ADAPTIVE DENSITY ESTIMATION IN THE PILE-UP MODEL
INVOLVING MEASUREMENT ERRORS
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ABSTRACT. Motivated by fluorescence lifetime measurements, this paper considers the
problem of nonparametric density estimation in the pile-up model, where observations
suffer also from measurement errors. In the pile-up model, an observation is defined as
the minimum of a random number of i.i.d. variables following the target distribution.
Adaptive nonparametric estimators are proposed for this pile-up model with measurement
errors. Furthermore, oracle type risk bounds for the mean integrated squared error (MISE)
are provided. Finally, the estimation method is assessed by a simulation study and the
application to real fluorescence lifetime data.
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1. INTRODUCTION

This paper is concerned with nonparametric density estimation in a specific inverse prob-
lem. Observations are not directly available from the target distribution, but suffer from
both measurement errors and the so-called pile-up effect. The pile-up effect refers to some
right-censoring, since an observation is defined as the minimum of a random number of
i.i.d. variables from the target distribution. The pile-up distribution is thus the result of
a nonlinear distortion of the target distribution. In our setting we also take into account
measurement errors, that is the pile-up effect applies to the convolution of the target density
and a known error distribution. The aim is to estimate the target density in spite of the
pile-up effect and additive noise.

The pile-up model is encountered in time-resolved fluorescence when lifetime measure-
ments are obtained by the technique called Time-Correlated Single-Photon Counting (TC-
SPC) (O’Connor and Phillips, 1984). The fluorescence lifetime is the duration that a mole-
cule stays in the excited state before emitting a fluorescence photon (Lakowicz, 1999; Valeur,
2002). The distribution of the fluorescence lifetimes associated with a sample of molecules
provides precious information on the underlying molecular processes. Lifetimes are used
in various applications as e.g. to determine the speed of rotating molecules or to measure
molecular distances. This means that the knowledge of the lifetime distribution is required
to obtain information on physical and chemical processes.

In the TCSPC technique, a short laser pulse excites a random number of molecules, but
for technical reasons, only the arrival time of the very first fluorescence photon striking the
detector can be measured, while the arrival times of the other photons are unobservable.
The arrival time of a photon is the sum of the fluorescence lifetime and some noise, which is
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some random time due to the measuring instrument as e.g. the time of flight of the photon
in the photon-multiplier tube. Hence, TCSPC observations can be described by a pile-up
model with measurement errors. The goal is to recover the distribution of the lifetimes of
all fluorescence photons from the piled-up observations.

Until recently TCSPC was operated in a mode where the pile-up effect is negligible.
However, a shortcoming of this mode is that the acquisition time is very long. Recent stud-
ies have made clear that from an information viewpoint it is a better strategy to operate
TCSPC in a mode with considerable pile-up effect (Rebafka et al., 2010, 2011). Conse-
quently, an estimation procedure is required that takes the pile-up effect into account. The
concern of this paper is to provide such a nonparametric estimator of the target density and
furthermore to include measurement errors in the model in order to deal with real fluores-
cence data. Therefore, we develop adequate deconvolution strategies for the correction in
the pile-up model and test those methods on simulated data as well as on real fluorescence
data.

It is noteworthy that the pile-up model is connected to survival analysis, since it can
be considered as a special case of the nonlinear transformation model (Tsodikov, 2003).
Indeed, it is straightforward to extend the methods proposed in this paper to this more
general case. Moreover, the model can also be viewed as a biased data problem with known
bias, see Brunel et al. (2009). Nonetheless, the consideration of additional measurement
errors is new and fruitful. Since there are now two sources of mis-measurement, we have
to face real technical difficulties to preserve standard deconvolution rates: either a loss is
admitted, or the sample has to be split in two independent parts. Finally, we show that
deconvolution methods can be used to complete the study in the spirit of Fan (1991), Pensky
and Vidakovic (1999), Diggle and Hall (1993) or Comte et al. (2006). These techniques are of
unusual use in both survival analysis and pile-up model studies. Numerical results confirm
the adequacy of these methods in practice.

In Section 2, the model is described, together with the main assumptions. Then the
nonparametric estimation strategy to recover the target density in the pile-up model with
measurement errors is presented . In Section 3, the properties of the estimator are described,
which are mainly risk bounds for the estimator. The rates obtained in this framework de-
pend on the smoothness of the error density and on the choice of a cut-off parameter.
Furthermore, a cut-off selection strategy is proposed in Section 4 to achieve an adequate
bias-variance trade-off. In Section 5 the performance of the methods is assessed via simula-
tions and by an application on a dataset of fluorescence lifetime measurements. All proofs
are relegated to Section 6.

2. PILE-UP MODEL WITH MEASUREMENT ERRORS AND ASSUMPTIONS

2.1. Notations. In the following, for u and v two functions, we denote by uowv the function
x+— uwowv(x) ;= u(v(z)). If u is bijective, we denote by u~! the inverse of the function u,
that is the function such that (u=' ou)(x) = (uou=!)(x) = z for all z. We also denote by
1 the derivative of u and by # the second-order derivative of u, when they exist.

If u and v are real valued and square-integrable, we define the convolution product uxv of
wand v by (uxv)(z) = [ u(z—t)v(t)dt and the scalar product (u,v) by (u,v) = [wu(t)v(t)dt.
If the functions are complex valued, the conjugate of v is used instead of simply v. If u is
integrable, we define the Fourier transform of u by u*(t) = [e " u(z)dz. We recall that
for u and v integrable and square-integrable functions, (u*xv)* = u*v*. Moreover, Parseval’s
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formula gives the useful relations

(u)*(z) = 2m)u(—=x) and /u*(t)v*(t)dt = (2m) /u(m)v(m)dx ,

where Z denotes the conjugate of the complex number z.

2.2. The pile-up model with measurement error. We consider experiments that pro-
vide observations

(1) A

of independent identically distributed (i.i.d.) random variables with common density g and
cumulative distribution function (c.d.f.) G. The random variables Zj, follow the model
defined by

(2) Zk :min{Yl,k+771,k7---7YNk,k+77Nk,k} ) k= 17"'7n7

where

[M1] the (Y; k)i x>1 are i.i.d. random variables with density f and c.d.f. F,

[M2] the (;)ik>1 are i.id. with density f,, which is assumed to be known and such
that f, does not vanish (i.e. f;(t) # 0 for all t € R),

[M3] the random variables N}, take their values in N* = {1,2,... }, are i.i.d. with the
same distribution as N and such that E(N) < 4-o00. We denote by My(u) = E(u) =
S22 uFP(N = k), for u € [0, 1], the probability generating function associated with
N7, and we assume that the function My is known, up to some possible parameter
6.

M4] (Yik)ik>1, (Mik)ik>1 and (N)g>1 are independent.

Our aim is to estimate the density f of the random variables Y; j from the observations (1).
Note that the random variables N; are not observed.

Model (2) differs from a compound Poisson process in two aspects: the Z;’s are defined

by a minimum instead of a sum vazjl Y; ; and we have additional noise measurements 7).
Thus decompounding as in van Es et al. (2007) or Comte and Genon-Catalot (2010) does
not apply. Note also that the assumption ff;(t) = 0 rules out uniform type distributions, for
which specific methods have recently been developed (see Johnstone et al. (2004), Delaigle
and Meister (2011)).

Main example. In the fluorescence application it is assumed that the number IV of photons
per excitation cycle follows a Poisson distribution with known parameter 6. Note that the
events where no photon is detected, i.e. N = 0, are discarded from the sample. Hence, we
consider a Poisson distribution restricted on N* with renormalized probability masses given
by

1 @F

Generally, 6 is considered as known. Then the functions My and My are known as well and
given by My(u) = (”* —1)/(e? — 1) and My(u) = 0e?*/(e? — 1). We will discuss how 6 is
estimated and the cost of the substitution in Sections 3.3 and 4.2.

We shall also provide a discussion about the assumption that f, is known in Section 4.3.
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2.3. Definition of the estimator. It is easy to see that the c.d.f. G verifies

1-G(2) = P(Z1>2)= ZPNl—k <mm(u+m1) )

_ ZIP’(Nl = k)[P(Yiy +ma > 2))F

Therefore, if we denote by Fy 4, the c.d.f. of Y71 + 71,1, we get

(3) G(z) =1=Mgo (1= Fy)(2).

