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1 Introduction

In this paper, we consider the stochastic volatility model (Xt, Vt)t≥0 with dynamics

described by the following equations:{
dXt =

√
VtdBt, X0 = 0,

dVt = b(Vt)dt+ σ(Vt)dWt, V0 = η, Vt > 0, for all t ≥ 0,
(1)

where (Bt,Wt)t≥0 is a standard bidimensional Brownian motion and η is independent

of (Bt,Wt)t≥0. Discrete time observations of the X process are available whereas the

stochastic volatility V is unobservable. Our aim is to propose and study nonparametric
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estimators of the drift function b(.) and the diffusion coefficient σ2(.) of the unobserved

volatility process V .

Statistical inference for stochastic volatility models is often parametric: the func-

tions b(.) and σ2(.) are specified up to a few unknown parameters, see the popular

examples of Heston (1993) or Cox, Ingersoll and Ross (1985). General statistical para-

metric approaches of the problem are studied in Genon-Catalot et al. (1999), Hoff-

mann (2002), Gloter (2007), Aı̈t-Sahalia and Kimmel (2007). A recent proposal for

nonparametric estimation of the drift and diffusion coefficients of V can be found

in Renó (2006), who studies the empirical performance of a Nadaraya-Watson kernel

strategy on two parametric simulated examples. Our approach is new and different. It

is based on a nonparametric mean square strategy. We follow the ideas developed in

Comte et al. (2007, 2008), where discrete observations of the process (Vt) or discrete

observations of the integrated process (
∫ t
0 Vsds) are considered. We assume that (Vt)

is stationary and we consider discrete time observations (X`δ)1≤`≤n+1 of the process

(Xt) in the high frequency context: δ is small, n is large and nδ = T , the time interval

where observations are taken, is large. Such high frequency data of the process X can-

not be used directly to estimate nonparametrically the drift and diffusion coefficients

of the volatility process. In order to “eliminate” the effect of the Brownian motion

B, one must first compute quadratic variations based on the discrete observations of

X and then use these to estimate b and σ2. This is done as follows. Given n = kN

observations of X with sampling interval δ, groups of k observations are used to com-

pute quadratic variations. As it is usual, we define, for i = 0, 1, . . . , N − 1, the realized

quadratic variation associated with (X`δ)ik+1≤`<(i+1)k:

ˆ̄Vi =
1

kδ

k−1∑
j=0

(
X(ik+j+1)δ −X(ik+j)δ

)2
.

Setting ∆ = kδ, ˆ̄Vi provides an approximation of the integrated volatility:

V̄i =
1

∆

∫ (i+1)∆

i∆
Vsds, (2)

which in turn may be, for well chosen k, δ, a satisfactory approximation of Vi∆. One

may think that N is a number of “days” and k is the number of observations “per day”.

Then the basic idea is to regress changes (square changes) of the quadratic variation

of X from period (i+ 1) to period (i+ 2) on the quadratic variation of period (i− 1)

to period (i), to get an estimate of the drift (diffusion) function. More precisely, we

obtain regression-type equations, for ` = 1, 2:

Y
(`)
i+1 = f (`)( ˆ̄Vi) + noise + remainder,

where

f (1) = b, Y
(1)
i =

ˆ̄Vi+1 − ˆ̄Vi
∆

and f (2) = σ2, Y
(2)
i =

3

2

( ˆ̄Vi+1 − ˆ̄Vi)
2

∆
. (3)

Choosing a collection of finite dimensional spaces, we use the regression-type equations

to construct estimators of the functions b(.) and σ2(.) on these spaces. Then, we propose

a data driven procedure to select a relevant estimation space in the collection. As it

is usual with these methods, the risk of an estimator f̃ of f = b or σ2 is measured
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via E(‖f − f̃‖2N ) where ‖f − f̃‖2N = (1/N)
∑N−1
i=0 (f − f̃)2( ˆ̄Vi). We obtain risk bounds

which can be interpreted as n,N tend to infinity, δ,∆ tend to 0 and T = nδ = N∆

tends to infinity. These bounds are compared with Hoffmann’s (1999) minimax rates

in the case of direct observations of V . For what concerns b, our method leads to the

best rate that can be expected. For what concerns σ2, no benchmark is available in

this asymptotic framework. Indeed, Gloter (2000) and Hoffmann (2002) only treat the

case of observations within a fixed length time interval, in a parametric setting.

