proves that the optimal rate obtained for the usual L2 risk is (n∆)−2α/(2α+1). The
square bias has order D−2α

m with Dm the dimension of the projection space Sm. In our
case, if bA belongs to a ball of the Besov space Bα,2,∞(A), it follows from the last bound in

Proposition 3.1 and from (15), that, if ∆ = o(1/(n∆)), and if mopt = (n∆)1/(2α+1), then

indeed, we obtain the optimal rate (n∆)−2α/(2α+1) for the L2(A)-risk, thanks to condition
(14); see also Inequality (16) in Comte et al. (2007). In this sense, we have optimality.

Note that other results exist; it is not always easy to compare our result with other
rates obtained as the class of functions involved to assess the bias rate is not the same
as ours and not comparable with ours. Moreover, the definition of the risk is not the
same as ours. For instance, for drift estimation in ergodic diffusion models continuously
observed throughout a time interval [0, T ], Dalalyan (2005) uses a weighted L2 risk, where
the weight function is π2 and not π and a class of weighted (by π2) Sobolev balls with
regularity s. In this framework, the square bias has order T−2s yielding an optimal rate
of order T−2s/(2s+1) (the correspondence here is T = n∆).

3.5. Rates in the non compact case. If A is not compact, we have to take into account
condition (13), study the risk bound obtained in Proposition 3.1 with the more precise
variance term Tr[Ψ−1

m Ψm,σ2 ]/n∆ and define an appropriate class of functions to assess the
square bias rate.
Following Comte and Genon-Catalot (2020a), we introduce the regularity set:

W s
π(A,R) =

{
h ∈ L2(A, π(x)dx),∀` ≥ 1, ‖h− hπ` ‖2π ≤ R`−s

}
,

where hπ` is the L2(A, π(x)dx)-orthogonal projection of h on S`. If bA has a given (un-
known) regularity s in the previous meaning, that is, if bA belongs to W s

π(A,R), the square
bias satisfies

inf
t∈Sm

‖bA − t‖2π = ‖bπm − bA‖2π ≤ Rm−s.

Let us justify the definition of the regularity space above by making an analogy. If we
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consider an orthonormal basis (ϕj , j ≥ 0) of L2(A, dx), it is rather standard to define
regularity spaces:

(16) W s(A,R) = {h ∈ L2(A, dx),
∑
j≥0

js〈h, ϕj〉2 ≤ R},

which describe the rate of decay of the coefficients of the function on the basis. If
h ∈ W s(A,R), then ∀` ≥ 1, ‖h − h`‖2 ≤ R`−s where h` is the L2(A, dx)-orthogonal
projection of h on S`.
In Comte and Genon-Catalot (2020a), in the homoscedastic regression model with n in-
dependent observations, Yi = b(Xi) + εi, projection estimators of the regression function
are studied. The rate obtained for the L2(f(x)dx)-risk (f is the commmon density of the

Xi’s) is n−s/s+1 if the regression function belongs to W s
f (A,R). This rate is optimal on

this class of functions as a lower bound is proved. This rate and its optimality is extended
to the heteroscedastic model in Comte and Genon-Catalot (2020b, Section 2.3), under the
previous conditions and for σ bounded from above and below.

In the simulation study below, the following non compactly supported bases are used
for implementation: if A = R, the Hermite basis and if A = R+, the Laguerre basis.
Definitions and elementary properties are recalled in this section and references are given
in the introduction. If A = R and (ϕj , j ≥ 0) is the Hermite basis (resp. if A = R+ and
(ϕj , j ≥ 0) is the Laguerre basis), then W s(A,R) is a Sobolev-Hermite (resp. Sobolev-
Laguerre) ball. The index s (and not 2s) is directly linked with regularity properties
of functions (see Section 7 of Comte and Genon-Catalot (2015) and Appendix A.2 of
Belomestny et al. (2016)).

Here, we do not assume that bA belongs to L2(A, dx) as this would be too restrictive
for the drift function of model (1). Thus, the definition of W s

π(A,R). Note that, if
h ∈W s(A,R) and moreover π is bounded, then h ∈W s

π(A,R‖π‖∞) as

‖h− hπ` ‖2π ≤ ‖π‖∞‖h− h`‖2.
Now assume that bA belongs to W s

π(A,R), then, the bound given in Proposition 3.1
becomes,

E
[
‖b̃m − bA‖2π

]
. Rm−s +

Tr[Ψ−1
m Ψm,σ2 ]

n∆
+

1

n∆
.

If σ is bounded on A (see Proposition 3.2) and if m? = (n∆)1/(s+1) satisfies (13), we find
the rate

E[‖b̃m? − bA‖2π] . (n∆)−s/(s+1).

This is coherent with the optimal rate obtained in the usual regression model. The con-
dition that m? = (n∆)1/(s+1) satisfies (13) is actually mainly a constraint on π, see the
discussion in Comte and Genon-Catalot (2020a), Section 3.2, 3.3, 3.4. Notes that these
rates are specific to Laguerre and Hermite Sobolev spaces.

In the general case, the best compromise between square bias and variance terms is
obtained defining m? by the implicit relation (m?)−s = Tr[Ψ−1

m?Ψm?,σ2 ]/n∆ and yields

a rate of implicit order (m?)−s. The order of the quantity Tr[Ψ−1
m Ψm,σ2 ] is empirically

illustrated in Figure 4 and seems to be close to cm, for c a constant, in rather general
context.
In any case, the choice of m? is not possible in practice, as s and R are unknown.
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Note that, it is proved in Comte and Genon-Catalot (2020a), Lemma 3 and Proposition 8
(Section 3.4), that, with the non compactly supported Laguerre and Hermite bases,

a) for all ∆ ≤ 1, for all m ≤ n∆, Ψ̂m is a.s. invertible;
b) for all m, Ψm is invertible and there exists a constant c? such that, ‖Ψ−1

m ‖2op ≥ c?m.
Property b) enlightens that ‖Ψ−1

m ‖op may have a real weight and increase the variance.

3.6. Model selection. We precise condition (10) as follows:

(B1) The collection of spaces Sm is such that, for each m, the basis (ϕ0, . . . , ϕm−1) of
Sm satisfies

(17) L(m) = ‖
m−1∑
j=0

ϕ2
j‖∞ ≤ c2

ϕm for c2
ϕ > 0 a constant.

This assumption is shared by most classical bases on a compact support (histograms,
trigonometric polynomials). For non compact support, we have in mind concrete examples
of orthonormal bases. First, for A = R+, the basis of L2(R+, dx) composed of Laguerre
functions (`j , j ≥ 0), and Sm = span(`0, . . . , `m−1); second, for A = R, the basis of
L2(R, dx) composed of Hermite functions (hj , j ≥ 0), and Sm = span(h0, . . . , hm−1) (see
Section 4.2 in Comte and Genon-Catalot (2018) and the simulation study below). Laguerre
and Hermite functions being uniformly bounded functions, condition (17) holds.
We define, for π upper-bounded on A by ‖π‖∞ (that is under (A5)), the collection:

(18) Mn∆ =

{
m ∈ N, c2

ϕm (‖Ψ−1
m ‖2op ∨ 1) ≤ d

4

n∆

log2(n∆)

}
, d =

θ

8C0 (‖π‖∞ ∨ 1 + 1
3)
,

where θ is defined in (4) and C0 ≥ 72 is the same as in c. The choice of d comes from
Lemma 6.4 and uses Proposition 6.1, (ii). Due to ‖π‖∞ and θ, the constant d is unknown.
As previously, for n large enough, we can take Cn∆/ log2+ε(n∆) instead of cn∆/ log2(n∆),
with ε > 0 and a known constant C. Note that the constraint on m in Mn∆ is stronger
than the one in (13) as m (‖Ψ−1

m ‖op ∨ 1) ≤ m (‖Ψ−1
m ‖2op ∨ 1).

Introducing the random collection of models M̂n∆ given by

(19) M̂n∆ =

{
m ∈ N, c2

ϕm(‖Ψ̂−1
m ‖2op ∨ 1) ≤ d

n∆

log2(n∆)

}
,

with d defined in (18), we define the data-driven selection of m by

(20) m̂ = arg min
m∈M̂n∆

{
−‖b̂m‖2n + κc2

ϕs
2m‖Ψ̂−1

m ‖op

n∆

}
, s2 = E[σ2(X0)],

where κ is a numerical constant.
As usual, in (20), m̂ is selected in order to realize automatically a bias-variance tradeoff.

Indeed, −‖b̂m‖2n is, up to a constant, an approximation of the squared bias. The second
part estimates an upper bound of the variance given in Proposition 3.2-(3).

The set M̂n∆ is the empirical counterpart of Mn∆ defined by (18), with constant
multiplied by 4. This is different from the usual selection procedures where the set of

possible values for choosing the dimension m is nonrandom. Note that for m ∈ M̂n∆,

b̂m = b̃m, and these are the only m which are considered.
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Theorem 3.1. Let (Xi∆)1≤i≤n be observations from model (6). Assume that (A1)-(A5)
and (B1) hold and that Eη6 < +∞. Assume that ∆ = ∆n → 0 and n∆ → +∞ when
n→ +∞. Then, there exists a numerical constant κ0 such that for κ ≥ κ0, we have

(21) E(‖b̂m̂ − bA‖2n) ≤ C inf
m∈Mn∆

[ inf
t∈Sm
‖bA − t‖2π + κc2

ϕs
2m‖Ψ−1

m ‖op

n∆
] + c1∆ +

c2 log2(n∆)

n∆
,

and

(22) E(‖b̂m̂− bA‖2π) ≤ C1 inf
m∈Mn∆

[ inf
t∈Sm

‖bA− t‖2π +κc2
ϕs

2m‖Ψ−1
m ‖op

n∆
] + c′1∆ +

c′2 log2(n∆)

n∆

where C,C1 are numerical constants and c1, c2, c
′
1, c
′
2 are constants depending on π, b, σ.

Inequalities (21) and (22) show that the estimator b̂m̂ automatically realizes the com-
promise between the squared bias and the variance bound. The results are a substantial
generalization of Theorem 1 in Comte et al. (2007). In Section 4, we explain how to
estimate s2 and how to fix κ.

The constant κ is a specific feature of this selection method. Theorem 3.1 states that,
for any drift function b satisfying the assumptions of the theorem, there exists a numerical
(universal) constant κ0 such that inequalities (21)-(22) hold for all κ ≥ κ0. The proof
provides a numerical value κ0 which is not optimal and actually much too large. Finding
the best value κ0 for a given statistical problem is not easy. For instance, this topic is the
subject of Birgé and Massart (2007) paper in the Gaussian white noise model where the
authors prove that κ > 1 is required in this case. Thus, for practical implementation of
the adaptive estimator, it is standard and commonly done that one starts by preliminary
simulations to obtain a value of κ as close as possible to the true one. Afterwards, this
value is fixed once and for all.