In Rebafka et al. (2010) and in the absence of noise, G is referred to as the pile-up distribution
function. Recalling that Mpy is bijective, we deduce from (3) that

(4) Fyiy(2) =1=M;" o (1-G)(2) .

The assumption E(N;) < 400 on N; implies that My exists with Yu € [0,1], My(u) =
E(N;u™1~1). Consequently, derivation can be applied on both sides of relation (4) and by
using that the derivative of M, Lis equal to 1 /Mg o M, L we get for fy 4, denoting the
density of Y171 + 11,1,

1
Mpo My (1—2)

(5) fron(z) = wgo G(2)g(=) with  wy(z) =

Note that since Mjy is assumed to be known, the weight function wy is also known. Moreover,
equation (5) implies that moments of the target distribution of Y; ; are related to moments
of the pile-up distribution of Z. Namely, for any measurable bounded function h, we have

(6) E(h(Y1,1 +m1,1)) = E(wg o G(Z1)h(Z1)) -

Since Y77 and 7,1 are independent, we have fy, = f x f,. By taking the Fourier
transform and using that f; does not vanish, we get for all ¢ € R

N a0
and by the Fourier inverse formula
_ i izt fY-‘r??( )d
f(z)_%/e [HORS

Therefore, we propose the following estimator of f

. e (i
(7 )= g [ @t a0,
—mm n

where the cutoff 7m is required to ensure convergence of the integral. We use (5) and more
precisely (6) to find an estimator of f; 4y~ Indeed, we have

i y(t) = B(e™00m0) B g 0 G(21))
yielding

(8) fY-Hz Z wy 0 Gn(Z1)e %% | with Gy Z Tyz,<2} -
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The estimate G, is the standard empirical c.d.f.. We note that, since wy o @n(Z(k)) =
wg(k/n) when Z, denotes the k-th order statistic associated with (Z1,..., Z,) satisfying
Z1y < -+ < Z(y), we can equivalently write

Fx BN —itZ
fY—i—n(t) = kzlwe(k?/n)e .

In the literature such weighted sums of order statistics are known as L-statistics.
Now, gathering (7) and (8), we get the estimator

1 — ‘
—> wp o G (Z)e "
n

iz k=1
¥ = s L 70 o

mm oit(z—2Z)

1 .
= %ngoGn(Zk)/ﬂmif;(t) dt

1 n ™m eit(sz(k))
= — wy(k/n —dt.
2mn kzl olk/ )/—ﬂm ff;(t)
The last two expressions show clearly why the cutoff is necessary: it is known that the
Fourier Transform of a density tends to zero near infinity, i.e. here f;(¢) tends to zero when
t gets large and thus, the integral over R can not be defined. It is worth noting that the
estimate given by formula (9) is real-valued: indeed, taking its conjugate leads to the same
formula by virtue of the symmetry of the integration interval.
We can also see why the estimator fm is going to involve technical difficulties for the
theoretical study. Indeed, we apply simultaneously three approximations:

(1) the unknown c.d.f. G is approached by its empirical version,
(2) we deal with the pile-up effect by using weights wg o Gy, (Z), which can, by the way,
be related to bias corrections in survival analysis,
(3) we deal with measurement errors by applying a deconvolution operator involving a
cut-off parameter, - — 5= [T ¢t/ f*(t)dt.
It is interesting to mention that the estimator can be seen as a weighted kernel deconvo-
lution estimator. Indeed, by setting h = 1/m, we have

_ i eizt/h K*(t)
oh F2(E/h)

(10) fulz) =+ wpo CulZ)Eilz — Z), with Ky(2) a .
k=1

where the kernel K is in this case the particular sinus cardinal kernel satisfying K*(t) =
Ljyj<x- This makes a link with many other works in the kernel deconvolution setting, see
Diggle and Hall (1993), Fan (1991), Delaigle and Gijbels (2004).

3. STUDY OF THE ESTIMATOR

3.1. Risk bound on the estimator. In addition to assumptions [M1]-[M4], we require
[M5] P(N = 1) # 0 and E(N?) < +00 .

The assumption P(N = 1) # 0 is required to ensure that My(0) # 0 and thus wg(u) is
well defined for u € [0, 1]. More specifically, the method does not work if P(N = 1) = 0: we
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can see from (5), that then, the link between the densities would fail for z = 1.

Note that, if P(N = 1) = 1, then there is no pile-up effect and the problem becomes a pure
deconvolution question. The assumption E(N?) < +oco ensures that My is well defined. In
other words, under [M5], we can see that for all u € [0, 1],

(11) 0 < My(0) =P(N =1) < My(u) < My(1) = E(N) < 400,
and .. .. ..

0 < My(0) = 2P(N = 2) < My(u) < My(1) =E[N(N —1)] < +o00.
This implies that for all u € [0, 1],

(12) 0 < wy(0) = v = —— <wyu) <wy(l) = = = <00 .

Moreover, noting that
g (u) = My o My (1 —u)/[Myo My (1 —u)]?,

we also have, for all u € [0,1],

sup, o) M -
0 < iplu) < Sobucto 00 BNV

= ik, M)~ PN =1
Lastly, it is convenient to mention that, still under [M5], wy is Lipschitz continuous, i.e.
(13) there exists ¢, 9 > 0 such that Vz,y € [0,1], |wp(z) —wp(y)| < cwolz — 1y,
and clearly, we can take
_ E[N(N —1)]

T PN =P
Remark 3.1. In the more general nonlinear transformation model the function M : [0,1] —
[0,1] in (3) is not necessarily a probability generating function, but any function M such
that G given by (3) is a c.d.f. (Tsodikov, 2003). That is G is still the result of a distortion
of the target distribution F', but the interpretation as a minimum is no longer valid. Those

models are studied in survival analysis. The estimators proposed in this paper for the
pile-up model are also applicable for nonlinear transformation models.

We now provide a risk bound for the estimator defined in (9).

Proposition 3.1. Consider the model given by (1)-(2) under Assumptions [M1]-[M5]. Let
Jm denote the function verifying fr, = f*L[_zm xm). Then

£ A 1 ™m d
(14) E<\|fm—f\|2>s||f—fm||2+0# where An<m>=§/m|f;<75>|2’

C=2 (/01 w2 (uw)du + 2ci,79) <2 (]P(le - ) (I?I[E’](\[J\(/]i_l)l];]>2> :

In the evaluation of C', we use that fol w3 (u)du = fol(l/Mg (u))du. In the bound on C, we
can see that the smaller P(N = 1), the larger the bound. On the opposite, if P(N = 1) = 1,
then ¢, 9 = 0 and fol w3 (u)du =1 and C is minimal.

Moreover, when reading the estimator under the form (10), it is clear that the Central
Limit Theorem for L-statistics proved in Rebafka et al. (2010) (see Appendix B, Theorem
5 and Proposition 1 therein) can be applied to obtain asymptotic normality results for

and
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Vi(fm(2) = fm(2)) with computable variance, this is illustrated in Section 5. We will also
use in the simulations the proposals given in Bissantz et al. (2007).

Note that || f — f||* = (27) 7! flu\ZTrm | f*(u)|?>du and thus this quantity is clearly decreas-
ing when m increases. On the contrary, the variance term A, (m)/n is increasing with m.
Hence (14) is a bias-variance decomposition, and a compromise is required for the choice of
m.

Another remark is in order. Obviously, the variance depends crucially on the rate of
decrease to 0 of f; near infinity. For instance, if f, is the standard normal density, the

variance is proportional to f| e“Qdu/n. Whereas for the Laplace distribution where

u|<mm
fo(x) = e711/2, we have 1/f3(u) = 1+ u? and a variance of order O(m*/n).