The paper is organized as follows. Section 2 describes the regression equations,

the collection of estimation spaces, and the estimators, defined as minimizers of mean

square contrast functions. In Section 3, the assumptions on the model are explained and

the risks of the estimators are studied. Section 4 completes the procedure by the data

driven selection of the estimation space. Examples of models and simulation results are

presented in Section 5. Lastly, proofs are gathered in Section 6.

2 The mean square approach

2.1 The regression equations

Our estimation strategy is based on the idea that, if one observes (Yi, Xi) with Yi =

f(Xi) + εi where εi is a white noise, then nonparametric mean square contrasts lead

to a good estimation of the regression function f . Let us explain how to use this idea

for the case of the drift estimation.

Suppose we observe directly the (Vi∆), then, we can write:

V(i+1)∆ − Vi∆
∆

=
1

∆

∫ (i+1)∆

i∆
dVs =

1

∆

∫ (i+1)∆

i∆
b(Vs)ds+

1

∆

∫ (i+1)∆

i∆
σ(Vs)dWs

= b(Vi∆)+
1

∆

∫ (i+1)∆

i∆
σ(Vs)dWs︸ ︷︷ ︸

noise

+
1

∆

∫ (i+1)∆

i∆
[b(Vs)− b(Vi∆)]ds︸ ︷︷ ︸

Residual term

.

This regression of the (V(i+1)∆ − Vi∆)/∆ on the Vi∆ allows to estimate b (see Comte

et al. (2007)).

Suppose we observe the (V̄i), then, we can write

V̄i =
1

∆

∫ (i+1)∆

i∆
Vsds =

1

∆

∫ (i+1)∆

i∆

(
Vi∆ +

∫ s

i∆
dVu

)
ds

= Vi∆ +
1

∆

∫ (i+1)∆

i∆
[(i+ 1)∆− u]dVu.

So we have

V̄i+1 − V̄i
∆

=
V(i+1)∆ − Vi∆

∆
+

1

∆2

[∫ (i+2)∆

(i+1)∆
((i+ 2)∆− u)dVu +

∫ (i+1)∆

i∆
(u− (i+ 1)∆)dVu

]
.

Introducing

ψi∆(u) = (u− i∆)1I[i∆,(i+1)∆[(u) + [(i+ 2)∆− u]1I[(i+1)∆,(i+2)∆[(u) (4)
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leads to

V̄i+1 − V̄i
∆

= b(Vi∆)+
1

∆2

∫ (i+2)∆

i∆
ψi∆(u)σ(Vu)dWu︸ ︷︷ ︸

noise

+
1

∆2

∫ (i+2)∆

i∆
ψi∆(u)[b(Vu)− b(Vi∆)]du︸ ︷︷ ︸

residual

.

The last step is to use the quadratic variations ( ˆ̄Vi) built using our effective observations

(recall that we have set kδ = ∆). We write:

ˆ̄Vi = V̄i + ui,k,

where

ui,k =
1

∆

k−1∑
j=0

(∫ (ik+j+1)δ

(ik+j)δ

√
VsdBs

)2

−
∫ (ik+j+1)δ

(ik+j)δ
Vsds

 .
This yields

Y
(1)
i =

ˆ̄Vi+1 − ˆ̄Vi
∆

=
V̄i+1 − V̄i

∆
+
ui+1,k − ui,k

∆
.

Finally, we obtain the development,

Y
(1)
i+1 = b( ˆ̄Vi) + Z

(1)
i+1 +R(1)(i+ 1), (5)

where Z
(1)
i+1 is a noise term (with martingale properties):

Z
(1)
i+1 =

1

∆2

∫ (i+3)∆

(i+1)∆
ψ(i+1)∆(u)σ(Vu)dWu + (ui+2,k − ui+1,k)/∆,

and R(1)(i+ 1) is a sum of negligible residual terms given by

R(1)(i+ 1) = [b(V(i+1)∆)− b( ˆ̄Vi)] +
1

∆2

∫ (i+3)∆

(i+1)∆
ψ(i+1)∆(s)(b(Vs)− b(V(i+1)∆))ds.