4. Simulation study

Samples (Xi∆)1≤i≤n were generated for (n,∆) = (100000, 0.02) (n∆ = 2000), for
(n,∆) = (50000, 0.01) (n∆ = 500) and for (n,∆) = (5000, 0.05) (n∆ = 250). The
following models are considered.

Example 1. Hyperbolic diffusion.

b(x) = −θx, σ(x) = γ
√

1 + x2, θ = 2, γ = 1/
√

2.

Example 2.

b(x) = (1− x2)

(
−k

2
atanh(x)− γ2

4
x

)
, σ(x) =

γ

2
(1− x2), with k = 2 and γ = 4.

Example 3.

b(x) = x

(
−k

2
log(x) +

γ2

8

)
, σ(x) =

γ

2
x, with k = 1 and γ = 1/2.

Example 4. Square-root process.

b(x) =
dγ2

4
− kx, σ(x) = σ

√
x+, d = 3, k = 2, γ = 1.
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Hermite Basis Trigonometric basis
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Ex.1 Ex.2 Ex.3 Ex.4
Hermite basis 0.95 0.98 0.29 0.78
Trigonometric basis 0.71 0.60 0.20 0.49

Figure 1. Plots: mean of m 7→ Tr[Ψ̂m,σ2Ψ̂−1
m ] over 200 paths in the

four examples (Ex.1 red-full, Ex.2 blue-dashed, Ex.3 green-dotted, Ex.4
magenta-dash-dotted) for the Hermite basis (left) and m = 1, . . . , 10; for
the trigonometric basis (right) with odd dimension, m = 3, 5, . . . 39. In all

cases, n∆ = 2000. Table: mean value over m of Tr[Ψ̂m,σ2Ψ̂−1
m ]/m for the

curves above.

The model of Example 1 is simulated by an Euler scheme with step δ and started for
simplicity with X0 = 0. We keep one out of 10 observations i.e. ∆ = 10δ. Assumptions

(A1)-(A2) hold for θ > −γ2/2. The invariant density is proportional to 1/(1+x2)1+(θ/γ2)

and
∫
x4π(x)dx < +∞ for θ > 3γ2/2. Setting Yt = arsinh(Xt) (where arsinh denotes the

inverse hyperbolic sine function), we see that the process (Yt) satisfies the conditions of
Pardoux and Veretennikov (2001) ensuring the exponential β-mixing property. Therefore,
(Xt) satisfies (A4).
The other examples are obtained from a d-dimensional Ornstein-Uhlenbeck process in
stationary regime, (Ut)t≥0, with dynamics given by

(23) dUt = −k
2
Utdt+

γ

2
dWt, U0 ∼ N (0,

γ2

4k
Id).

Exact simulation is generated with step ∆ by computing

U(p+1)∆ = e−
k∆
2 Up∆ + ε(p+1)∆, εk∆ ∼iid N (0,

γ2(1− e−k∆)

4k
Id).

Example 2 corresponds to Xt = tanh(Ut) where Ut is defined by (23) with d = 1. Example
3 is Xt = exp(Ut) where Ut is defined by (23) with d = 1. The process of example 4 is
Xt = ‖Ut‖22,d where ‖.‖2,d denotes the Euclidean norm in Rd and Ut is defined by (23)
with d = 3.
In Examples 2,3,4, the models are strictly stationary, ergodic and β-mixing but the func-
tions b, σ do not satisfy (A1), and this would require a specific study (to get inequalities
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Example 1 Example 2
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2.5

¯̂m = 5.2 (0.9), ¯̂mmax = 6.2 (0.5) ¯̂m = 4.2 (0.4), ¯̂mmax = 5 (0)
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−1 −0.5 0 0.5 1
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2.5

¯̂m = 6.0 (0.6), ¯̂mmax = 9.9 (1.0) ¯̂m = 5.2 (1.0), ¯̂mmax = 7 (0)

Example 1 Example 2

ŝ2 s̃2 ŝ2 s̃2

n∆ = 500 0.56(0.005) 0.57(0.004) 1.38(0.046) 1.41(0.048)

n∆ = 2000 0.55(0.003) 0.57(0.002) 1.33(0.021) 1.40(0.024)

Figure 2. Plots: 25 estimated curves in Hermite basis (dotted-green),
the true in bold (red), n∆ = 500, top and n∆ = 2000, bottom. Table:
Estimation of s2 = E[σ2(X)] associated with the paths in the plots (with
standard deviation in parenthesis).

of type (5), see Proposition 2.1). Nevertheless, we implement the estimation method.
Examples 3,4 provide nonnegative processes and allow to use Laguerre basis.

Implementation is done with the compactly supported trigonometric basis, and the
Hermite basis (A = R). For nonnegative processes, we also use the Laguerre basis (A =
R+). All these bases are easy to handle in practice, and we are more specifically interested
in the last two bases, which have non-compact support.
• The trigonometric basis on [a, b] is taken as f0(x) = 1/

√
b− a1[a,b](x), f2j−1(x) =√

2/(b− a) cos(π(x−a)/(b−a)) 1[a,b](x), f2j(x) =
√

2/(b− a) sin(π(x−a)/(b−a)) 1[a,b](x),
j = 1, . . . ,m/2 for even m. Note that we should have 2π instead of π in the bases
functions, but this implies a periodicity which is not true in general for the functions
under estimation; we correct it by this ”half-period” strategy, which implies that the basis
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Example 3 Example 4
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¯̂m = 3.4 (0.5), ¯̂mmax = 5 (0) ¯̂m = 3.9 (0.3), ¯̂mmax = 4.1 (0.2)
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0.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2

-1.5
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-0.5
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0.5

1

¯̂m = 3.8 (0.4), ¯̂mmax = 5 (0) ¯̂m = 4 (0), ¯̂mmax = 5.2 (0.4)

Example 3 Example 4

ŝ2 s̃2 ŝ2 s̃2

n∆ = 500 0.07(0.004) 0.07(0.004) 0.37(0.01) 0.37(0.01)

n∆ = 2000 0.07(0.002) 0.07(0.002) 0.36(0.007) 0.37(0.007)

Figure 3. Plots: 25 estimated curves in Laguerre basis (dotted-green),
the true in bold (red), n∆ = 500, top and n∆ = 2000, bottom. Table:
Estimation of s2 = E[σ2(X)] associated with the paths in the plots (with
standard deviation in parenthesis).

is no longer orthogonal (but almost). The collection of models (Sm = span{f0, . . . , fm−1})
is nested and it is easy to see that (17) holds with c2

ϕ = 1/(b− a). We take in practice a
the 2%-quantile of the Xi∆’s, and b the 98%-quantile.
• Laguerre basis, A = R+. The Laguerre polynomials (Lj) and the Laguerre functions
(`j) are given by

(24) Lj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, `j(x) =

√
2Lj(2x)e−x1x≥0, j ≥ 0.

The collection (`j)j≥0 constitutes a complete orthonormal system on L2(R+) satisfying

(see Abramowitz and Stegun (1964)): ∀j ≥ 0, ∀x ∈ R+, |`j(x)| ≤
√

2. The collection of
models (Sm = span{`0, . . . , `m−1}) is nested and obviously (17) holds with c2

ϕ = 2.
• Hermite basis, A = R. The Hermite polynomial and the Hermite function of order j are
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given, for j ≥ 0, by:

(25) Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
), hj(x) = cjHj(x)e−x

2/2, cj =
(
2jj!
√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R, dx). Moreover (see Indritz (1961),

Szegö (1959) p.242), ‖hj‖∞ ≤ Φ0,Φ0 ' 1/π1/4 ' 0.8160, so that (17) holds with c2
ϕ = Φ2

0.
The collection of models (Sm = span{h0, . . . , hm−1}) is obviously nested. Laguerre poly-
nomials were computed using formula (24) and Hermite polynomials with H0(x) ≡ 1,
H1(x) = x and the recursion Hn+1(x) = 2xHn(x)− 2nHn−1(x).

When computing the set M̂n, we observed that the value c2
ϕm‖Ψ̂−1

m ‖2op grows very fast.
Therefore, to apply our theory, we took

(26) M̂n∆ =
{
m ∈ N, c2

ϕm(‖Ψ̂−1
m ‖2op ∨ 1) ≤ Cn∆/ log2+ε(n∆)

}
,

with ε = 0.05 and very large value for C: C = 1012 for all bases. Numerically, we observe

that the resulting set (26) is M̂n∆ = {1, . . . , m̂max}, with m̂max between 5 and 10 with the
Laguerre or Hermite bases, and m̂max of order the maximal dimension (n∆)/ log2+ε(n∆)
in the trigonometric basis case (around 40 for n∆ = 2000).

Then we apply the selection procedure described in (20) and m̂ is selected as the mini-

mizer of −‖b̂m‖2n+p̂en(m) where the penalty is equal to p̂en(m) = κc2
ϕŝ

2m‖Ψ̂−1
m ‖op/(n∆).

Note that the term s2 := E[σ2(X0)] is replaced by an estimator, corresponding to residual
least squares associated with the estimator of b on the maximal dimension:

ŝ2 =
∆

n

n∑
i=1

[Yi∆ − b̂m̂max(Xi∆)]2.

In the Tables of Figures 2-3, we compare ŝ2 with s̃2 = (1/n)
∑n

i=1 σ
2(Xi∆), a pseudo-

estimator using the (unavailable) knowledge of the function σ2. The comparison is done

for the 25 paths generated for Figures 2-3: we can see that the values of ŝ2 are s̃2 are
nearly identical.