3.2. Other ways to view the estimator. The estimator fm can also be obtained in a
different way. It is classical to define a density estimator as the minimizer over a set of
functions h of a contrast ,(h) which is an approximation of ||h — f||*> — ||f]|> = ||h]|* —
2E[R(Y)]. Writing E[R(Y)] = (h, f) = 2m) 1", f3) = (27T)_1<h*,f§}1+m/f;‘> suggests to
consider functions A in

Sm = {h, support(h*) C [-mm,mm]}
and the contrast

i) = 7 =2 [T,

where ]ﬁ?m is given by (8). Now we can see that the estimator fm minimizes the contrast
Y. Indeed, note that f* (u) = m/f;(u) 1 rm) (u) and thus fim € S,. By Parseval’s
formula (h, f,,) = (27) "1 (h*, f*). This yields that v, (h) = |h]|2 — 2(h, fm) = ||h — fm|® —
|| fm|I?. Therefore,
fin, = in v, (h).
fm = arg min . (h)
Another expression of the estimator is obtained by describing more precisely the func-

tional spaces Sy, on which the minimization is performed. To that aim, let us define the
sinc function and its translated-dilated versions by

(15) o(z)

where m is an integer that can be taken equal to 2°. Tt is well known that {¢m, ;}jcz is
an orthonormal basis of the space of square integrable functions having Fourier transforms
with compact support in [—-mm,7wm] (Meyer, 1990, p.22). Indeed, as ¢*(u) = 1|_; 1(u),

= T d () = Vimp(ma — j)
T

an elementary computation yields that ¢;7j(x) = mfl/ze*ixj/m]l[_ﬁmmm](x). Thus, the
functions ¢, ; are such that S, = Span{y, ., j € Z} = {h € L2(R),supp(h*) C
[-mm,mn]}. For any function h € La(R), let II,,,(h) denote the orthogonal projection
of h on Sy, given by I, (h) = >y amj(R)@m; With ap;(h) = [p omj(@)h(z)dz. As
am,j(h) = (271)_1(g0;‘n7j, h*), it follows that IL,,(h)* = R*1|_rp, rm), and thus fi, = Iy (f).
Since fm minimizes ~,, this yields that the estimator fm can be written in the following
convenient way

—

2 R o 1 . A (u)
(16) = Yo with i = 5 [ 6,0

JEL
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Consequently, || fim|* = 3=, [am, ;|
Finally, one can see that ;. o7, :(u)om,j(x) = € "1y <rp,. This is another way to
see that (16) and (7) actually define the same estimator.

Remark 3.2. An interesting remark follows from equation (16). In the case where 1o noise
has to be taken into account, i.e. f;(u) = 1, the integral in (16) becomes [ gpfn’j(—u)e_wzk du =

2mpm i (Zk). Hence, am; = (1/n)> 1, Om,j(Zy)w(k/n).

3.3. Semi-parametric Poisson setting. Clearly, Assumption [M5] is fulfilled in our main
Poisson example. In this case, the weight function wy writes

B 1—e?
(17) U}g(u) - 9(1 o U(l . e,g)) )
with corresponding constant ¢, 9 = (e’ — 1)2/¢ in (13). It is interesting to note that
P(N =1) =0/(e? — 1) is a decreasing function of §. As we have seen that many important
bounds depend on 1/P(N = 1), we conclude that the smaller 6, the better the estimation
procedure. We shall see in Section 5, that this remark is confirmed by the simulation

experiments.
In practice, even if physicists consider 6 as known, it is in fact estimated as follows.
In the fluorescence setting, N has indeed a classical Poisson distribution on {0, 1,... } with

parameter . That means, that there are excitations that are not followed by the emission
of photons. In this case, we set the variable to a default value, here +00. More precisely,
observations Z1, ..., Z, are i.i.d. and defined by

7 min{Yl,j+771,j,~~~,YNj,j+"7Nj,j} , if Nj >0
J +00 , if N; =0. ’

Therefore, one can use the proportion of observations Z; equal to +oo to estimate the

Poisson parameter 6. As P(Z; = +o0) = P(N; = 0) = e~?, a natural estimator of 6 is given
by

A n 1 n-+1
1 0=—log | — > 1{Z; = — | = .
. ¢ |y 2% oot Og(#{2j=+oo}+1>

Now the following question naturally arises. Let 6 be a consistent estimator of 0, we can
wonder what conditions ensure a satisfactory behavior of

1o - :
. Z w; © Gn(Z),)e 2k

. 1 [mm — - 1 n
1 i(2) = — izt A=l = > 1 :
( 9) fmﬁ(z) o /;ﬂm € f;?k(t) dt ) Gn(Z) n+1 P {Zp<z}

In fact, we can extend the result of Proposition 3.1 under the following condition:
[M6] (i) 0 € [0, Opmaz], E[(6 — 0)*] < Cy/nF for k=1,2,1+2a,

(i) sup  sup Oweg (u) < Co(Bi) < 00
we[0.1] 0€[0,20,maz] | 00
Iwg(u)

(iii) sup  sup < C3n® , for some integer a > 1.

ue [0 L} R+

00
‘n+4+1
Then, the following result holds.
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Proposition 3.2. Consider the model given by (1)-(2) under Assumptions [M1]-[M6].
Then

- Ap(m
(20) E(1Fg— FIE) < IF = funll + Ca 2
’ n
where .
Cy=3 (/ wi (u)du + 403079 + C1C2(Omaz) + %) 7
0 max

and C1,Cy,Cs are defined in [M6].
Moreover, in the Poisson case, if we assume that 6 belongs to [0, 0pqz], then 0 defined by
(18) satisfies [M6] with Co(Opmaz) = €2maz O3 =2 and a = 1.

We can see that inequality (20) extends inequality (14) for known 6 with simply increased
multiplicative constant.

25
—— histogram of noise distribution
ol % ----- fitted density
1.5f
1,

1 2 3 4 5 6 7
nanoseconds

F1GURE 1. Normalized histogram based on a sample of the noise distribution

(solid line) and the fitted density (dashed line) having the form of (21) with

a=0.961, 8 =0.941, v = 5.74, 7 = 5.89.

3.4. Discussion on the type of noise. To determine the rate of convergence of the MISE,
it is necessary to specify the type of the noise distribution. Let us consider two examples.
First, the noise distribution can be exponential with density given by f,(z) = Ge 91 ,~0 ,
for some 6 > 0. Then we have f;(u) = 0/(0 + iu), |f,;‘(u)|2 =1/(1 +u?/6?) and A,(m) =
m + m2m3/(362).
In the fluorescence setting, we found that TCSPC noise distributions can be approximated
by densities of the following form

av T
(21) fn(SC) = <a — ﬂe—um - aﬂ_ 56_7x> ]l{a:>0} )
with constraints a > 3, v < 7, f7/(avr) > 1. Figure 1 presents a dataset with 259,260
measurements from the noise distribution of a TCSPC instrument (independently from
the fluorescence measurements) and the corresponding estimated density having form (21)
obtained by least squares fitting. Even though the fit is not perfect, the estimated density
captures the main features of the dataset. Thus densities of the form (21) can be considered
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as a good approximative model of the noise distribution in the fluorescence setting. In the
general case of (21) we have
av 1 BT 1

fy(u) = a—Br+iu a-—fBT+iu’
In the simulation study we will consider a noise distribution of the form (21) with parameters
a=2,0=1,v=1,7=2 In this case we get
4 5 o L 4 5

@) P = araare m Salm) mme gt g

JFrom the application viewpoint it is hence interesting to consider the class of noise
distributions n whose characteristic functions decrease in the ordinary smooth way of order
v, denoted by n ~ OS(y), defined by

(23) co(1+u®) 77 < [fr(w)? < Co(1 +u?)77.
Clearly, we find that A, (m) = O(m*7T1).

3.5. Rates of convergence on Sobolev spaces. In classical deconvolution the regularity
spaces used for the functions to estimate are Sobolev spaces defined by

Cla.r) = {oe @ LA®), [+l wPdus L}
If f belongs to C(a, L), then

2llf — full? = / GRS / (1+ )27 () /(1 + u?)du

lu[>7m
< (14 (mm)?)7°L < L(zmm)~% .
Therefore, if f € C(a, L) and n ~ OS(7), Proposition 3.1 implies that
E(|| fm — £11?) < Cim ™2 4 Coyn ™ tm*7 1,
The optimization of this upper bound provides the optimal choice of m by mgy; = O (nl/ (20+2V+1))

with resulting rate E(||f,, — f]|?) = O (n=2e¢/(2a+2y+1D) More formally, one can show the
following result.