The lag in (5) is to avoid some cumbersome correlations. On the other hand, following

the same steps, we have, for ` = 2 (f (2) = σ2),

Y
(2)
i+1 =

3

2

( ˆ̄Vi+2 − ˆ̄Vi+1)2

∆
= σ2( ˆ̄Vi) + Z

(2)
i+1 +R(2)(i+ 1), (6)

with Z
(2)
i+1 = Z

(2,1)
i+1 + Z

(2,2)
i+1 + Z

(2,3)
i+1 and

Z
(2,1)
i+1 =

3

2∆3

(∫ (i+3)∆

(i+1)∆
ψ(i+1)∆(s)σ(Vs)dWs

)2

−
∫ (i+3)∆

(i+1)∆
ψ2

(i+1)∆(s)σ2(Vs)ds

 ,
Z

(2,2)
i+1 =

3

∆
b(V(i+1)∆)

∫ (i+3)∆

(i+1)∆
ψ(i+1)∆(s)σ(Vs)dWs

+
3

∆3

∫ (i+3)∆

(i+1)∆

(∫ (i+3)∆

s
ψ2

(i+1)∆(u)du

)
[(σ2)′σ](Vs)dWs,

where ψi∆ is given in (4), and

Z
(2,3)
i+1 =

3

∆
(V̄i+2 − V̄i+1)(ui+2,k − ui+1,k).

The residual term R(2)(i+ 1) is detailed in Section 6.3.
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2.2 Spaces of approximation

The functions b and σ2 are estimated only on a compact subset A of the state space

of (Vt). For simplicity and without loss of generality, we assume from now on that

A = [0, 1], and we set bA = b1A, σA = σ1A. (7)

To estimate f = b, σ2, we consider a family Sm,m ∈ Mn of finite dimensional sub-

spaces of L2([0, 1]) and compute a collection of estimators f̂m where for all m, f̂m
belongs to Sm. Afterwards, a data driven procedure chooses among the collection of

estimators the final estimator f̂m̂.

We consider here simple projection spaces, namely trigonometric spaces, Sm,m ∈
Mn. The space Sm is linearly spanned in L2([0, 1]) by ϕ1, . . . , ϕ2m+1 with ϕ1(x) =

1[0,1](x), ϕj(x) =
√

2 cos(2πjx)1[0,1](x) for even j’s and ϕj(x) =
√

2 sin(2πjx)1[0,1](x)

for odd j’s larger than 1. We have Dm = 2m + 1 = dim(Sm) ≤ Dn and Mn =

{1, 3, . . . ,Dn}. The largest space in the collection has maximal dimension Dn, which

is subject to constraints appearing later. Note that, for all x ∈ [0, 1],
∑2m+1
j=1 ϕ2

j (x) =

2m+ 1 = Dm. Thus, for any function t ∈ Sm, supx∈[0,1] |t(x)|2 ≤ Dm
∫ 1
0 t

2(x)dx.

2.3 The collection of mean squares estimators

Equations (5)-(6) give the adequate regression equations to estimate f (`). We consider

the collection of spaces (Sm) described above. For each m, and for a function t ∈ Sm,

we introduce, for ` = 1, 2, the following contrast:

γ
(`)
N (t) =

1

N

N−1∑
i=0

[Y
(`)
i+1 − t(

ˆ̄Vi)]
2. (8)

Then the mean squares estimators are defined as

f̂
(`)
m = arg min

t∈Sm
γ

(`)
N (t). (9)

In a first step, we study the risk of the above estimators (withm fixed). For this, we have

to consider a well-defined risk. Let us remark that the minimization of γ
(`)
N over Sm may

lead to several solutions. In contrast, the random RN -vector (f̂
(`)
m ( ˆ̄V0), . . . , f̂

(`)
m ( ˆ̄VN−1))′

is always uniquely defined. Indeed, let us denote by Πm the orthogonal projection (with

respect to the inner product of RN ) onto the subspace of RN , {(t( ˆ̄V0), . . . , t( ˆ̄VN−1))′, t ∈
Sm}, then (f̂

(`)
m ( ˆ̄V0), . . . , f̂

(`)
m ( ˆ̄VN−1))′ = ΠmY

(`) where Y (`) = (Y
(`)
1 , . . . , Y

(`)
N )′. This

is the reason why we consider a specific risk for f̂
(`)
m based on the design points, i.e.

E

[
1

N

N−1∑
i=0

(f̂
(`)
m ( ˆ̄Vi)− f (`)( ˆ̄Vi))

2

]
.