The constant κ is standardly calibrated by preliminary simulations and taken equal to
κ = 5.10−2 for the trigonometric basis and κ = 2.10−4 for the Laguerre and Hermite bases.
It is not surprising that κ must be chosen very small in these last cases: this is due to the

fact that m‖Ψ̂−1
m ‖op is large, as noted above. In relation with the variance term obtained

in the risk bounds of Proposition 3.1, we computed the mean of values of Tr[Ψ̂m,σ2Ψ̂−1
m ]

over 200 paths, for values of m going from 1 to 10 in the Hermite case, and odd dimen-
sions between 3 and 39 for the trigonometric case. The results, for the four examples,
are plotted in Figure 1: we obtain almost linear increase (which also holds path by path
for these values of m): this means that in all cases the traces are of order m with trends
estimated in the table associated to the plots, all between 0.2 and 1. In other words, the
product of the two matrices is rather stable and with reasonable orders, compared to the

ones obtained for ‖Ψ̂−1
m ‖op.The only exception is the Example 2 in the half-trigonometric

basis, and this is probaly due to the fact that the function looks also like trigonometric
function on a complete period.
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MISE Selected dimension
n∆ = 250 500 2000 250 500 2000

Ex.1 Hermite 3.24(3.44) 1.57(1.27) 0.49(0.40) 4.86(0.89) 5.22(0.91) 5.95(0.53)

Trigo 3.55(2.95) 1.62(1.25) 0.52(0.38) 4.68(1.63) 5.66(0.71) 6.05(0.50)

Ex.2 Hermite 15.4(9.41) 6.07(3.88) 4.38(1.81) 4.28(0.45) 4.25(0.44) 5.38(0.89)

Trigo 72.4(50.9) 7.84(4.39) 4.11(2.20) 3.35(1.48) 5.33(0.47) 6.00(0.05)

Ex.3 Laguerre 0.16(.17) 0.10(0.12) 0.02(0.02) 3.24(0.43) 3.47(0.50) 3.95(0.21)

Hermite 0.20(0.23) 0.13(0.16) 0.06(0.02) 2.99(0.09) 3.00(0.00) 3.00(0.00)

Trigo 0.24(0.22) 0.19(0.26) 0.05(0.05) 3.18(1.04) 4.09(1.26) 5.31(0.82)

Ex.4 Laguerre 1.97(2.82) 0.83(0.82) 0.29(0.47) 3.86(0.36) 3.95(0.21) 4.00(0.10)

Hermite 2.17(2.54) 1.13(0.92) 0.410.25) 3.76(0.43) 3.97(0.17) 4.00(0.00)

Trigo 4.69(4.99) 2.72(2.32) 0.90(0.72) 5.15(1.13) 6.08(1.41) 8.23(1.59)

Table 1. MISE on the intervals of observations multiplied by 100 (with
standard deviation multiplied by 100 in parenthesis), for the four examples
with different bases. Mean of selected dimensions (with std in parenthesis)
computed over 400 repetitions.

We present in Figures 2-3 beams of 25 estimators b̂m̂ corresponding to 25 simulated
trajectories of each model using the Hermite basis for Examples 1 and 2 and Laguerre basis
for Examples 3 and 4. The intervals of representation are [a, b] with a the 2%-quantile of the
Xi∆’s and b the 98% quantile, the same which were chosen as support of the trigonometric
basis. We stress that the value of m̂ is rather small: under each graph, we give the
mean ¯̂m computed over the 25 estimators and the mean of the maximal value m̂max, both
with standard deviation in parenthesis. It is noteworthy that the function is very well
reconstructed using a small number of coefficients. This is confirmed by Table 1, which
also gives the mean selected dimensions, but now over 400 iterations. Note that they have
comparable orders for all three bases, and slightly increase when n∆ increases, as expected
(asymptotically, the optimal dimension increases). The MISE obtained for 400 iterations
and the three sample sizes (n,∆) = (100000, 0.02) (n∆ = 2000), (n,∆) = (50000, 0.01)
(n∆ = 500) and (n,∆) = (5000, 0.05) (n∆ = 250) are also presented; they are computed
for each path on the same interquantile 2%-98% (random) interval and for the same data,
and then averaged. As expected, the MISEs decrease when n∆ increases, and the results
have the same orders for all bases. We note that the Laguerre basis gives better results
than the two others basis. Example 2 for small n∆ seems to be overpenalized and would
be improved by plugging a much smaller penalty constant. On the whole, Laguerre and
Hermite bases are preferable to trigonometric basis. Their graphical representation and
the range for computation of MISEs have to rely on the range of data, but their support
is not random and the estimation procedure more intrinsic, which is not the case for
compactly supported bases, whose support is in practice random.
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5. Concluding remarks

In this paper, we revisit the problem of nonparametric drift estimation for an ergodic
diffusion from discrete observations of the sample path. As in Comte et al. (2007), an
estimation set A is chosen. The drift function is estimated on A using an approximate
regression equation by a least squares contrast which is minimized over a finite dimensional
subspace Sm of L2(A, dx). This yields a collection of estimators indexed by the dimension
of the projection space. A data-driven procedure is proposed to select the best dimension
using a penalization criterion. While in Comte et al. (2007), the set Amust be compact and
the diffusion coefficient must be uniformly bounded, the novelty of the present paper is to
get rid of these two assumptions. This leads to considerable modifications in the method
of estimation and complicates the proofs a lot. First, we rely on a slightly different
approximate regression equation. This allows to modify the way of dealing with the
adaptive procedure. Second, the possible dimensions to define the projection estimators
are restricted to a set involving the inversion of a matrix which does not even appear
when the set A is compact. In the risk bounds, the variance term is different from the
case where A is compact and σ(.) bounded; it is very relevant in those cases also, as it
provides a natural estimator of unknown quantities (infinite norm of σ or lower bound
of the stationary density). Moreover, to define the adaptive procedure, the adequate
dimension is to be selected within a random set. This induces difficulties and a non
standard treatment of the classical method of penalization. The estimator obtained is
nevertheless adaptive in the sense that its L2-risk achieves the best compromise between
the squared bias and the new variance term.
An important question may be to look at rates of convergence and optimality in this new
setting. This is treated in the case of the simple regression model with independent data
on non compact support in Comte and Genon-Catalot (2020a) and is worth of interest in
the diffusion context.
Estimation of σ2 could be investigated too under the same set of assumptions but leads
to rather lengthy developments.

6. Proofs

We denote by x . y, x ≤ cy for some constant c which does not depend on n,∆,m.

6.1. Preliminary properties. Consider the set where the empirical and L2(A, π(x)dx)-
norms on Sm are equivalent:

(27) Ωm(u) =

{
sup

t∈Sm, t 6=0

∣∣∣∣‖t‖2n‖t‖2π − 1

∣∣∣∣ ≤ u
}
.

We generalize to the diffusion context Proposition 3 of Comte and Genon-Catalot (2020a)(see
also Theorem 1 of Cohen et al. (2013) for part (i)).

Proposition 6.1. Let (Xi∆)i be a discrete sampling of the process (Xt) given by (1) and
assume (A1)-(A4) (thus (Xi∆)i is strictly stationary and geometrically β-mixing with β-
mixing coefficients satisfying β(i) = βX(i∆) ≤ Ke−θi∆ for some constants K > 0, θ > 0).
Consider a basis satisfying (10) and let Idm denote the m×m identity matrix.
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(i) Assume that Ψm is invertible. For Ψ̂m defined by Equation (8), for all u ∈ [0, 1]

P(Ωm(u)c) = P
[
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op > u

]
≤ 4m exp

(
− n∆θ c(u)

12 log(n∆) L(m)(‖Ψ−1
m ‖op ∨ 1)

)
+

θ

6(n∆)5
,

where c(u) = u+ (1− u) log(1− u).
(ii)If in addition (A5) holds, then, for all u > 0,

P
[
‖Ψm − Ψ̂m‖op ≥ u

]
≤ 4m exp

(
− n∆θu2/2

12L(m) log(n∆) (‖π‖∞ ∨ 1 + 2u/3)

)
+

θ

6(n∆)5
.

6.2. Proof of Proposition 6.1. For t =
∑m−1

j=0 xjϕj in Sm, ‖t‖2π = ~x′Ψm~x, ‖t‖2n =

~x′Ψ̂m~x. Thus,

sup
t∈Sm,‖t‖π=1

∣∣∣∣∣ 1n
n∑
i=1

[t2(Xi)− Et2(Xi)]

∣∣∣∣∣ = sup
~x∈Rm,‖Ψ1/2

m ~x‖2,m=1

∣∣∣~x′Ψ̂m~x− ~x′Ψm~x
∣∣∣

= sup
~u∈Rm,‖~u‖2,m=1

∣∣∣~u′Ψ−1/2
m (Ψ̂m −Ψm)Ψ−1/2

m ~u
∣∣∣ = ‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op.

Hence,

(28) Ωm(u)c =
{
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op > u

}
.

Now, we consider the coupling method and the associated variables (X∗i∆) with Berbee’s
Lemma, see Berbee (1979), with the method described in Viennet (1997, Prop.5.1 and its
proof p.484). Assume for simplicity that n = 2pnqn for integers pn, qn. Then there exist
random variables X∗i∆, i = 1, ..., n satisfying the following properties:

• For ` = 0, ..., pn − 1, the random vectors

~X`,1 =
(
X(2`qn+1)∆, ..., X(2`+1)qn∆

)′
and ~X∗`,1 =

(
X∗(2`qn+1)∆, ..., X

∗
(2`+1)qn∆

)′
have the same distribution, and so have the random vectors

~X`,2 =
(
X[(2`+1)qn+1]∆, ..., X(2`+2)qn∆

)′
and ~X∗`,2 =

(
X∗[(2`+1)qn+1]∆, ..., X

∗
(2`+2)qn∆

)′
.

• For ` = 0, ..., pn − 1,

(29) P
[
~X`,1 6= ~X∗`,1

]
≤ β(qn) = βX(qn∆) and P

[
~X`,2 6= ~X∗`,2

]
≤ βX(qn∆).

• For each δ ∈ {1, 2}, the random vectors ~X∗0,δ, ...,
~X∗pn−1,δ are independent.

Then let Ω∗ = {Xi∆ = X∗i∆, i = 1, . . . , n} and write that

P
[
‖Idm −Ψ−1/2

m Ψ̂mΨ−1/2
m ‖op > u

]
≤ P

[
{‖Idm −Ψ−1/2

m Ψ̂mΨ−1/2
m ‖op > u} ∩ Ω∗

]
+P[(Ω∗)c].(30)

Using the definition of the variables X∗i∆, we get P[(Ω∗)c] ≤ 2pnβX(qn∆) ≤ 2pne
−θqn∆.
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Choosing qn∆ = 6 log(n∆)/θ, thus 2pn = n/qn = n∆θ/6 log(n∆), yields

(31) P[(Ω∗)c] ≤ θn∆

6 log(n∆)(n∆)6
≤ θ

6(n∆)5
.