Proposition 3.3. Assume that the assumptions of Proposition 3.1 are satisfied and that
fecCla,L) and n~ OS(v) (see (23)). Then for mey = O(n*/et27+0)) e have

E(Hfmopt - f”2) = O(n_2a/(2a+27+1)) '

Obviously, in practice the optimal choice my,; is not feasible since a and part of the
constants involved in the order are unknown. Therefore, another model selection device is
required to choose a relevant f,, in the collection.

4. AUTOMATIC CUTOFF SELECTION

4.1. Adaptive result. The general method consists in finding a data driven penalty pen(.)
such that the following model

(24) m = arg mrg/l\r/lln{’)'n(fm) + pen(m)}

achieves a bias-variance trade-off, where M,, has to be specified. Usually, the penalty has
the same order as the variance term, while v, (fn) = —||f||?> approximate the squared-bias

1f = fll® = I1£1? = Ifm ]| up to the constant || ],
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Here in contrast to this general approach our result involves an additional log(n)-factor
in the penalty compared to the variance order, which implies a loss with respect to the
expected rate derived in Section 3.5. This is certainly due to the complexity of the problem
which involves three sources of errors.

Theorem 4.1. Consider the model given by (1)-(2) under Assumptions [M1]-[M5]. Assume

that f is square integrable on R and n ~ OS(v). Consider the estimator f; with model m
defined by (24) with penalty

(25) pen(m) = ( [ CuBupdu+ K fgn) ) )

n

where k and k' are numerical constants. Assume moreover that n is ordinary smooth, i.e.
n ~ OS(v), and that the model collection is described by

My, ={meN,Ay(m) <n}={1,...,my,}.
Then, there exist constants k,x’ such that

; 1
(26) E (Hfm - f||2> < Cm1€r}\f/ln (If - Fmll® + pen(m)) + C’ Ogrfn) ’

where C is a numerical constant and C' depends on Cw,g and the bounds on wy.

The numerical constants x and ' are calibrated via simulations. In practice, to com-
pute 1 by (24), we approximate v (fm) = —[fmll> = = 22 ez |am ;1> by — 22} 1<k, [am ;1%
where the sum is truncated to K, of order n. We refer to Comte et al. (2006) for theoretical
justifications of this truncation, see also Bissantz et al. (2005).

A better result can be obtained with additional technicalities in the proof and under
slightly stronger assumptions: the price to pay for avoiding the log-loss in the penalty and
thus in the rate.

Theorem 4.2. Assume thatAall assumptions of Theorem 4.1 hold. In addition, assume
that E(N3) < 400 and that Gy(z) is estimated with a sample (Z_;)1<k<n independent of
(Zk)1<k<n and from the same distribution G. Then inequality (26) can be obtained with

(27) pen(m) = & < /0 1 w (u)du + &’ /0 1 wg(u)du) Ay(m)

n
for some numerical constants i, K’ .

Of course, the result in Theorem 4.2 requires to split the sample, but in the fluorescence
context, this is feasible since very large samples are available. The assumption that E(N3) <
400 is a weak constraint and is fulfilled in our main Poisson example. Then we can see that
there is no longer the log(n) factor in the penalty, so that the estimator can reach the optimal
rate without loss. Indeed, following steps analogous to Section 3.5, we can easily see that, if
f belongs to a Sobolev space C(a, L), then the order of the right-hand side of inequality (26)
is O ((n/log(n))~2¢/(2a+27+1)) in Theorem 4.1 and of order O (n~2%/(20+27+1)) in Theorem
4.2.
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4.2. Adaptive estimation in the semi-parametric Poisson case. Here we consider
that N follows a Poisson distribution with parameter 0, which we estimate by 0 defined
in (18). Then we consider fm,é as given by (19). From the theoretical point of view, the
adaptive procedure gets slightly complicated by the fact that the penalty becomes a random
quantity. In this case, we can prove the following result.

Theorem 4.3. Consider the model given by (1)-(2) and N ~ P(8), under Assumptions
[M1]-[M5] and 6 € [0, Opqaz]. Assume that f is square integrable on R and n ~ OS(vy). Con-
sider the estimator f . 5 given by (19) with model 1 defined as m = arg ming,e p,, {vn(f,, 5)+

pen(m,0)} with 6 given by (18) and penalty

— AN _ by ) 30maz Ay(m)
(28) pen(m,0) = i ; wy(u)du + F (cw,é +e )log(n) —
where k and k' are some numerical constants. Assume moreover that n is ordinary smooth,
i.e. 1~ 0S(v), and that the model collection is described by

My, ={meNA (m)<n}={1,...,my}.
Then, there exist constants k, k' such that

A N ;
(#) & (15~ 7I7) <C_inf (I ~ JulP + Ben(m, ) + 05

where C is a numerical constant and C' depends on Cw,g and the bounds on wy.

The bound given by (29) has the same order as in the one-sample result for known . The
penalty is now given by (28) which looks like (25) in the known 6 case, with only a slight
increase. Therefore, the estimation strategies are robust to a missing parameter estimation.

4.3. Discussion about unknown noise density. In the fluorescence set-up, the noise
distribution f, is generally unknown. However, independent, large samples of the noise dis-
tribution are available. Hence one may still use the procedure proposed above by replacing
fy with the estimate f:;(u) = oM e -k /M, where (1_g)1<p<pr denotes the indepen-
dent noise sample. In Comte and Lacour (2011) the same substitution is considered for
deconvolution methods. It is shown that for ordinary smooth noise this leads to a risk
bound exactly analogous to the one given in (26). The main constraint given in Comte
and Lacour (2011) is that M > n'*¢ for some € > 0. As the noise samples provided in
the fluorescence setting have huge size, this condition is certainly fulfilled in our practical
examples. In the following numerical study we consider the estimator with both the exact
[, and an estimated f; We refer to Comte and Lacour (2011) for details on the procedure.
Theoretical justifications are beyond the scope of this paper, but would clearly require a
considerable amount of work due to our additional measurement errors (pile-up effect and
c.d.f. estimation).

5. NUMERICAL RESULTS FOR SIMULATED AND REAL DATA

In this section we first give details on the practical implementation of the estimation
method. Then a simulation study is conducted to test the performance of the method in
different settings. Finally, an application to a sample of fluorescence data shows that the
estimation method gives satisfying results on real measurements.
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5.1. Practical computation of estimators. For practical computation of the estimator
fm proposed in Section 3, the presentation of the estimator in the sinc basis given by
(16) is convenient. So one has to compute the coefficients a,, j. For j > 0, they can be
approximated as follows

: / *’j(_u)@du \/—/ WJvaler (rm(v —1))

G = 5 fi() fi(rm(o — 1))

w L oy e (3 = 1)
Z /Y+7rm(2t/T—1))

dv

= (—1)Vm(IFFT(H)); = dm,; ,

where IFFT(H) is the inverse fast Fourier transform of the T-vector H whose ¢-th entry
equals m(ﬂm(%/T = 1))/ fy(mm(2t/T —1)). Similarly, for j < 0 the coefficients a, ;
are approximated by @, ; = (—1)?/m(IFFT(H));.

The integral A,(m) appearing in the penalty term pen(m) defined in (25) is explicitly
known if f, is known (see Section 3.4). In the case where we only have an estimator fn,
Ay (m) can be approximated by a Riemann sum of the form

(m/$) Z| o (mm(1 - 22

Then the best model m is selected as the point of minimum of the criterion given in (24).
Finally, we obtain the estimator f,; = Z]T:_T p,jPr,; With the sinc functions ¢y, ; defined
n (15).

Figure 2 presents the visual summary of our simulation results. We implemented the
estimation method when f has one of the following forms:

(1) a Gamma(3, 3) p.d.f given by 1/(2!33)22 exp(—2/3)1,>0, to have a benchmark with
a smooth distribution,
(2) an exponential p.d.f. given by (1/3)exp(—z/3)1:0,
(3) a Pareto(1/4, 1, 0) p.d.f. given by (1 + x/4) > 1,0,
(4) a Weibull(1/4, 3/4) p.d.f. given by (3/4)(1/4)=%/*2=/* exp(—(42)3*)1p0.
The last two densities are inspired by chemical results about fluorescence phenomena given
in Berberan-Santos et al. (2005a,b).