Thus, the error is measured via the risk E(‖f̂ (`)
m − f (`)‖2N ) where

‖t‖2N =
1

N

N−1∑
i=0

t2( ˆ̄Vi). (10)
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Now, we use the contrasts (8) and the definition (9) to bound the empirical norms

‖f̂ (`)
m − f (`)‖2N . The following decomposition of the contrasts holds:

γ
(`)
N (t)− γ(`)

N (f (`)) = ‖t− f (`)‖2N −
2

N

N−1∑
i=0

(Y
(`)
i+1 − f

(`)( ˆ̄Vi))(f
(`)( ˆ̄Vi)− t( ˆ̄Vi)).

In view of (5)-(6), we define the centered empirical processes, for ` = 1, 2:

ν
(`)
N (t) =

1

N

N−1∑
i=0

t( ˆ̄Vi)Z
(`)
i+1,

and the residual processes:

R
(`)
N (t) =

1

N

N−1∑
i=0

t( ˆ̄Vi)R
(`)(i+ 1).

Using these notations, we obtain that

γ
(`)
N (t)− γ(`)

N (f (`)) = ‖t− f (`)‖2N − 2ν
(`)
N (t− f (`))− 2R

(`)
N (t− f (`)).

Let f
(`)
m be the orthogonal projection of f (`) on Sm. By definition of the estimators, the

following inequality holds: γ
(`)
N (f̂

(`)
m ) ≤ γ

(`)
N (f

(`)
m ). Therefore, γ

(`)
N (f̂

(`)
m ) − γ(`)

N (f (`)) ≤
γ

(`)
N (f

(`)
m )− γ(`)

N (f (`)). This yields

‖f̂ (`)
m − f (`)‖2N ≤ ‖f

(`)
m − f (`)‖2N + 2ν

(`)
N (f̂

(`)
m − f (`)

m ) + 2R
(`)
N (f̂

(`)
m − f (`)

m ).

The functions f̂
(`)
m and f

(`)
m being A-supported, we can cancel the terms ‖f (`)1IAc‖2N

that appears in both sides of the inequality. So, we get

‖f̂ (`)
m − f (`)

A ‖
2
N ≤ ‖f

(`)
m − f (`)

A ‖
2
N + 2ν

(`)
N (f̂

(`)
m − f (`)

m ) + 2R
(`)
N (f̂

(`)
m − f (`)

m ). (11)

Let us denote by ‖t‖2 =
∫ 1
0 t

2(x)dx. To find the rate of the risks, we have to take

expectations and find upper bounds for

E( sup
t∈Sm,‖t‖=1

[ν
(`)
N (t)]2) and E( sup

t∈Sm,‖t‖=1
[R

(`)
N (t)]2).

3 The assumptions

3.1 Model assumptions.

Let (Xt, Vt)t≥0 be given by (1) and assume that only discrete time observations of X,

(X`δ)1≤`≤n+1 are available. We want to estimate the drift function b and the square

of the diffusion coefficient σ2. We assume that the state space of (Vt) is a known open

interval (r0, r1) of R+ and consider the following set of assumptions.

[A1 ] 0 ≤ r0 < r1 ≤ +∞,
◦
I = (r0, r1), with σ(v) > 0, for all v ∈

◦
I . Let I = [r0, r1]∩R.

The function b belongs to C1(I), b′ is bounded on I, σ2 ∈ C2(I), (σ2)′σ is Lipschitz

on I, (σ2)′′ is bounded on I and σ2(v) ≤ σ2
1 for all v in I.
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[A2 ] For all v0, v ∈
◦
I , the scale density s(v) = exp

[
−2
∫ v
v0
b(u)/σ2(u)du

]
satisfies∫

r0
s(x)dx = +∞ =

∫ r1 s(x)dx, and the speed density m(v) = 1/(σ2(v)s(v))

satisfies
∫ r1
r0
m(v)dv = M < +∞.

[A3 ] η ∼ π and ∀i,E(ηi) <∞, where π(v)dv = (m(v)/M)1I(r0,r1)(v)dv.

Under [A1]-[A3], (Vt) is strictly stationary with marginal distribution π, ergodic and

β-mixing, i.e. limt→+∞ βV (t) = 0. Here, βV (t) denotes the β-mixing coefficient of (Vt)

and is given by

βV (t) =

∫ r1

r0

π(v)dv‖Pt(v, dv′)− π(v′)dv′‖TV .