Now, we write Sm = (1/2)(Sm,1 + Sm,2) where Sm is given by

Sm = Ψ−1/2
m Ψ̂mΨ−1/2

m − Idm =
1

n

n∑
i=1

{Km(Xi∆)− E [Km(Xi∆)]},

(32) Km(Xi∆) = Ψ−1/2
m K̃m(Xi∆)Ψ−1/2

m , K̃m(Xi∆) = (ϕj(Xi∆)ϕk(Xi∆))0≤j,k≤m−1,

with obviously E [Km(Xi∆)] = Idm. Here, Sm,1 is built with the ~X`,1:

Sm,1 =
1

pn

pn−1∑
`=0

1

qn

qn∑
r=1

{Km(X(2`qn+r)∆)− E(Km(X(2`qn+r)∆))}

and Sm,2 is analogously defined with the ~X`,2. We have

P
[
{‖Idm −Ψ−1/2

m Ψ̂mΨ−1/2
m ‖op > u} ∩ Ω∗

]
= P [{‖Sm,1 + Sm,2‖op > 2u} ∩ Ω∗]

≤ P
[
‖S∗m,1‖op > u

]
+ P

[
‖S∗m,2‖op > u

]
,(33)

where S∗m,δ, δ = 1, 2 are built on the ~X∗`,δ. The two terms are similar so we only treat one.
We write

S∗m,1 =

pn−1∑
`=0

G∗` − Idm where G∗` =
1

pn

1

qn

qn∑
r=1

Km(X∗(2`qn+r)∆).

By (32), we have ‖G∗`‖op ≤ L(m)‖Ψ−1
m ‖op/pn. Then, as in Theorem 1 in Cohen et

al. (2013), we use the Chernoff bound of Tropp (2015) and we get

P(‖S∗m,1‖op > u) ≤ 2m exp

(
− c(u)pn

L(m)‖Ψ−1
m ‖op

)
.

Using the definition of pn, gives the result (i) of Proposition 6.1.

To prove (ii), we proceed similarly and bound P
[
{‖Ψm − Ψ̂m‖op ≥ u} ∩ Ω∗

]
. We

write S̃m = (1/2)(S̃m,1 + S̃m,2) where (K̃m is defined by (32)):

S̃m =
1

n

n∑
i=1

{K̃m(Xi∆)− E
[
K̃m(Xi∆)

]
} = Ψ̂m −Ψm,

S̃m,1 =
1

pn

pn−1∑
`=0

1

qn

qn∑
r=1

{K̃m(X(2`qn+r)∆)− E(K̃m(X(2`qn+r)∆))}

is built with the ~X`,1 and S̃m,2 is analogously defined with the ~X`,2. As above,

P
[
{‖Ψm − Ψ̂m‖op ≥ u} ∩ Ω∗

]
≤ P

[
‖S̃∗m,1‖op ≥ u

]
+ P

[
‖S̃∗m,2‖op ≥ u

]
,(34)

where S̃∗m,δ, for δ = 1, 2 are built on the ~X∗`,δ. We treat only the first term applying

Tropp’s result to S̃∗m,1 which is a sum of pn independent matrices.
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It is clear that for all `, r, ‖K̃m(X∗(2`qn+r)∆)‖op ≤ L(m) a.s. and thus

1

pnqn
‖
qn∑
r=1

K̃m(X∗(2`qn+r)∆)− E(K̃m(X∗(2`qn+r)∆))‖op ≤ 2
L(m)

pn
=

24

θ

L(m) log(n∆)

n∆
:= L.

Now, we must bound the variance of S∗m,1. We have

ν(S̃∗m,1) =
1

pn
sup

‖~x‖2,m=1
E

 1

q2
n

∥∥∥∥∥
[
qn∑
r=1

(K̃m(X∗r∆)− E(K̃m(X∗r∆)))

]
~x

∥∥∥∥∥
2

2,m


Next,

Ẽ1 = E

 1

q2
n

∥∥∥∥∥
[
qn∑
r=1

(K̃m(X∗r∆)− E(K̃m(X∗r∆)))

]
~x

∥∥∥∥∥
2

2,m


=

1

q2
n

m−1∑
j=0

Var

[
qn∑
r=1

m−1∑
k=0

ϕj(Xr∆)ϕk(Xr∆)xk

]

=
1

qn

m−1∑
j=0

qn∑
r=1

Var

[
m−1∑
k=0

ϕj(Xr∆)ϕk(Xr∆)xk

]
=

m−1∑
j=0

Var

[
m−1∑
k=0

ϕj(Xr∆)ϕk(Xr∆)xk

]
Therefore, for ‖x‖2,m = 1,

Ẽ1 ≤
m−1∑
j=0

E

(m−1∑
k=0

ϕj(Xr∆)ϕk(Xr∆)xk

)2
 ≤ L(m)E

(m−1∑
k=0

ϕk(Xr∆)xk

)2


= L(m)

∫ (m−1∑
k=0

ϕk(u)xk

)2

π(u)du ≤ L(m)‖π‖∞.

Thus, ν(S̃∗m,1) ≤ L(m) ‖π‖∞/pn = (12/θ)(L(m) log(n∆)/n∆) using the definition of qn.

Finally, applying Theorem 6.1 given in appendix and joining the analogous of (30), (31),

(34), the value of L and the bound on ν(S̃∗m,1) gives (ii). �

6.3. Proof of Proposition 3.1. We define the sets

Λm =

{
L(m)(‖Ψ̂−1

m ‖op ∨ 1) ≤ c
n∆

log2(n∆)

}
and Ωm := Ωm(1/2) =

{∣∣∣∣‖t‖2n‖t‖2π − 1

∣∣∣∣ ≤ 1

2
,∀t ∈ Sm

}
.

Below, we prove the following lemma

Lemma 6.1. Under the assumptions of Proposition 3.1, for m satisfying (13), we have

P(Λcm) . 1/(n∆)5, P(Ωc
m) . 1/(n∆)5,

for any c ≤ θ(3 log(3/2)−1)
6×12 .

Now, we write

‖b̃m − bA‖2n = ‖b̂m − bA‖2n1Λm + ‖bA‖2n1Λcm

= ‖b̂m − bA‖2n1Λm∩Ωm + ‖b̂m − bA‖2n1Λm∩Ωcm + ‖bA‖2n1Λcm .(35)
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We bound successively the expectation of the three terms.

• Study of E(‖b̂m − bA‖2n1Λm∩Ωm).
The following equality holds, for all functions s, t inSm:

(36) γn(t)− γn(s) = ‖t− bA‖2n − ‖s− bA‖2n − 2νn(t− s)− 2Rn,1(t− s)− 2Rn,2(t− s).

Thus γn(b̂m) ≤ γn(bm), for any function bm in Sm, implies

(37) ‖b̂m − bA‖2n ≤ ‖bm − bA‖2n + 2νn(b̂m − bm) + 2Rn,1(b̂m − bm) + 2Rn,2(b̂m − bm).

We first study the last term. We have

2Rn,2(b̂m − bm) ≤ 1

8
‖b̂m − bm‖2n +

8

n∆2

n∑
k=1

(∫ (k+1)∆

k∆
(b(Xs)− b(Xk∆))ds

)2

Now, using (5) for f = b, we get

E

(∫ (k+1)∆

k∆
(b(Xs)− b(Xk∆))ds

)2

≤ ∆

∫ (k+1)∆

k∆
E[(b(Xs)− b(Xk∆))2]ds

≤ c∆3(1 + Eη2).

Thus, we have:

2E
[
Rn,2(b̂m − bm)1Λm∩Ωm

]
≤ 1

8
E[‖b̂m − bm‖2n1Λm∩Ωm ] + 8c′∆

≤ 1

4
E[‖b̂m − bA‖2n1Λm∩Ωm ] +

1

4
E[‖bA − bm‖2n1Λm∩Ωm ] + 8c′∆.(38)

For the two other terms to study in (37), we write

2E
[
(νn(b̂m − bm) +Rn,1(b̂m − bm))1Λm∩Ωm

]
≤ E

[
1

8
‖b̂m − bm‖2π1Λm∩Ωm + 8 sup

t∈Sm,‖t‖π=1
[νn(t) +Rn,1(t)]2

]
Then, by the definition of Ωm, we have

E
[

1

8
‖b̂m − bm‖2π1Λm∩Ωm

]
≤ E

[
1

4
‖b̂m − bm‖2n1Λm∩Ωm

]
≤ E

[
1

2
‖b̂m − bA‖2n1Λm∩Ωm

]
+ E

[
1

2
‖bA − bm‖2n1Λm∩Ωm

]
.(39)

Moreover

8E( sup
t∈Sm,‖t‖π=1

[νn(t) +Rn,1(t)]2]) ≤ 16E( sup
t∈Sm,‖t‖π=1

ν2
n(t) + sup

t∈Sm,‖t‖π=1
R2
n,1(t)).

Now the following result holds.

Lemma 6.2. Under the assumptions of Proposition 3.1, we have

(40) E

(
sup

t∈Sm,‖t‖π=1
ν2
n(t)

)
=

1

n∆
Tr[Ψ−1/2

m Ψm,σ2Ψ−1/2
m ],
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(41) E( sup
t∈Sm,‖t‖π=1

R2
n,1(t)) ≤ C∆.

Therefore, gathering (37), (38), (39), (40) and (41) we get, for m satisfying (13),

1

4
E
[
‖b̂m − bA‖2n1Λm∩Ωm

]
≤ 7

4
E
[
‖bm − bA‖2n1Λm∩Ωm

]
+

16

n∆
Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
+ c1∆.

• Study of E(‖bA‖2n1Λcm).

We use Lemma 6.1. By the Cauchy-Schwarz inequality, E(‖bA‖2n1Λcm) ≤ cE1/2[b4(X0)]/(n∆)5/2

with the bound on P(Λcm) given in Lemma 6.1.

• Study of E(‖b̂m − bA‖2n1Λm∩Ωcm).
We introduce the operator Πm of orthogonal projection, for the scalar product of Rn, onto
the subspace {(t(X∆), . . . , t(X(n∆)), t ∈ Sm} of Rn and denote by ΠmbA the projection of
~bA = (bA(X∆), . . . , bA(Xn∆))′. We can write:

(42) ‖b̂m − bA‖2n = ‖b̂m −ΠmbA‖2n + ‖ΠmbA − bA‖2n ≤ ‖b̂m −ΠmbA‖2n + ‖bA‖2n.
Recall that (see (6)) Yk∆ = b(Xk∆) + Ek∆ with Ek∆ = Zk∆ + Rk∆. Elementary compu-
tations yield:

ΠmbA = (
m−1∑
j=0

ã
(m)
j ϕj(Xk∆), k = 1, . . . , n)′ with ~̃a(m) =

1

n
Ψ̂−1
m Φ̂′m

~bA,

while b̂m = (
∑m−1

j=0 â
(m)
j ϕj(Xk∆), k = 1, . . . , n)′ with ~̂a(m) = 1

nΨ̂−1
m Φ̂′m

~Y . Therefore,

setting ~E = (R∆ + Z∆, . . . , Rn∆ + Zn∆)′, we have

‖b̂m −ΠmbA‖2n =
1

n

n∑
i=1

m−1∑
j=0

(â
(m)
j − ã(m)

j )ϕj(Xi∆)

2

= (~̂a(m) − ~̃a(m))′Ψ̂m(~̂a(m) − ~̃a(m))

=
1

n2
~E′Φ̂mΨ̂−1

m (Φ̂m)′ ~E ≤ ‖Ψ̂−1
m ‖op‖(Φ̂m)′ ~E/n‖22,m,

where ‖~x‖22,k = x2
1 + · · ·+ x2

k denotes the Eucidean norm of the vector ~x = (x1, . . . , xk)
′ in

Rk.
On Λm, ‖Ψ̂−1

m ‖op ≤ cn∆/(L(m) log2(n∆)). Consequently,

E
[
‖b̂m −ΠmbA‖2n1Λm∩Ωcm

]
≤ c

n∆

L(m) log2(n∆)
E1/2(‖(Φ̂m)′ ~E/n‖42,m)P1/2(Ωc

m)

We can prove the following Lemma:

Lemma 6.3. Under the assumptions of Proposition 3.1, we have for C > 0 a constant,

E(‖(Φ̂m)′ ~E/n‖42,m) ≤ CmL2(m)(
∆2

n3
+

1

(n∆)2
).