5.2. Simulation study.

Implementation of the estimation method. The adaptive estimator described in
Section 3 is tested with the numerical constants x = 1 and ' = 0.001 in (25) and with N
following a Poisson distribution. The value of x’ is very small and makes the logarithmic
term in general negligible except when ¢ , is large (for instance ¢2, , ~ 416 for § = 2). The
results are given in Figure 2. The observations are such that Y +n with n = oe. In the first
row, the pile-up effect is almost negligible (§ = 0.01), but o is rather large. That is, the
first row illustrates the performance of the deconvolution step of the estimation procedure.
In contrast, for the last row, o is taken to be small, but the pile-up effect is significant
(0 = 2), in order to see how the estimator copes with the pile-up effect. The second row is
an intermediate situation, illustrating how the estimator performs when the variance of the
noise and the pile-up effect are both non negligible.
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Gamma Exponential Pareto Weibull

3.36 (0.49) 14.2 (2.1) 22.4 (1.8) 43.1 (5.9)
Estimation with ¢ = 0.7, § = 0.01, n = 2000

3.36 (0.57) 15.2 (1.6) 27.1 (3.6) 48.9 (6.3)
Estimation with ¢ = 0.5, § = 1, n = 2000

3.00 (0.00) 15.3 (2.0) 33.6 (3.5) 81.0 (7.6)
Estimation with o = 0.1, § = 2, n = 2000

FI1GURE 2. True density and 25 estimated curves. Estimation by deconvolu-
tion with sinc basis for different noise levels and different levels of the pile-up
effect. Numbers below the figures indicate mean and standard deviation of
the selected model m.

The 25 curves indicate variability bands for the estimation procedure. They show that
the estimator is quite stable, especially in the last rows. Moreover, the selected model order
m is different from one example to the other. Globally the selected cutoff m increases when
going from example 1 to 4. That means that the estimator adapts to the peaks that are
more and more difficult to recover.

In Table 1 the MISE of the estimation procedure is analyzed. The table gives the empirical
mean and standard deviation of the MISE obtained over 100 simulated datasets. This is
done for the same four examples of distributions as above. We compare the error for the
estimator using the exact noise distribution to the estimator based on an approximation
of the noise distribution based on an independent noise sample of size 500. Moreover, we
study the influence of the noise distribution on the estimator. Therefore, we consider, on
the one hand exponential noise with variances o2 € {0.2,1}, and on the other hand density
(21) with a =2, =1, v =1, 7 = 2 (multiplied with adequate constants to have the same
variance o2 as for the exponential distributions).
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Exponential noise

(@2, 0) (02,05)  (0.2,1.5) 0.2,2) (1,0.5) (1,1.5) (1,2)
Gamma 063 (.042) .081 (.045) .112 (.026) .061 (.039) .088 (.040) .115
.063 (.042) .081 (.045) .112 (.026) .061 (.039) .087 (.040) .115 (.

Exponential 1.11 (0.22) 1.20 (0.26) 1.45 (0.21) 1.36 (0.26) 1.40 (0.24) 1.67 (0.27)
1.11 (0.22) 1.19 (0.25) 1.46 (0.21) 1.36 (0.27) 1.40 (0.24) 1.67 (0.27)

Pareto  4.25 (0.82) 4.55 (0.58) 5.45 (0.84) 6.62 (1.5) 6.58 (0.95) 8.09 (1.2)
423 (0.83) 4.56 (0.61) 5.47 (0.83) 6.62 (1.6) 658 (1.0)  8.09 (1.2)

Weibull 106 (6.7)  9.46 (5.0) 9.22 (27) 21.4 (4.1) 26.7 (5.6) 39.5 (5.9)
8.54 (4.7)  9.40 (4.8) 9.30 (2.3) 221 (4.8) 26.7 (5.7) 40.1 (5.7)

Bi-exponential noise

(02,0) (0.2,0.5)  (0.2,1.5) (0.2,2) (1,0.5) (1,1.5) (1,2)
Gamma  .060 (.032) .075 (.040) .113 (.023) .061 (.048) .088 (.043) .11
060 (.032) .075 (.040) .113 (.023) .062 (.048) .089 (.043) .11

Exponential 1.06 (0.20) 1.14 (0.17) 1.49 (0.26) 1.23 (0.27) 1.37 (0.28) 1.62 (0.28)
1.06 (0.20) 1.14 (0.16) 1.48 (0.25) 1.25 (0.26) 1.37 (0.28) 1.62 (0.27)

Pareto  4.15 (0.76) 4.31 (0.69) 5.08 (0.71) 6.08 (1.5)  6.41 (1.1)  7.43 (1.0)
4.14 (0.77) 4.30 (0.69) 5.07 (0.72) 6.11 (1.6)  6.49 (1.2)  7.45 (1.1)

Weibull 102 (6.1) 889 (5.6) 829 (2.1) 24.7 (3.9) 29.4 (45) 40.1 (5.2)
8.25 (4.3) 875 (5.4) 831 (22) 249 (4.3) 295 (4.9) 404 (5.3)

TABLE 1. 100 x mean MISE and standard deviation in parentheses, sample
size n = 1000. First lines correspond to exact noise distribution, second lines
give results obtained with estimated noise distribution with additional noise
sample of size 500.

From Table 1 it is clear that increasing the variance of the noise distribution increases the
error. Furthermore, changing the type of the noise does not influence a lot the estimation
procedure. Indeed, the second case (21) is just slightly less favorable than the exponential
distribution. This difference is in accordance with Proposition 3.3 that holds with v = 1
for the exponential and with v = 2 for the other density. The comparison with the results
based on an approximated noise distribution (second lines) reveals that there is rarely a
difference between the two methods. Indeed, using an approximation of the noise does not
corrupt the results, in some cases we even observe an improvement of the error. We show
in Figure 3 that it is indispensable to take into account both the pile-up correction (which
is omitted in (b) where w(k/n) is replaced by 1) and the deconvolution correction (which
is omitted in (c) where the estimation is done with the method of Brunel et al. (2009) with
the trigonometric basis, se! e also Remark 3.2). Thus, we conclude from these simulation
results for the fluorescence setting that it is justified to use an estimate of the noise instead
of the theoretical distribution.

Influence of the distribution of N. Table 2 illustrates the effect on the MISE of
different laws of N, namely a Poisson distribution, a geometric distribution Geo(p) and a
uniform distribution on {1,...,ko}. The first rows give the MISE and associated variance
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(a) (b) ()

FIGURE 3. (a) Estimation with pile-up correction and deconvolution. (b)
No pile-up correction. (c¢) No deconvolution.

E[N] = 4, T(2,2), n = 1.000

MISE
parameter P(N =1) meanx10® variancex10?
Poisson distribution 0 =3.92 0.079 5.91 0.0101
Geometric distribution p = 0.25 0.25 3.85 0.0046
Uniform distribution ko=17 0.14 4.91 0.0066
P(N =1) =0.10, Par(4,4), n = 2.000
MISE
parameter E[N] meanx10®  variancex10?
Poisson distribution 0 = 3.62 3.72 4.51 0.0019
Geometric distribution p = 0.10 10 4.64 0.0025
Uniform distribution ko = 10 5.5 4.21 0.0017

TABLE 2. Comparison of the MISE and associated variance based on 300
repetitions for different laws of N, namely Poisson distribution Poi(6), geo-
metric distribution Geo(p) and uniform distribution on {1,...,kq}. The tar-
get distribution f is a Gamma I'(2,2) and a Pareto Par(4,4), respectively.
The additive noise n is exponentially distributed with o = 0.7.

over 300 repetitions when the expected mean E[N] is fixed. We see that the geometric
distribution corresponds to the smallest MISE, whereas the Poisson distribution has the
worst performance. We note that at the same time the geometric distribution has the
highest probability P(N = 1) and the Poisson distribution the lowest. We have seen that
this probability plays a key role in the theoretical study of the estimator. The last rows
of Table 2 refer to the case where the probability P(N = 1) is the same for the three
distributions of N. Despite the differences of the three distributions (see e.g. the different
associated values of E[N]), the performance of the estimator in terms of the MISE is quite
the same. This confirms that the probability P(N = 1) is the decisive characteristic of the
law of N for the performance of the estimator.