The norm ‖.‖TV is the total variation norm and Pt denotes the transition probability of

(Vt) (see Genon-Catalot et al. (2000)). To prove our main result, we need the following

stronger mixing condition:

[A4 ] The process (Vt) is exponentially β-mixing, i.e., there exist constantsK > 0, θ > 0,

such that, for all t ≥ 0, βV (t) ≤ Ke−θt.

Assumption [A4] is satisfied in most standard examples. Under [A1]-[A4], for fixed ∆,

(V̄i)i≥0 is a strictly stationary process. And we have:

Proposition 3.1 Under [A1]-[A4], for fixed k and δ, ( ˆ̄Vi)i≥0 is strictly stationary and

β ˆ̄V
(i) ≤ cβV (i∆) for all i ≥ 1.

In connection with the collection of spaces Sm, we need an additional assumption on

the marginal density of the stationary process ( ˆ̄Vi)i≥0:

[A5 ] The process ( ˆ̄Vi)i≥0 admits a stationary density π∗ and there exist two positive

constants π∗0 and π∗1 (independent of n, δ) such that ∀m ∈Mn, ∀t ∈ Sm,

π∗0‖t‖2 ≤ E(t2( ˆ̄V0)) ≤ π∗1‖t‖2. (12)

The existence of the density π∗ is easy to obtain. The checking of (12) is more technical.

See the discussion on [A5] in Section 6.2. Below, we use the notations:

‖t‖2π∗ =

∫
t2(x)π∗(x)dx, ‖t‖2 =

∫ 1

0
t2(x)dx and ‖t‖∞ = sup

x∈[0,1]
|t(x)|. (13)

Let us mention that for a deterministic function E(‖t‖2N ) = ‖t‖2π∗ =
∫
t2(x)π∗(x)dx,

where ‖.‖N is defined by (10). Moreover, under Assumption [A5], the norms ‖.‖ and

‖.‖π∗ are equivalent for functions in Sm (see notations (13)).

3.2 Risk for the collection of drift estimators

For the estimation of b, we obtain the following result.
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Proposition 3.2 Assume that N∆ ≥ 1 and 1/k ≤ ∆. Assume that [A1]-[A5] hold and

consider a model Sm in the collection of models with Dn ≤ O(
√
N∆/ ln(N)) where Dn

is the maximal dimension (see Section 2.2). Then the estimator f̂
(1)
m = b̂m of f (1) = b

is such that

E(‖b̂m − bA‖2N ) ≤ 7‖bm − bA‖2π∗ +K
E(σ2(V0))Dm

N∆
+K′∆, (14)

where bA = b1I[0,1] and K and K′ are some positive constants.

Note that the condition on Dn implies that
√
N∆/ ln(N) must be large enough.

It follows from (14) that it is natural to select the dimension Dm that leads to the

best compromise between the squared bias term ‖bm − bA‖2π∗ (which decreases when

Dm increases) and the variance term of order Dm/(N∆).

Now, let us consider the classical high frequency data setting: let ∆ = ∆n, k = kn
and N = Nn be, in addition, such that ∆n → 0, N = Nn → +∞, Nn∆n/ ln2(Nn)→
+∞ when n→ +∞ and that 1/(kn∆n) ≤ 1. Assume for instance that bA belongs to a

ball of some Besov space, bA ∈ Bα,2,∞([0, 1]), α ≥ 1, and ‖bA‖α,2,∞ ≤ L. Assume also

that ‖bm−bA‖2π∗ ≤ π∗1‖bm−bA‖2. Applying Lemma 12 in Barron et al. (1999)), we get

that ‖bA−bm‖2π∗ ≤ C(α,L, π∗1)D−2α
m . Therefore, if we choose Dm = (Nn∆n)1/(2α+1),

we obtain

E(‖b̂m − bA‖2n) ≤ C(α,L, π∗1)(Nn∆n)−2α/(2α+1) +K′∆n. (15)

The first term (Nn∆n)−2α/(2α+1) = T
−2α/(2α+1)
n is the optimal nonparametric rate

proved by Hoffmann (1999) for direct observations of V . Note that, under the standard

condition ∆n = O(1/(Nn∆n)), the last term ∆n in the risk bound is negligible with

respect to (Nn∆n)−2α/(2α+1).