Using Lemma 6.3, the bound on P(Ωc
m) given in Lemma 6.1 and the fact that m ≤ n∆,

we get E(‖b̂m − bA‖2n1Λm∩Ωcm) . 1/(n∆)2, and E(‖bA‖2n1Λm∩Ωcm) . E1/2[b4(X0)]/(n∆)5/2.
Gathering the three bounds and plugging them in (35) implies the first result of Proposi-
tion 3.1.
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To get the result in L2(π)-norm, we write analogously:

(43) ‖b̃m − bA‖2π = ‖b̂m − bA‖2π1Λm∩Ωm + ‖b̂m − bA‖2π1Λm∩Ωcm + ‖bA‖2π1Λcm .

For any t ∈ Sm, we have using (x+ y)2 ≤ (1 + 1/θ)x2 + (1 + θ)y2 with θ = 4,

‖b̂m − bA‖2π1Λm∩Ωm ≤ 5

4
‖b̂m − t‖2π1Λm∩Ωm + 5‖t− bA‖2π1Λm∩Ωm

≤ 5

2
‖b̂m − t‖2n1Λm∩Ωm + 5‖t− bA‖2π1Λm∩Ωm ,

by using the definition of Ωm. We insert bA again and get:

‖b̂m − bA‖2π1Λm∩Ωm ≤ 5‖b̂m − bA‖2n1Λm∩Ωm + 5‖bA − t‖2n1Λm∩Ωm + 5‖t− bA‖2π1Λm∩Ωm .

Therefore taking expectation and applying the first result of Proposition 3.1 yield

E
(
‖b̂m − bA‖2π1Λm∩Ωm

)
≤ 45 inf

t∈Sm
(‖t− bA‖2π) + 5× 64

Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ]

n∆
+ c∆,

for c a constant. Next, we study E
(
‖b̂m − bA‖2π1Λm∩Ωcm

)
+ E(‖bA‖2π1Λcm). For the first

term, we write that ‖b̂m − bA‖2π ≤ 2(‖b̂m‖2π + ‖bA‖2π) and

‖b̂m‖2π =

∫ m−1∑
j=0

âjϕj(x)

2

π(x)dx = (~̂a(m))′Ψm
~̂a(m) ≤ ‖Ψm‖op‖~̂a(m)‖22,m.

First, under ‖
∑m−1

j=0 ϕ2
j‖∞ ≤ L(m), we get

‖Ψm‖op = sup
‖~x‖2,m=1

~x′Ψm~x = sup
‖~x‖2,m=1

∫ m−1∑
j=0

xjϕj(u)

2

π(u)du

≤ sup
‖~x‖2,m=1

∫ m−1∑
j=0

x2
j

m−1∑
j=0

ϕ2
j (u)

π(u)du ≤ L(m).

Next, ‖~̂a(m)‖22,m = (1/n2)‖Ψ̂−1
m Φ̂′m

~Y ‖22,m ≤ (1/n2)‖Ψ̂−1
m Φ̂′m‖2op‖~Y ‖22,n and

‖Ψ̂−1
m Φ̂′m‖2op = λmax

(
Ψ̂−1
m Φ̂′mΦ̂mΨ̂−1

m

)
= nλmax(Ψ̂−1

m ) = n‖Ψ̂−1
m ‖op

Therefore, on Λm we have L(m)(‖Ψ̂−1
m ‖op ∨ 1) ≤ cn∆, and thus

‖b̂m‖2π ≤
L(m)‖Ψ̂−1

m ‖op

n

(
n∑
i=1

Y 2
i∆

)
. ∆

(
n∑
i=1

Y 2
i∆

)
.

Then as E[(
∑n

i=1 Y
2
i∆)2] ≤ n2E(Y 4

∆), we get

E(‖b̂m‖2π1Λm∩Ωcm) ≤
√

E(‖b̂m‖4π)P(Ωc
m) . E1/2(Y 4

∆)n∆P1/2(Ωc
m) . 1/(n∆)

as E[Y 4
∆] . ∆2. On the other hand E(‖bA‖2π1Ωcm) ≤ ‖bA‖2πP(Ωc

m) . 1/(n∆)5. Thus

E
(
‖b̂m − bA‖2π1Ωcm

)
. 1/(n∆). Joining the bounds for the three terms of (43) ends the

proof of the second Inequality of Proposition 3.1. �
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6.4. Proof of Lemma 6.1. We use Proposition 6.1, (i) for u = 1/2 and condition (10)
to get that

P(Ωc
m) = P(Ωm(1/2)c) ≤ 4n∆ exp

[
−θ(3 log(3/2)− 1) log n∆

24c/2

]
+

θ

6(n∆)5
.

1

(n∆)5

for c ≤ (θ(3 log(3/2) − 1))/(6 × 12), see also Cohen et al. (2019) for the change of the
constant 1 − log(2) into 3 log(3/2) − 1. Besides, in Comte and Genon-Catalot (2020a),
Lemma 5, it is proved that P(Λcm) ≤ P(Ωc

m). The proof of Lemma 6.1 is thus complete. �

6.5. Proof of Lemma 6.2. • Proof of equality (40).
Write that

sup
t∈Sm,‖t‖π=1

ν2
n(t) = sup

t∈Sm,‖Ψ1/2
m ~a‖2,m=1,t=

∑m−1
j=0 ajϕj

〈−→σε, t〉2n

where −→σε is the n-dimensional vector with coordinates σ(Xi∆)εi, i = 1, . . . n and εi =

(W(i+1)∆−Wi∆)/∆. Let t =
∑m−1

j=0 ajϕj where ~a = Ψ
−1/2
m ~u, that is aj =

∑m−1
k=0 [Ψ

−1/2
m ]j,kuk

and ‖~u‖2,m = 1. Then t =
∑m−1

k=0 uk(
∑m−1

j=0 [Ψ
−1/2
m ]j,kϕj). By the Cauchy-Schwarz inequal-

ity, we have 〈−→σε, t〉2n ≤
∑m−1

k=0 〈
−→σε,
∑m−1

j=0 [Ψ
−1/2
m ]j,kϕj〉2n, and more precisely,

sup
t∈Sm,‖Ψ1/2

m ~a‖2,m=1

〈−→σε, t〉2n =

m−1∑
k=0

〈−→σε,
m−1∑
j=0

[Ψ−1/2
m ]j,kϕj〉2n.

Therefore,

E

 sup
t∈Sm,‖Ψ1/2

m ~a‖2,m=1

〈−→σε, t〉2n

 =
m−1∑
k=0

E

〈−→σε,m−1∑
j=0

[Ψ−1/2
m ]j,kϕj〉2n

 .

Then using that, for any bounded function ψ, E[εiεkψ(Xi∆)ψ(Xk∆)] is equal to 0 if i 6= k
and equal to E(ψ2(X0))/∆ if i = k, we get

E

〈−→σε,m−1∑
j=0

[Ψ−1/2
m ]j,kϕj〉2n

 =
1

n∆
E

σ2(X0)

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj(X0)

2
=

1

n∆

∑
0≤j,`≤m−1

[Ψ−1/2
m ]j,k[Ψ

−1/2
m ]`,k[Ψm,σ2 ]j,`.

We thus obtain equality (40) as

E

 sup
t∈Sm,‖Ψ1/2

m ~a‖2,m=1

〈−→σε, t〉2n

 =
1

n∆

∑
0≤j,k,`≤m−1

[Ψ−1/2
m ]j,k[Ψ

−1/2
m ]`,k[Ψm,σ2 ]j,`

=
1

n∆
Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
.

• Proof of bound (41). Now write

sup
t∈Sm,‖t‖π=1

R2
n,1(t) = sup

t∈Sm,‖Ψ1/2
m ~a‖2,m=1,t=

∑m−1
j=0 ajϕj

R2
n,1(t).
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Let t =
∑m−1

j=0 ajϕj where ~a = Ψ
−1/2
m ~u, ‖~u‖2,m = 1. Then (as above):

t =
m−1∑
k=0

uk

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj

 and R2
n,1(t) ≤

m−1∑
k=0

R2
n,1

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj


Therefore,

E

 sup
t∈Sm,‖Ψ1/2

m ~a‖2,m=1

R2
n,1(t)

 ≤ m−1∑
k=0

E

R2
n,1

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj

 .
Then using that the

∫ (i+1)∆
i∆ (σ(Xs) − σ(Xi∆))dWs and Xj∆, j ≤ i are uncorrelated and

the terms are centered, and that the process (Xt) is stationary, we get

E

R2
n,1

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj

 =
1

n
E

R(1)
0

m−1∑
j=0

[Ψ−1/2
m ]j,kϕj(X0)

2 .
Therefore,

E

(
sup

t∈Sm,‖t‖π=1
R2
n,1(t)

)
≤ 1

n

m−1∑
k=0

∑
0≤j,`≤m−1

[Ψ−1/2
m ]j,k[Ψ

−1/2
m ]`,kE

(
ϕj(X0)ϕ`(X0)(R

(1)
0 )2

)

≤ 1

n

∑
0≤j,`≤m−1

(
m−1∑
k=0

[Ψ−1/2
m ]j,k[Ψ

−1/2
m ]`,k

)
E
(
ϕj(X0)ϕ`(X0)(R

(1)
0 )2

)
=

1

n

∑
0≤j,`≤m−1

[Ψ−1
m ]j,`E

(
ϕj(X0)ϕ`(X0)(R

(1)
0 )2

)

≤ L(m)‖Ψ−1
m ‖op

n∆2
E

[(∫ ∆

0
(σ(Xs)− σ(X0))dWs

)2
]
.
L(m)‖Ψ−1

m ‖op

n

since by (5) for f = σ, E
[∫ ∆

0 (σ(Xs)− σ(X0))2ds
]
. ∆2(1 + Eη2). Now, for m satisfying

(13), L(m)‖Ψ−1
m ‖op ≤ cn∆/(2 log2(n∆)) ≤ cn∆.