About confidence intervals. Lastly, Figure 4 shows confidence intervals with confi-
dence level 0.90 obtained by different procedures for data (n = 1000 and n = 4000) from
a Gamma I'(2,2)-distribution in the Poisson case (with # = 0.55). Figure 4 (a) represents
asymptotic confidence intervals for f,,(z) based on a result on the asymptotic normality

of /n(fm(2) — fm(z)) and a consistent estimator of the limit variance (see Rebafka et al.
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FIGURE 4. (a) Asymptotic confidence intervals for f,,(z). (b) Asymptotic
confidence intervals for f(z). (c¢) Bootstrap confidence intervals for f(z).

(2010)). To obtain confidence intervals of f(z), we adapted the approach of Bissantz et al.
(2007) for the construction of confidence bands in a different context. The procedure consists
in computing asymptotic confidence intervals from the result on the asymptotic normality
of \/i(fim(2) — fm(2)), however, by selecting a larger m than the one proposed by our data-
driven model selection tool m. This kind of under smoothing leads to larger intervals that
contain f(z) with the required confidence level when the parameters of the procedure are
well tuned. The same technique of under smoothing in combination with bootstrapping the
quantity /n(fm(z) — fm(2)) yields the confidence intervals of f(z) in Figure 4 (c). The
construction of confidence bands for f is beyond the scope of this paper, as it requires a
non trivial analysis of a process involving L-statistics.

5.3. Application to Fluorescence Measurements. We finally apply the estimation pro-
cedure to real fluorescence lifetime measurements obtained by TCSPC. The data analyzed
here are graphically presented in Figure 5 (a) by the histogram of the fluorescence life-
time measurements and the histogram of the noise distribution based on a sample obtained
independently from the fluorescence measurements. The sample size of the fluorescence
measurements is n = 1,743,811. The same sample of the noise distribution has already
been considered in Figure 1, where it is compared to the parameterized density given by
(21). In this setting the true density is known to be an exponential distribution with mean
2.54 nanoseconds and the Poisson parameter equals 0.166. The knowledge of the true den-
sity allows to evaluate the performance of our estimator. More details on the data and their
acquisition can be found in Patting et al. (2007).

We apply the estimator of Section 3 with the sinc basis to this dataset. We recall that
the numerical constants are k = 1 and ' = 0.001. Figure 5 (b) shows the estimation result
in comparison to the exponential density with mean 2.54. We observe that the estimated
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- fluorescence measurements | | .y - - - exponential density with mean 2.54
—noise distribution \ ——estimated density

(a) (b)

FIGURE 5. (a) Fluorescence lifetime measurements (solid line) and indepen-
dent sample of the noise distribution (dashed). (b) Density estimator (solid)
and ‘true’ exponential density with mean 2.54 (dashed).

function is quite close to the ‘true’ one. This indicates that the estimation procedure takes
the errors present in the real data adequately into account and that the modeling by the
pile-up distortion and additive measurement errors is appropriate.

We conclude that the estimation method proposed in this paper has a satisfactory be-
havior in various settings and give rather good results on both synthetic and real data.

6. PROOFS

6.1. Proof of Proposition 3.1. We have ||f,, — |2 = (20) 7| f5 — 12 = @n) (|5 —
N+ 11fE — f*]|?) since they have disjoint supports. Next, by the Parseval formula and
triangular inequality, we get

o ™ du 1
um—mwz/

e [ (W)[? 02
o du 1 . —iu A —iu
< 2/ Fr)Pn? [e Zrwg o Gy(Zk) — e " Prwp o G(Zk)]
—7mm |Jn =1
™o du 1
30 + 2/ v
) e T 2

The expectation of the first term on the right-hand side of (30) is less than or equal to

n 2

3 [e—wzkwg o Gn(Zs) — E(e™Zryg o G(Zk))}
k=1

2

[e™ "k o0 G(Zy) — E(e™ ™% wy o G(Zy))]
k=1

Z/_m e E(|wp 0 CulZs) — wp 0 G(Z0)?)

) o dy Ay (m)
< 2 A2 < 2 By
= Cw,GE (HGTZ GHOO) /—7rm ’f ( )‘ 27T01€w 0 n )

by using E(||Gp — G||%) < ¢x/n* (see e.g. Lemma 6.1 p. 462, Brunel and Comte (2005)
which is a straightforward consequence of Massart (1990)). Here ¢ = 2 for G,, and ¢o = 4 for
G, and more generally, ¢ is a numerical constant that depends on k only. The expectation
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of the second term on the right-hand side of (30) is a variance and less than or equal to
2 /”m du 7 A, (m)E[(wg o G(Z1))?]
- " Var(e ™1y 0 G(Zy)) < 4n—" .
—em | ()] n
Gathering the terms completes the proof of Proposition 3.1. [J

6.2. Proof of Proposition 3.2. Equation (30) now writes

s oE 2 m du 1
Il < 8 [

n 2

3 [e*@'uzk (wy © Gn(Z1) — wp o é(zk))]

k=1

2

o du 1 g —iu A —iu
+3/ TP > [e Zhwg 0 Gn(Zi) — e Prwg o G(Zk)]
—7Tm k=1

+3/”m du 1
e 7 ()2 02

= 3(T1 + Ty + Tg)

The last two terms T and T3 of the right-hand-side are exactly the ones found in the proof
of Proposition 3.1 and they already have been studied. Next we have

< s 3 o) o ()

This term is split is two parts:

k koY)’
E || w; — wy (—)) 1, < sup sup
[< o <n + 1) n+1 0€10,20maz] u€[0,1] 0€[0,20maz]

C
S 02 (emax) 71 )

2

M:

[e™ ™% wg 0 G(Zy) — E(e™™Phwy o G(Zy))]

k=1

dwg(u) |?

o B0 - )

by using [M6] (i) for £ = 1 and (ii). Moreover, using now [M6] (i) for £k = 2 + a and (iii),
we get

k k ? 2a 2 2
: [<wé <n+ 1) o (n + 1>) ]lézzom”] = CoE (|9 ¢ ]l{‘é*9|>9maz})

E[(0 - 0)>"] _ C1Cs

4a —
Hmaz n

S an2a

The two above bounds added to the ones of the proof of Proposition 3.1 implies inequality
(20) and the first part of Proposition 3.2.

For the second part of the result, related to the Poisson case, if 6 € [0,0,,42], then we
have E[(é —0)%F] < Cy/n¥ for k =1,2,3 and O} depends on 6, 0,42, which ensures (i). We
skip the proof of this result which uses classical tools. Besides, for (ii), we compute

dwp(u)  —(1—e?—0e70)/6% +u(l —e?)2/6?

00 1 —u(l—e?)2 ’
and as —(1 — e~ ? — #e=9)/0? takes values in [~1/2,0] and (1 — e~?)?/6? belongs to [0, 1],
we have
-1/2 - Jwg(u) - u

l—u(l—eD2~ 90 — [1—u(l—e?)?
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Therefore, we get |wg(u)/00| < max(u,1/2)/[1 — u(1 — e~?)]?, which yields Co(0pnae) =
e?0maz in (ii). Lastly,

1
T 1l-u

)
Ge]RIzr a0
and thus the sup for u € [0,n/(n +1)] is n + 1 so that C3 =2 and a = 1 in (iii) suits. O

)

6.3. Proof of Theorem 4.1. We have the following decomposition of the contrast for
functions s, t in S,

(31) n0) = nls) = It = FI7 ~ s = FI? ~20n(t ) ~ 2Rt~ 5)
where
t*(— —ka (wo G)(Zy) — E(e™ ™%k (w o G)(Zk))]
(32) " 2mn Z/ fir(u) du,
and
t* zqu R
(33)  Ralf)=5 Z / du (w0 Go) () — (w0 C)(Z4)]

Now, the definition of f;;, implies that, Ym € M,,,
'Yn(frh) pen( ) < ’Yn(fm) pen(m) :

Thus, with decomposition (31) where we take t = fin and s = f,,, this can be rewritten as
follows

i = FI? < i = £ + pen(m) + 2vn(fi — fn) — pen(ii) + 2Ru (i = fn) -
Using this and and that 2zy < 22/6 + 0y? for all nonnegative x,, 6, we obtain

1f = Finll® 1f = full® + pen(m) + 2v,(fs = fm) — pen(r) + 2Rn(fino — fin)