Finally, we must look at the step δn. Consider the choices kn = 1/∆n and δn =

n−c. Let us see if there are possible choices of c for which all our constraints are

fulfilled. To have nδn → +∞ requires 0 < c < 1. As ∆n = knδn = δn/∆n, we have

∆n =
√
δn = n−c/2 and Nn = n/kn = n1−c/2. Thus, ∆n → 0 and Nn, Nn∆n → +∞.

The last constraint to fulfill is that Nn∆
2
n = n1−3c/2 = O(1). Thus for 2/3 ≤ c < 1,

the dominating term in (15) is (Nn∆n)−2α/(2α+1), i.e. the minimax optimal rate. We

have thus obtained a possible “bandwidth” of steps δn.

3.3 Risk for the collection of volatility estimators

For the collection of volatility estimators, we have the result

Proposition 3.3 Assume that [A1]-[A5] hold and consider a model Sm in the col-

lection of models with maximal dimension Dn ≤ O(
√
N∆/ ln(N)). Assume also that

1/k ≤ ∆ and N∆ ≥ 1, ∆ ≤ 1. Then the estimator f̂
(2)
m = σ̂2

m of f (2) = σ2 is such that

E(‖σ̂2
m − σ2

A‖
2
N ) ≤ 7‖σ2

m − σ2
A‖

2
π∗ +K

E(σ4(V0))Dm
N

+K′Res(Dm, k,∆), (16)

where the residual term is given by

Res(Dm, k,∆) = D2
m∆

2 +D5
m∆

3 +
D3
m

k2
+

1

k2∆2
, (17)

where σ2
A = σ21I[0,1], and K, K′ are some positive constants.
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The discussion on rates is much more tedious. Consider the asymptotic setting de-

scribed for b. Assume that σ2
A belongs to a ball of some Besov space, σ2

A ∈ Bα,2,∞([0, 1]),

and that ‖σ2
m − σ2

A‖
2
π∗ ≤ π∗1‖σ2

m − σ2
A‖

2, then ‖σ2
A − σ

2
m‖2π∗ ≤ C(α,L, π∗1)D−2α

m , for

‖σ2
A‖α,2,∞ ≤ L. Therefore, if we choose Dm = N

1/(2α+1)
n , and kn ≤ 1/∆n, we obtain

E(‖σ̂2
m − σ2

A‖
2
N ) ≤ C(α,L, π∗1)N

−2α/(2α+1)
n +K′Res(N

1/(2α+1)
n , kn,∆n). (18)

The first termN
−2α/(2α+1)
n is the optimal nonparametric rate proved by Hoffmann (1999)

when Nn discrete time observations of V with sampling step 1/Nn are available (the

time interval has fixed length).

For the second term, let us set kn = na, ∆n = n−b, δn = n−c, and recall that

nδn = Nn∆n and n/Nn = kn, so that Nn = n1−a and a+ b = c. We look for a, b such

that

Res(N
1/(2α+1)
n , kn,∆n) ≤ N−2α/(2α+1)

n .

For this, we take 1/(k2
n∆

2
n) = N

−2α/(2α+1)
n which implies 2(a−b)/(1−a) = 2α/(2α+1).

We get

a =
(2α+ 1)c+ α

5α+ 2
, b =

(3α+ 1)c− α
5α+ 2

.

Then we impose N
2/(2α+1)
n ∆2

n ≤ N
−2α/(2α+1)
n which is equivalent to

2b ≥ [(2α+ 2)/(2α+ 1)](1− a)⇒ c ≥ (3α+ 2)[2(2α+ 1)].

Next N
5/(2α+1)
n ∆3

n ≤ N
−2α/(2α+1)
n leads to

3b ≥ [(2α+ 5)/(2α+ 1)](1− a)⇒ c ≥ (7α+ 5)/(11α+ 8).

Lastly N
3/(2α+1)
n /k2

n ≤ N
−2α/(2α+1)
n holds for −2a ≤ −[(3 + 2α)/(2α+ 1)](1−a), i.e.

c ≥ 2(α+ 3)/(6α+ 5).