Thus,

E

(
sup

t∈Sm,‖t‖π=1
R2
n,1(t)

)
. ∆.

This ends the proof of (41) and of Lemma 6.2. �

6.6. Proof of Lemma 6.3. Set

N2 = ‖n−1Φ̂′m ~E‖22,m = n−2
m−1∑
j=0

(

n∑
i=1

ϕj(Xi∆)Ei∆)2
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where Ei∆ = 1
∆

∫ (i+1)∆
i∆ (b(Xs)−b(Xi∆))ds+ 1

∆

∫ (i+1)∆
i∆ σ(Xs)dWs.We can write

∑n
i=1 ϕj(Xi∆)Ei∆ =∫ (n+1)∆

0 H
(j)
s ds+

∫ (n+1)∆
0 K

(j)
s dWs with

H(j)
s =

1

∆

n∑
i=1

1
]i∆,(i+1)∆]

(s)ϕj(Xi∆)(b(Xs)−b(Xi∆)), K(j)
s =

1

∆

n∑
i=1

1
]i∆,(i+1)∆]

(s)ϕj(Xi∆)σ(Xs).

Therefore,

N4 =
1

(n∆)4

m−1∑
j=0

(∫ (n+1)∆

0
H(j)
s ds+

∫ (n+1)∆

0
K(j)
s dWs

)2
2

≤ 8
m

(n∆)4

m−1∑
j=0

(∫ (n+1)∆

0
H(j)
s ds

)4

+

(∫ (n+1)∆

0
K(j)
s dWs

)4


≤ 8
m

n4

m−1∑
j=0

 1

∆

∫ (n+1)∆

0
(H(j)

s )4ds+
1

∆4

(∫ (n+1)∆

0
K(j)
s dWs

)4
 .

We bound successively the expectation of the two terms. By (10),
∑m−1

j=0 ϕ4
j ≤ L2(m), so:

1

∆
E
m−1∑
j=0

∫ (n+1)∆

0
(H(j)

s )4ds ≤ L2(m)
1

∆
E

n∑
i=1

∫ (i+1)∆

i∆
(b(Xs)− b(Xi∆))4ds

. L2(m)n∆2(1 + E(η4).

Next, using the Burkholder-Davis-Gundy and the Cauchy-Schwarz inequalities yields

1

∆4
E
m−1∑
j=0

(∫ (n+1)∆

0
K(j)
s dWs

)4

.
1

∆4
E
m−1∑
j=0

(∫ (n+1)∆

0
(K(j)

s )2ds

)2

.
1

∆4

m−1∑
j=0

E
m−1∑
j=0

n∆

∫ (n+1)∆

∆
(K(j)

s )4ds .
1

∆4
L2(m)n∆E

n∑
i=1

∫ (i+1)∆

i∆
σ4(Xs)ds

.
1

∆4
L2(m)(n∆)2Eσ4(η) .

1

∆4
L2(m)(n∆)2E(1 + η4)

Finally, EN4 . mL2(m)(∆2n−3 + (n∆)−2), which is the result of Lemma 6.3. �

6.7. Proof of Proposition 3.2. (1) The result follows from equality (40) and the fact
that the spaces are nested.

(2) For the second point, we use: Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ] ≤ m‖Ψ−1/2

m Ψm,σ2Ψ
−1/2
m ‖op. Then,

‖Ψ−1/2
m Ψm,σ2Ψ−1/2

m ‖op = sup
‖x‖2,m=1

x′Ψ−1/2
m Ψm,σ2Ψ−1/2

m x = sup
y,‖Ψ1/2

m y‖2,m=1

y′Ψm,σ2y.

Now, if σ is bounded on A, y′Ψm,σ2y is equal to∫
(

m−1∑
j=0

yjϕj(x))2σ2(x)π(x)dx ≤ ‖σ2
A‖∞

∫
(
m−1∑
j=0

yjϕj(x))2π(x)dx = ‖σ2
A‖∞‖Ψ1/2

m y‖2,m.
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Thus, Tr[Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m ] ≤ m‖σ2

A‖∞.

(3) Let us prove the other variance bound. We recall that ‖A‖2F = Tr(AA′) = Tr(A′A).

Writing that Ψ
−1/2
m Ψm,σ2Ψ

−1/2
m = (Ψ

−1/2
m Ψ

1/2
m,σ2)(Ψ

−1/2
m Ψ

1/2
m,σ2)′, we have

Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
= ‖Ψ−1/2

m Ψ
1/2
m,σ2‖2F

Using ‖AB‖2F ≤ ‖A‖2F‖B‖2op,

(44) Tr
[
Ψ−1/2
m Ψm,σ2Ψ−1/2

m

]
≤ ‖Ψ−1/2

m ‖2op‖Ψ
1/2
m,σ2‖2F = ‖Ψ−1

m ‖opTr(Ψm,σ2).

Lastly Tr(Ψm,σ2) =
∑m−1

j=0

∫
ϕ2
j (x)σ2(x)π(x)dx ≤ L(m)E[σ2

A(X0)] gives bound (3). �

6.8. Proof of Theorem 3.1. We follow the scheme of Theorem 2 in Comte and Genon-
Catalot (2020a). But here, the variables are not independent, the function σ(.) is un-
bounded and there are two other main differences:

• the penalty

(45) p̂en(m) = κc2
ϕs

2m‖Ψ̂−1
m ‖op

n

is random and has to be compared to its deterministic counterpart, pen(m) =
κ′c2

ϕs
2m‖Ψ−1

m ‖op/n,
• there are the two additional terms, Rn,1 and Rn,2.

We denote by M̂n∆ the maximal element of M̂n∆ defined by (19), by Mn∆ the maximal
element of Mn∆ defined by (18) and by M+

n∆ the maximal element of the set defined by

(46) M+
n∆ =

{
m ∈ N, c2

ϕm(‖Ψ−1
m ‖2op ∨ 1) ≤ 4d

n∆

log2(n∆)

}
, with d is given in (18).

The value M̂n∆ is random but thanks to the constants associated with the sets, with large

probability, we prove Mn∆ ≤ M̂n∆ ≤M+
n∆ or equivalently Mn∆ ⊂ M̂n∆ ⊂M+

n∆.
Set

(47) Ξn∆ :=
{
Mn∆ ⊂ M̂n∆ ⊂M+

n∆

}
, Ωn∆ = ∩m∈M+

n∆
Ωm.

Lemma 6.4. Under the assumptions of Theorem 3.1, P(Ωc
n∆) ≤ c/(n∆)4 and P(Ξcn∆) ≤

c′/(n∆)4, where c, c′ are positive constants.

We do not give a detailed proof of this Lemma. As 4d ≤ c/2, the first bound of Lemma 6.4
is a simple consequence of Lemma 6.1. The proof of the second bound is not immediate
but quite similar to the one of Lemma 7 in Comte and Genon-Catalot (2020a). The order
obtained is different due to larger constants c, d in the present problem. Lemma 6.4 relies
on Inequality (ii) of Proposition 6.1 and this is the only place where this inequality is
applied.

Now we write the decomposition:

b̂m̂ − bA = (b̂m̂ − bA)1Ξn∆
+ (b̂m̂ − bA)1Ξcn∆

= (b̂m̂ − bA)1Ξn∆∩Ωn∆
+ (b̂m̂ − bA)1Ξn∆∩Ωcn∆

+ (b̂m̂ − bA)1Ξcn∆
(48)

Lemma 6.5. Under the assumptions of Theorem 3.1, E
[
‖b̂m̂ − bA‖4n

]
≤ c(n∆)2.
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Applying Lemma 6.4, we get

E
[
‖b̂m̂ − bA‖2n(1Ξn∆∩Ωcn∆

+ 1Ξcn∆
)
]
≤ c

n∆
.

Therefore it remains to study E(‖b̂m̂ − bA‖2n1Ξn∆∩Ωn∆
). We have

m̂ = arg min
m∈M̂n∆

{γn(b̂m) + p̂en(m)},

with p̂en(m) defined by (45). Thus, using the definition of the contrast, we have, for any

m ∈ M̂n∆, and any bm ∈ Sm,

(49) γn(b̂m̂) + p̂en(m̂) ≤ γn(bm) + p̂en(m).

Now, on the set Ξn∆ =
{
Mn∆ ⊂ M̂n∆ ⊂M+

n∆

}
, we have in all cases that m̂ ≤ M̂n∆ ≤

M+
n∆ and either Mn∆ ≤ m̂ ≤ M̂n∆ ≤M+

n∆ or m̂ < Mn∆ ≤ M̂n∆ ≤M+
n∆. In the first case,

m̂ is upper and lower bounded by deterministic bounds, and in the second,

m̂ = arg min
m∈Mn∆

{γn(b̂m) + p̂en(m)}.

Thus, on Ξn∆, Inequality (49) holds for any m ∈ Mn∆ and any bm ∈ Sm. With decom-
position (36), it yields, for any m ∈Mn∆ and any bm ∈ Sm, on Ξn∆ ∩ Ωn∆,

‖b̂m̂ − b‖2n ≤ ‖bm − b‖2n +
1

8
‖b̂m̂ − bm‖2π + 16 sup

t∈Bπm̂,m(0,1)
ν2
n(t) + p̂en(m)− p̂en(m̂)

+16 sup
t∈Bπm̂,m(0,1)

R2
n,1(t)1Ξn∆

+ 2Rn,2(b̂m̂ − b)

≤
(

1 +
1

2

)
‖bm − b‖2n +

1

2
‖b̂m̂ − b‖2n + 16

(
sup

t∈Bπm̂,m(0,1)
ν2
n(t)− p(m, m̂)

)
+

+16 sup
t∈Bπm̂,m(0,1)

R2
n,1(t)1Ξn∆

+ 2Rn,2(b̂m̂ − bm) + p̂en(m) + 16p(m, m̂)− p̂en(m̂).(50)

where Bπ
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖π = 1} and p(m,m′) is defined by

(51) p(m,m′) = κ0s
2c2
ϕ

(m ∨m′)‖Ψ−1
m∨m′‖op

n∆
, s2 = E[σ2(X0)].