If = fmll® + pen(m) + 2|| f — fon sup vn ()| — pen(mm)
t€Sm+Sm,|[t]|=1

+2Hfﬁ1_fm|| sup |Rn(t)|
t€S5,+Sm,lt||=1

1 .
< || = fml? + pen(m) +Z||frh_fm”2+4 sup  [va(8)]?
tES 4+ S, ||t =1

. 1,2
—pen(m) + ngm — ful®+8 sup [Rn (1)) .
tES 5 +Sm,|It]|=1

IN N

As | fa — Fnll? < 2(1fins — FI? + || fn — fII?), this yields

JENF — Fal?) < £||f—fm||2+pen<m>+4xa< sup [un<t>]2> ~ E(pen(in))

tEBmym

(34) +8E ( sup [Rn<t)]2> :

t€B .
where v, (t) and R, (t) are defined by (32) and (33) and B,, = {t € Sn,||t|| = 1}, and
By = {t € Sp + Spy, |It]| = 1}. Following a classical application of Talagrand Inequality
in the deconvolution context for ordinary smooth noise (Comte et al., 2006), we deduce the
following Lemma.
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Lemma 6.1. Under the Assumptions of Theorem 4.1,

SIG

E ( sup [vn(t)]? — pi(m, m)) <
teEB, i
’ +
where py(m,m’) = 2E((wg o G)?(Z1))Apy(m Vv m')/n = 2(f01 wi(u)du) A, (m VvV m')/n.
Moreover for the study R, (t) we have the following Lemma.

Lemma 6.2. Under the assumptions of Theorem 4.1,

E ( sup [Rn(t)]2 —pg(m,m)> <0,
t€Bom 1

where pa(m,m’) = C?UﬂAn(m v m/)log(n)/n.

It follows from the definition of p;(m,m’), i = 1,2, that there exist numerical constants
k and ', namely k, k" > 8, such that 4py(m,m’) + 8pa(m, m’) < pen(m) + pen(m’).
Now, starting from (34), we get, by applying Lemmas 6.1 and 6.2,

[Hf Fall?) < —Hf frmll® + pen(m )+4E< sup  [vn (1)) —pl(m,m)>
+

tEBm’m

+8E < sup (R, (1)]* — pa(m, m)) + E[4p1(m, 1) + 8pa(m,1m) — pen(im)]

teBm,m

< TNf = il + 2pen(m) +

S|o

Therefore we get (1/4)E[||f — finll2] < (7/4)|f — fmll? + 2pen(m) + ¢/n. This completes the
proof of Theorem 4.1. [J

Proof of Lemma 6.2. First we remark that, with Cauchy-Schwarz inequality, we have

2
1 t*(—u) z
L = — w2k 4 Zp)] | d
| R (1)) w2 || Trw ( l;e [(wg © G)(Zk) — (wp 0 G)( k)]) u
w(mVin) )
< /|t |du/ 8 ZIU}@OG (Z) — (wy 0 G)(Z4)? ) .
—7m(mVvm) ‘f
Then Parseval Formula gives ||t*|? = 27THtH2 and we find
2 9 A A2
Sup. [Ru(t)|? < 3 pAy(m ( ZI (Zk)| ) < CppAn(mVin)||Gn —Gll5 -
We define Qg by
(35) Q6 = {Vn]|Gy = Glloo < Vlog(n)} -
Now, we know from Massart (1990) that
(36) P(vn||Gr — Glloo > A) < 2672

This implies that P(Q5,) < 2/n?.
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Now, we write sup;cp  |Ry(t)]*> = R1 + Ry by inserting the indicator functions Lo,

and Lge, where Q¢ is defined by (35). Therefore

E ( sup [Rn(8)]? — pg(m,m)> < E(R1 — pa(m, i) + E(R2)

tEBm,m
2 = A A2 log(n)
(37) <ok | Ay(m Vv m)(|Gn — G5 las — ——)

n

+ ¢ oDy (ma)E(| G — G5 1y, ) -

Next (||Gyp — G2 1o —log(n)/n)) < 0 by definition of Qg for the first right-hand-side term
of (37). For the second term, A(m,) < n by the definition of m,,, |Gy — Glles < 1 and it
follows from (36) that P(Q,) < 2/n?. Therefore

E ( sup [Rn(t))” — p2(m7m)> < 2, gnP(QG) < 2¢k 5/n .
teBm,m

Gathering the bounds gives the result of Lemma 6.2. [J

6.4. Proof of Theorem 4.2. The additional assumptions are used to provide a new bound
in Lemma 6.2, which is now replaced by

Lemma 6.3. Assume that G, is estimated with a sample 2~ = (Z_j)1<j<n independent
of (Zj)i1<j<n and that 1 exists and is bounded. Then we have

((eor-efos5)).
m,m +

Proof of Lemma 6.3. By Taylor formula, we write

Ry (t) < 2(R7 4 () + Rp 5 (1))

Slo

where
_l - 8 ) VY . efiqut*(_u) w
Roa®) =3 32 [ (@i - iz Socla
and
N (2 - 62 e Y
Fualt) = 373 [ Gz~ e s S,

where 6; is a random element in (G(Z;), Gn(Z])) Therefore,
E( sup [Rn,2(t)]2> < E( sup [Rn,2(t)]2> < [@IEE(IGr = Gll5e) Ag(ma)
t€Bom i, t€ B,

iz Dalma) _ [l
2 n n
a2, 22 < Ko

IN

Now, the main part of the study is for R,, 1(¢). We split the process into two other processes:

Uni(t) = Rp1(t) —E(Rp,1(t)|Z27) and  9p2(t) =E(R,1(8)|27) .
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We first study 1,1, which is a centered empirical process given Z~ and which is studied
given Z7. We apply a Talagrand inequality to this process after the transformation

(38)

£ (( o s farlmin) )
/o +

< 3o (oo s ] M)) |

m’GMn

Now, we apply Talagrand Inequality as recalled in Appendix. We have therefore three
quantities to bound, denoted by Hi,b,v; with obvious reference to Theorem 7.1. We
denote by E~(.) = E(.|Z27).

IN

(e )

2

B ([ G = @) o Gz e~ B(G = G o Gz )| g,
Wt n\U
1 /A . —iuZy du
E /]lu|§7r(m\/m’)\/ar ((Gn(zl) - G(Zl))w 0 G(Zl)e 7 ) |f;(u)|2
1 o du w QA,] mvm'
- [ Bisromam B (0 6(20)?) T HS ) e,

A~

since (G (2) — G(2))? < 1.

Next it is rather straightforward that by = [|W||ec /Ay (m V m/) gives a second bound.

Lastly, the most tedious term is vy.

IN

IN

IN

IN

IN

IN

Var~ ( / (Gn(Z)) — G(Z))i 0 G(Zy)e 441 %m)

fi
2
/)

iz m
fi(w)

€

- ((@n(Zl) = G(Z1)*(w 0 G(Z1))?

ol E (\/ ‘”th*;;(u) )
ol ([ g'w-0 Ezﬁ())dudv
ot (1608 00t [ st oty sl (o vy

w3 su — m(m vV m/ *
il s fﬁ(vﬂ\/An(( vi) [ 1o
Bl [ 19D /G V) v ) =
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where the term /7 (m V m/) is obtained thanks to the OS assumption stated in (23) which
implies that there are two constants c1, co such that

lem \f )\ <ecr(14 (mm)?)72 and  A,(m) > co(1 + (wm)?) 12

Now we use (38) and the Talagrand inequality recalled in Lemma 7.1, and we get

- <<t€s;5m19 )~ [l ﬁ”))

O 5~ (v e (e )+ S oy (g L 2

vl 1113 il

The bound is of order 1/n since we have

Z Ay (m) exp(— em'/?) < ¥ < 400 .
meMy,

Lastly, as nothing in the bound is depending on Z~, taking the expectation w.r.t. the global
distribution of the Z_;’s gives the same result with a usual expectation (E~(.) replaced by
Next, we study the second process and we write

D) = ERaa(0127) = [ ([ 6ue) ~ GnuiGne g(e)a)
_ %jzn‘; / ( / (7 < —G(z))w(G(z))e_wzg(z)dz) t;é(_;‘))du

We can see that 9, 2(t) is another centered empirical process, to which we also apply the
Talagrand inequality. We denote here by Hs, bs and vy the bounds that we have to exhibit
for applying the inequality.

First we find that

IE( sup 19%72@))
tGBm’m/

n

2

< B| 23 ( [ e - 6@puGe)egz)as )| Hsmimm g,
2 7;(w)
< / Var ( / Z_ISZ)M(G(z))ewzg(z)dz> Wdu

< 5/{)( ()2 da s, (m v m') = HE

since fo || (z <f0 z)dz. Clearly, by = ||w|\/A,(m VvV m') suits.
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Again, the search for vy is more difficult.

Var < / ( / Lz yen — G(z))w(G(z))e—iuzg(z)dz) tf,i?vj)) du)

< E U / < / ll(Z1§Z)u')(G(z))e_i“Zg(z)dz) t;ézj))du 2
< E [ / / < / / n(z1§Z)woc(z)e—mg(z)n(z1§t)woa(t)eivtg(t)dzdt) %dudv]
_ / / / G(zAt)woG(z)woG(t)e“uzvt)g(z)g(t)dzdt%dudv
n Y
_ // u, —v) t* “i?*(( ))dudv,
where

0" (u,—v) = / Gz A t)ib o G(2)w o G(t)e ") g(2) g (t)d2dt .

Therefore we obtain the bound

Var ( / ( / Lz en) — G(2))i 0 G(z)ewzg(z)dz> tfi(j)) du)
< o s ([ oo [fircorcopaa)

< w(mvm)A,(mvm)0]?,

by using the OS assumption (23) as previously and since ||0*|> = 27(|]|*. But we have

01 = [ 16 At Gayi o Gltyg(z)g(0) Pdza < ( / rw\<x>dx)2 < o).

Thus

vy = cljw]*(m Vv m)A(m v m') .

Therefore, we can apply Talagrand’s inequality as previously and we get

E(( sup 02,5(t) - 4/<w>2w> )sU/n,
t€ By i n i

since

ZA m)exp(—em) < ¥ < 400 .
meM,y,

6.5. Proof of Theorem 4.3. We start with decomposition (31) again, and following the
same line as in the proof of Theorem 4.1 relation (34) is replaced by

E[If = f0l*] < ZHf — fnll? +E(peni(m, 0)) + 4E <t€SE1;1pA [Vn(t)]2> — E(pen(ri, 0))

(39) +8E< sup [Tn<t)]2>,

tEBmym
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where v, (t) is defined by (32) and T),(t) = R, (t) + U, (t) with R, (t) defined by (33) and

n 7zqu

t*(— N
e / du [(1w5 0 G) () — (wy 0 G)(Z0)]
Next, we note that if 6 € [0, 6,,,4,] and 0 € 0, 20,142,

1
/ (wg(u) — wg(u))2du < C(@m%)(é _ 0)2
0
and also (c,, 5 = cu9)* < C(0maz)(0 — 0)2. Therefore, we denote by

Qp = {w e 0 0(w) < 2W0pmaz} = {0 < 20,02} -

Using the assumption on the collection of models ensuring that A, (m)/n < 1, we obtain
that uniformly in m,

— A C 95 emaz —
E (pen(m,@)ﬂge) < 7( - ) + 2E (pen(m, 0)1g,) ,
— C 95 emaz — A
(40) E (pen(m,0)1g,) < % +2E (pen(m, 9)ﬂg6> ,

by using that E[|§ — 0]%*] < ¢/nF.
Now, we add to Lemmas 6.1 and 6.2, the following result for the study U, (t).

Lemma 6.4. Under the assumptions of Theorem 4.1, there exists a numerical constant r’
such that

:Im

E( sup [Un(t)]lge]2 —pg(m,m)]l99> <
tEBo i

where

Ay(m Vv m')

(41) pa(m,m') = &' Co(Omae )€™ log(n) .

It follows from the definition of p;(m,m’), i = 1,2, 3, that there exist numerical constants
k and &/, namely k, ' > 16, such that

—_

_ 1__
4py(m, m’) + 16pa(m, m’) + 16p3(m, m’) < §pen(m7 0) + §pen(m’, 0) .

Note that p; and ps depend also on 6. Now, starting from (39), we get, by applying Lemmas
6.1, 6.2, and 6.4, that on €2y, the following inequalities hold.

teBm,m

EEHlf — faal*la,] < —||f Frall? + pen(m 0) +4E ( sup (v, (1)) —pl(m,m)>
+

+ 16E < sup [Rn(t))* — pg(m,m)> + 16E < sup [Un(t)1g,)? —pg(m,m)ﬂ%)

teBm,ﬁz teBm»’ﬁl

A A A 1 —_ A
+ E[(4p1(m,m) + 16pa(m,m) + 16p3(m,m) — §pen(m, 0))1q,]

+ E[éﬁéﬁ(m 6) — pen(im, )1, ] + S0 Omaz)

~J

< 2IF = Full? + S5E0(m, 6) + £

o
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by using (40). Therefore we get
(42) E(l|f = fanll*Ta,) < 7If = finll® + 10pe(m, 6) + ¢/n. .

On the other hand, we have Hfmé —fII? < QHfméHQ +2|| £ and

2
. (1 k
5.0l < Al v 1) (gzw@ (vt J) |

k=1

We know that A,(m V m) <n by definition of M,, and

1 k ! !

Therefore || fm 41> <nand

IN

2(n+ ||fIP)P(16 — 6] > binac)

E(|6 — 6]*) < COmaa, |I£1)

4 —
Hmaa: n

E(| 55— f1710g)

(43)

IN

2(n+ || £1%)

Gathering (42) and (43) completes the proof of Theorem 4.3. [J

Proof of Lemma 6.4.
We follow the same line as in the proof of Lemma 6.2 and we obtain similarly:

) k B k
Yo n+1 we n-+1

n

1
sup |U,(1)*1g, < An(m\/m)—z

tEBm,m n

2
1q,

IN
S
=
3
)
&
S
=
3
<
2
=
|
)
e

We define Qy by

. v/ 1
Qu=A{|0 -0 <wupp}, withu,y= K,Ueeoiojgl) .

We obtain sup;ep  |Un(t)|*1g, < (U1 +Usz)1q, by inserting in the above bound 1g,, and
]IQ%] so that

E ((teSB}lp h ‘Un(t)P — pg(m, m))ﬂge> < E((Z/[l — pg(m, m))ﬂge) + E(UQHQQ)
< 0+ nC2(0mam)E((é - ‘9)2]199]195)
(44) < Co(Omaz)VCIPY2(9F)

for ps(m,m’) as in (41) and £’ > 1.
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Since Vx > 0, ¢ > 14+ z and e”* > 1 — x, by denoting §; = 1(Z; = +0o0), we get

> umg)

n

log <%+1 + - i 1 Z(Sk> — log (E(61))

k=1

P(QS) = IP’(

1 1 n 1 1 n
Tt —10k 7T T T 2k=10k
_ p| ntl ntl k=1 > lng op 2HL T ntl k=1 < e Uno
( E(6) - E(6) =
1 1 n
i+ i Y &
- ( E(61) =
1 R
= — — >
P ( (B o D6~ B(a) > un,eE<61>>
< P L n(é —E(6x))| > IE(5)+z
< n+11§:1 k k)| 2 Unpllo1) + =
1 n
< P < — 2 (0 —E(0k))] = un,aE(51)> :
k=1

The Bernstein inequality ensures now that for well chosen «’, we have the above probability
less than C/n? which, inserted in (44) completes the proof of Lemma 6.4.0]

7. APPENDIX

The Talagrand inequality. The following result follows from the Talagrand concentration
inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see
the proof of their Corollary 2 page 354).

Lemma 7.1. (Talagrand Inequality) Let Yi,...,Y, be independent random variables, let
vny (f) = (1/n) 30 [f (V) —E(f(Y3))] and let F be a countable class of uniformly bounded
measurable functions. Then for €2 > 0

4 (v 2 nm? 98h2 _2K,0(De
E 2901 22H2} < | ZeEKeEn - V07 vz b
fc‘elfé'”"vY(f)' (1+2¢) LS K \nt +K1n202(62)e ’

with C(?) =V1+ €2 —1, K = 1/6, and

1 n
sup | flloc < b, Esupluny ()] < H, sup = > Var(f(¥i)) <.
fer fer fer i

By standard denseness arguments, this result can be extended to the case where F is
a unit ball of a linear normed space, after checking that f — v, (f) is continuous and F
contains a countable dense family.
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