Then, for m̂ a random index in M̂n∆, using (41),

E( sup
t∈Sm+Sm̂,‖t‖π=1

R2
n,1(t)1Ξn∆

) ≤ E( sup
t∈S

M+
n
,‖t‖π=1

R2
n,1(t)) ≤ C ∆.

The bound on Rn,2 is straightforward (see the proof of Proposition 3.1, non adaptive case)
and we get

(52) E
[
Rn,2(b̂m̂ − bm)1Ξn∆

]
≤ 1

8
E[‖b̂m̂ − bm‖2n1Ξn∆

] + 8c′∆.

The main point is the study of νn(t).
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Lemma 6.6. Let (Xi∆, i = 1, . . . , n) be observations from model (1) under (A1)-(A4),
with basis satisfying (B1). Assume that Eη6 < +∞. Then there exists κ0 such that νn(t)
satisfies

E

[(
sup

t∈Bπm̂,m(0,1)
ν2
n(t)− p(m, m̂)

)
+

1Ξn∆∩Ωn∆

]
≤ C log2(n∆)

n∆

where p(m,m′) is defined by (51).

For κ′ ≥ 16κ0, 16p(m,m′) ≤ pen(m) + pen(m′) . Therefore, plugging the result of Lemma
6.6 and (52) in (50) and taking expectation yield that

1

4
E(‖b̂m̂ − b‖2n1Ξn∆∩Ωn∆

) ≤7

4
‖bm − b‖2n + pen(m) + C

log2(n∆)

n∆
+ C ′∆

+ E(p̂en(m)1Ξn∆∩Ωn∆
) + E[(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆

).

Lemma 6.7. Under the assumptions of Theorem 3.1, there exist constants c1, c2 > 0 such

that for m ∈Mn∆ and m̂ ∈ M̂n∆,

(53) E(p̂en(m)1Ξn∆∩Ωn∆
) ≤ c1pen(m) +

c2

n∆

(54) E[(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆
) ≤ c2

n∆
.

Lemma 6.7 concludes the study of the expectation of the empirical risk on Ξn∆ ∩Ωn∆.
The proof of (21) is now complete. For the step from the empirical norm to the L2(π)-
norm, we proceed as in the proof of Proposition 3.1 and get (22). �

6.9. Proof of Lemma 6.5. We start as in (42) with m replaced by m̂. We have ‖b̂m̂ −
Πm̂bA‖2n = (1/n2) ~E′Φ̂m̂Ψ̂−1

m̂ Φ̂′m̂
~E ≤ ‖Ψ̂−1

m̂ ‖op‖Φ̂′m̂ ~E/n‖22,m̂. Now as m̂ ∈ M̂n∆, ‖Ψ̂−1
m̂ ‖op .√

n∆. Moreover, m 7→ ‖Φ̂′m ~E/n‖22,m is increasing, so

‖b̂m̂ −Πm̂bA‖2n ≤
√
n∆‖Φ̂′n∆

~E/n‖22,n∆.

Thus, using the bound proved in Lemma 6.3, we get E(‖b̂m̂ −Πm̂bA‖4n) . (n∆)2. �

6.10. Proof of Lemma 6.6. To apply the Talagrand Inequality (see Theorem 6.2 in
appendix), we make the following decompositions. Set ui = W(i+1)∆ −Wi∆, and let kn
and `n be integers given below (see formula (56) and (57)). Then, define

u
(1)
i = ui1|ui|≤kn

√
∆ − E

[
ui1|ui|≤kn

√
∆

]
, u

(2)
i = ui − u(1)

i ,

and set τ(x) = σA(x)1σ2
A(x)≤`n

√
∆ and θ(x) = σA(x) − τ(x). We have νn(t) = νn,1(t) +

νn,2(t) + νn,3(t), where

νn,1(t) =
1

n∆

n∑
i=1

t(Xi∆)τ(Xi∆)u
(1)
i , νn,2(t) =

1

n∆

n∑
i=1

t(Xi∆)θ(Xi∆)u
(1)
i , and

νn,3(t) =
1

n∆

n∑
i=1

t(Xi∆)σ(Xi∆)u
(2)
i .
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Then we write(
sup

t∈Bπm̂,m(0,1)
ν2
n(t)− p(m, m̂)

)
+
≤

(
sup

t∈Bπm̂,m(0,1)
3ν2
n,1(t)− p(m, m̂)

)
+

+3 sup
t∈Bπm̂,m(0,1)

ν2
n,2(t) + 3 sup

t∈Bπm̂,m(0,1)
ν2
n,3(t),(55)

and we bound the three terms.
• First, we study the second term in (55). Recall that M+

n∆ ≤ 4dn∆/ log2(n∆) is the

dimension of the largest space of the collection M+
n∆. We proceed as in the proof of

Lemma 6.2, bound (41), to obtain:

E
[(

sup
t∈Bπm̂,m(0,1)

ν2
n,2(t)

)
+

1Ξn∆

]
≤ ‖Ψ−1

M+
n∆

‖op

M+
n∆−1∑
j=0

E
[
ν2
n,2(ϕj)

]

= ‖Ψ−1

M+
n∆

‖op

M+
n∆−1∑
j=0

Var(
1

n∆

n∑
i=1

u
(1)
i θ(Xi∆)ϕj(Xi∆)) ≤

c2
ϕM

+
n∆‖Ψ

−1

M+
n∆

‖op

n∆2
E[(u

(1)
1 )2]E[θ2

A(X0)]

Now we use that E
[
(u

(1)
1 )2

]
≤ E[u2

1] = ∆ and that M+
n∆ is in M+

n∆, i.e.

c2
ϕM

+
n∆‖Ψ

−1

M+
n∆

‖op = c2
ϕ

√
M+
n∆

√
M+
n∆‖|Ψ

−1

M+
n∆

‖2op ≤ 4d
n∆

log2(n∆)

and we get

E
[(

sup
t∈Bπm̂,m(0,1)

ν2
n,2(t)

)
+

]
≤ c2

ϕ

1

log2(n∆)
E
[
σ2
A(X0)1σ2

A(X0)>`n
√

∆

]
≤ c2

ϕ

E
[
|σA(X0)|2+q

]
log2(n∆)(`n

√
∆)q/2

≤
c2
ϕ

c
q/2
?

E
[
|σA(X0)|2+q

] logq−2(n∆)

(n∆)q/4
=
c2
ϕ

c2
?

E
[
|σA(X0)|6

] log2(n∆)

n∆
,

by taking q = 4, and

(56) `n =

[
c?

√
n

log2(n∆)

]
,

where [x] denotes the integer part of x and c? is to be chosen later.
• Let us now study the third term in (55). We have, relying on similar arguments,

E
[(

sup
t∈Bfm̂,m(0,1)

ν2
n,3(t)1Ξn

)
+

]
≤ ‖Ψ−1

M+
n∆

‖op

M+
n∆−1∑
j=0

E
[
ν2
n,3(ϕj)

]

= ‖Ψ−1

M+
n∆

‖op

M+
n∆−1∑
j=0

Var(
1

n∆

n∑
i=1

u
(2)
i σA(Xi∆)ϕj(Xi∆)) ≤

c2
ϕM

+
n∆‖Ψ

−1

M+
n∆

‖op

n∆2
E[σ2

A(X0)]E
[
(u

(2)
1 )2

]
≤

c2
ϕE[σ2

A(X0)]

∆ log2(n∆)
E
[
u2

11|u1|>kn
√

∆

]
≤

c2
ϕE[σ2

A(X0)]E
[
u6

1

]
∆ log2(n∆)(kn

√
∆)4

. µ6
log2(n∆)

n∆
,
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where the last line follows from the Markov inequality, µ6 = 15 = E[u6
1/∆

3] (sixth moment
of the standard gaussian) and the choices p = 4 and for c′? to be chosen later,

(57) kn =

[
c′?

(n∆)1/4

log(n∆)

]
.

• To bound the first term, we use the Talagrand inequality (see Theorem 6.2 in appen-
dix) applied to the process νn,1. As the variables are not independent we must split again
this term into several parts.

We proceed by the coupling strategy used in the proof of Proposition 6.1, applied to
vi = (ui, Xi∆) which is also a β-mixing sequence with mixing coefficient such that βk =
βX(k∆) . e−θk∆, as in Baraud et al. (2001). We denote by Ω? = {vi = v?i , i = 1, . . . , n}.
We still have P((Ω?)c) ≤ pnβX(qn∆) . 1/(n∆)4 for qn∆ = 5 log(n∆)/θ.

On Ω?, we replace the vi by the v?i and split the term between odd and even blocks.
We have to bound, say

E
(

sup
t∈Bπm̂,m(0,1)

(ν?,1n,1)2(t)− 1

6
p(m, m̂)

)
+

by using Talagrand inequality (see Theorem 6.2 in appendix) applied to mean of pn inde-
pendent random variables

ν?,1n,1(t) =
1

pn

pn−1∑
`=0

(
1

2qn∆

qn∑
r=1

u
(1)?
2`qn+rτ(X?

(2`qn+r)∆)t(X?
(2`qn+r)∆)

)
.

Note that the random variables inside the sum in large brackets are not independent but
uncorrelated.

Set Y` = (u
(1)?
`,1 , X∗`,1) ∈ Rqn×Rqn , where u

(1)?
`,1 = (u

(1)?
2`qn+r)1≤r≤qn andX∗`,1 = (X?

(2`qn+r)∆)1≤r≤qn .

Then we have ν?,1n,1(t) = 1
pn

∑pn−1
`=0 [f (t)(Y`)− Ef (t)(Y`)], f (t) : Rqn × Rqn → R with

f (t)(z, x) =
1

2qn∆

qn∑
r=1

zr1|zr|≤kn
√

∆t(xr)τ(xr), z = (z1, . . . , zqn), x = (x1, . . . , xqn),

and F = {f (t), t ∈ Bπ
m′,m(0, 1)}. Using analogous tools as above, we get

E
[

sup
t∈Bπ

m′,m(0,1)
[ν?,1n,1(t)]2

]
≤ ‖Ψ−1

m∨m′‖op

(m−1)∨(m′−1)∑
j=0

1

n∆2
Var

(
u

(1)
1 τ(X0)ϕj(X0)

)

≤ ‖Ψ−1
m∨m′‖op

(m−1)∨(m′−1)∑
j=0

1

n∆2
E

[(
u

(1)
1 τ(X0)ϕj(X0)

)2
]

≤
E
[
u2

1

]
‖Ψ−1

m∨m′‖op

n∆2

(m−1)∨(m′−1)∑
j=0

E
[
τ2(X0)ϕ2

j (X0)
]
≤ E[σ2

A(X0)]c2
ϕ

(m ∨m′)‖Ψ−1
m∨m′‖op

n∆
:= H2.
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Next, we have

sup
t∈Bπ

m,m′ (0,1)
Var

(
1

qn∆

qn∑
r=1

u∗rt(X
∗
r∆)σA(X∗r∆)

)

= sup
t∈Bπ

m,m′ (0,1)
Var

(
1

qn∆

qn∑
r=1

urt(X
∗
r∆)σA(X∗r∆)

)
=

E(u2
1)

qn∆2
sup

t∈Bπ
m′,m(0,1)

E(t2(X0)σ2(X0))

≤ E(ε2
1)

qn∆2
sup

t∈Bπ
m′,m(0,1)

E1/2
[
σ4
A(X0)

]
E1/2[t2(X0)]‖t‖∞

≤ cϕ
qn∆

E1/2
[
σ4
A(X0)

]√
(m ∨m′)‖Ψ−1

m∨m′‖op := v

Lastly sup
t∈Bπ

m′,m(0,1)
sup

~z∈Rqn ,~x∈Rqn

(
1

qn∆

qn∑
r=1

|zr|1|zr|≤kn
√

∆|σ(xr)1|σ2(xr)|≤`n
√

∆|t(xr)|

)

≤ kn
√
`n

∆1/4
sup

t∈Bπ
m′,m(0,1)

sup
x
|t(x)| ≤ cϕ

kn
√
`n

∆1/4

√
(m ∨m′)‖Ψ−1

m∨m′‖op := M.

Therefore, by applying Theorem 6.2 (Talagrand Inequality) recalled in section 6.12:

E
(

sup
t∈Bπ

m,m′ (0,1)
(ν?,1n,1)2(t)− 2H2

)
+
≤ C1

(
v

pn
exp(−C2

pnH
2

v
) +

M2

p2
n

exp(−C3
pnH

M

)
we obtain, recalling that 2pnqn = n and qn = (5/θ)(log(n∆)/∆), and m∗ = m ∨m′,

E
(

sup
t∈Bπ

m′,m(0,1)
(ν?,1n,1)2(t)− 2H2

)
+

≤ C ′1


√
m∗‖Ψ−1

m∗‖op

pnqn∆
exp(−C ′2

√
m∗‖Ψ−1

m∗‖op) +
k2
n

√
`nm

∗‖Ψ−1
m∗‖op

p2
n

√
∆

exp

(
−C ′3

pn√
n∆kn

√
`n

) ,

Now we use that, for the first right-hand-side term,
√
xe−C2

√
x ≤ c′e−(C2/2)

√
x and c2

ϕm
∗‖Ψ−1

m∗‖op ≤
4dn∆/ log2(n∆). For the second right-hand-side term, we use the definition (56) and (57)
of `n and kn, the value of qn and c2

ϕm
∗‖Ψ−1

m∗‖op ≤ 4dn∆/ log2(n∆). This implies

E
(

sup
t∈Bπ

m′,m(0,1)
[ν?,1n,1]2(t)− 1

6
p(m,m′)

)
+
.

1

n∆

(
e
−(C′2/2)

√
m∗‖Ψ−1

m∗‖op +
n
√

∆

log4(n∆)
e−C

′′
3 log(n∆)

)
.

where p(m,m′) = 12H2. Next note that ‖Ψ−1
m ‖op ≥ 1/‖Ψm‖op ≥ 1/‖π‖∞, and choose

c?, c
′
? in the definition of kn and `n so that C ′′3 = 2. This yields

E
(

sup
t∈Bπ

m′,m(0,1)
[ν?,1n,1]2(t)− 1

6
p(m,m′)

)
+
.

1

n∆

(
exp(−C4

√
m∗) +

1

n log4(n∆)

)
.
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By summing up all terms over m′ ∈M+
n∆, we deduce

E
(

sup
t∈B̂m,mπ(0,1)

[ν?,1n,1]2(t)− 1

6
p(m, m̂)

)
+
≤

∑
m′

E
(

sup
t∈Bπ

m′,m(0,1)
[ν?,1n,1]2(t)− 1

6
p(m,m′)

)
+

.
1

n∆
.(58)

It remains to bound E[(supt∈Bπm̂,m(0,1)(νn,1)2(t)−p(m, m̂))1(Ω?)c ]+. We use the infinite norm

computed to evaluate M and the bound on P[(Ω?)c]. �

6.11. Proof of Lemma 6.7. First write that

p̂en(m) ≤ κc2
ϕs

2m‖Ψ̂−1
m −Ψ−1

m ‖op

n∆
+
κ

κ′
pen(m)

Moreover, for m ∈Mn∆ and on Ξn∆ (thus m ∈ M̂n∆), c2
ϕm‖Ψ−1

m ‖op ≤ (d/4)n∆/ log2(n∆)

and c2
ϕm‖Ψ̂−1

m ‖op ≤ dn∆/ log2(n∆). Thus,

c2
ϕm‖Ψ̂−1

m −Ψ−1
m ‖op1Ξn∆∩Ωn∆

= c2
ϕm‖Ψ̂−1

m −Ψ−1
m ‖op1Ξn∆∩Ωn∆

1{‖Ψ̂−1
m −Ψ−1

m ‖op≤‖Ψ−1
m ‖op}

+c2
ϕm‖Ψ̂−1

m −Ψ−1
m ‖op1Ξn∆∩Ωn∆

1{‖Ψ̂−1
m −Ψ−1

m ‖op>‖Ψ−1
m ‖op}

≤ c2
ϕm‖Ψ−1

m ‖op1Ξn∆∩Ωn∆
+

5

4

dn∆

log2(n∆)
1{‖Ψ̂−1

m −Ψ−1
m ‖op>‖Ψ−1

m ‖op}

We obtain:

E(p̂en(m)1Ξn∆∩Ωn∆
) ≤ 2

κ

κ′
pen(m) +

5

4

dn∆

log2(n∆)
P
(
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op

)
.

Now by Proposition 2.4 in Comte and Genon-Catalot (2018),

P
(
‖Ψ̂−1

m −Ψ−1
m ‖op > ‖Ψ−1

m ‖op

)
≤ P

(
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op >

1

2

)
. 1/(n∆)5

for m ∈Mn∆, by Lemma 6.1. This completes the proof of (53).

Now we turn to the proof of (54). Writing that ‖Ψ̂−1
m̂ ‖op ≥ ‖Ψ−1

m̂ ‖op−‖Ψ̂−1
m̂ −Ψ−1

m̂ ‖op, we
get

pen(m̂)− p̂en(m̂) ≤ κc2
ϕs

2 m̂‖Ψ̂
−1
m̂ −Ψ−1

m̂ ‖op

n∆
+ (κ′ − κ)

s2c2
ϕm̂‖Ψ−1

m̂ ‖op

n
.

Next we decompose similarly to previously, with a change in the cutoff,

c2
ϕm̂‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op1Ξn∆∩Ωn∆

= c2
ϕm̂‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op1Ξn∆∩Ωn∆

1{‖Ψ̂−1
m̂ −Ψ−1

m̂ ‖op≤ 1
2
‖Ψ−1

m̂ ‖op}

+c2
ϕm̂‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op1Ξn∆∩Ωn∆

1{‖Ψ̂−1
m̂ −Ψ−1

m̂ ‖op>
1
2
‖Ψ−1

m̂ ‖op}

≤ 1

2
c2
ϕm̂‖Ψ−1

m̂ ‖op1Ξn∆∩Ωn∆
+ 5

dn∆

log2(n∆)
1{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op>

1
2
‖Ψ−1

m̂ ‖op}.
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Now, m̂ ∈ M̂n ⊂M+
n , implies that c2

ϕm̂‖Ψ−1
m̂ ‖op ≤ 4dn log2(n∆). We get

(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆
≤ 4κc2

ϕs
2 dn∆

log2(n∆)
1{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op>

1
2
‖Ψ−1

m̂ ‖op}1Ξn∆∩Ωn∆

+(κ′ − κ

2
)
s2c2

ϕm̂‖Ψ−1
m̂ ‖op

n
.

We choose κ′ − κ
2 ≤ 0 that is κ ≥ 2κ′, so that the last term vanishes and then obtain:.

E [(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆
]

≤ 4κc2
ϕs

2 dn∆

log2(n∆)
P
(
{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op >

1

2
‖Ψ−1

m̂ ‖op} ∩ Ξn∆ ∩ Ωn∆

)
.

Now

P
(
{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op >

1

2
‖Ψ−1

m̂ ‖op} ∩ Ξn∆ ∩ Ωn∆

)
≤

∑
m∈M+

n∆

P
(
‖Ψ̂−1

m −Ψ−1
m ‖op >

1

2
‖Ψ−1

m ‖op

)
Then we use Proposition 2.4 (ii) in Comte and Genon-Catalot (2018), to get

P
(
{‖Ψ̂−1

m̂ −Ψ−1
m̂ ‖op >

1

2
‖Ψ−1

m̂ ‖op} ∩ Ξn∆ ∩ Ωn∆

)
≤ P

(
‖Ψ−1/2

m Ψ̂mΨ−1/2
m − Idm‖op >

1

4

)
.

The choice of d implies that this probability is less than K/(n∆)5. This leads to

E [(pen(m̂)− p̂en(m̂))+1Ξn∆∩Ωn∆
] . 1/(n∆).

This ends the proof of (54) and we can set κ′ = κ/2 and take κ ≥ 2× 12× 16. �

6.12. Appendix. We recall the following result of Tropp (2015) and the Talagrand con-
centration inequality given in Klein and Rio (2005).

Theorem 6.1 (Bernstein Matrix inequality). Consider a finite sequence {Sk} of inde-
pendent, random matrices with common dimension d1 × d2. Assume that ESk = 0 and
‖Sk‖op ≤ L for all k. Introduce the random matrix Z =

∑
k Sk. Let ν(Z) be the variance

statistic of the sum: ν(Z) = max{λmax (E[Z′Z]), λmax (E[ZZ′])}. Then for all t ≥ 0

P [‖Z‖op ≥ t] ≤ (d1 + d2) exp

(
− t2/2

ν(Z) + Lt/3

)
.

Theorem 6.2. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =

(1/n)
∑n

i=1(f(Xi) − E[f(Xi)]), and assume that there are three positive constants M , H
and v such that sup

f∈F
‖f‖∞ ≤ M , E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v.

Then for all α > 0, with C(α) = (
√

1 + α− 1) ∧ 1, and b = 1
6 ,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
e−bα

nH2

v +
49M2

bC2(α)n2
e−
√

2bC(α)
√
α

7
nH
M

)
.

By density arguments, this result can be extended to the case where F is a unit ball of a
linear normed space.
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