The optimal dimension has also to fulfill N
1/(2α+1)
n ≤ Dn ≤

√
Nn∆n i.e. −[(2α−

1)/[2(2α+ 1)]](1− a) ≤ −b/2 which implies c ≤ (5α− 2)/(5α). Finally, we must have

c ∈
[

3α+ 2

2(2α+ 1)
,

5α− 2

5α

]
→α→+∞

]
3

4
, 1

[
.

This interval is nonempty as soon as α > 2.

In terms of the initial number n of observations, the rate is now (n1−a)−2α/(2α+1)

where 1 − a is at most 1/2. This is consistent with Gloter’s (2000) result: in the

parametric case, he obtains n−1/2 instead of n−1 for the quadratic risk.

4 Data driven estimator of the coefficients

The second step is to ensure an automatic selection of Dm, which does not use any

knowledge on f (`), and in particular which does not require to know the regularity α.

This selection is standardly done by setting

m̂(`) = arg min
m∈Mn

[
γ

(`)
n (f̂

(`)
m ) + pen(`)(m)

]
, (19)
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with pen(`)(m) a penalty to be properly chosen. We denote by f̃ (`) = f̂
(`)

m̂(`) the resulting

estimator and we need to determine pen such that, ideally,

E(‖f̃ (`) − f (`)
A ‖

2
N ) ≤ C inf

m∈Mn

(
‖f (`)
A − f (`)

m ‖2 +
E(σ2`(V0))Dm

N∆2−`

)
+ negligible terms,

with C a constant which should not be too large.

4.1 Result for the data driven estimator of b

We almost reach this aim for the estimation of b.

Theorem 4.1 Assume that [A1]-[A5] hold, 1/k ≤ ∆, ∆ ≤ 1 and N∆ ≥ 1. Consider

the collection of models with maximal dimension Dn ≤ O(
√
N∆/ ln(N)). Then the

estimator b̃ = f̂
(1)

m̂(1) of b where m̂(1) is defined by (19) with

pen(1)(m) ≥ κσ2
1
Dm
N∆

, (20)

where κ is a universal constant, is such that

E(‖b̃− bA‖2N ) ≤ C inf
m∈Mn

(
‖bm − bA‖2π∗ + pen(1)(m)

)
+K

(
∆+

1

N∆
+

1

ln2(N)k∆

)
. (21)

For comments on the practical calibration of the penalty, see Section 5.2.

It follows from (21) that the adaptive estimator automatically realizes the bias-

variance compromise, provided that the last terms can be neglected as discussed above.

Here, the bandwidth for the choices of δn is slightly narrowed because of a stronger

constraint. More precisely, we choose 1/(kn∆n) = ∆n (instead of 1 previously), that is

kn = ∆−2
n , so that ∆n = knδn = ∆−2

n δ−1
n . Therefore ∆n = δ

1/3
n and if δn = n−c, then

∆n = n−c/3. Also, Nn = n/kn = n1−2c/3, Nn∆n = nδn = n1−c, Nn∆
2
n = n1−4c/3.

Hence if 3/4 < c < 1, we have altogether: Nn, Nn∆n/ ln2(Nn) tend to infinity with n,

∆n, Nn∆
2
n tend to zero.

In that case, whenever bA belongs to some Besov ball (see (15)), and if ‖bm −
bA‖2π∗ ≤ π∗1‖bm−bA‖2, then b̃ achieves the optimal corresponding nonparametric rate.

Note that, in the parametric framework, Gloter (2007) obtains an efficient estimation

of b in the same asymptotic context.

The above discussion is the basement of the choice of numerical values of Section

5. For c = 0.75, n = O(106) and δ = n−c, we get k = δ−2/3 = O(103) and N = 103.

Thinking of N as a number of days and k as a number of data per day, these values are

in accordance with real financial data (e.g. if 2 data per minute are collected during 8

hours every day, this implies 960 intra day data).
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4.2 Result for the data driven estimator of the volatility

We can prove the following Theorem.

Theorem 4.2 Assume that [A1]-[A5] hold, 1/k ≤ ∆, ∆ ≤ 1 and N∆ ≥ 1. Con-

sider the collection of models with maximal dimension Dn ≤
√
N∆/ ln(N). Then the

estimator σ̃2 = f̂
(2)

m̂(2) of σ2 where m̂(2) is defined by (19) with

pen(2)(m) ≥ κσ4
1
Dm
N

, (22)

where κ is a universal constant, is such that

E(‖σ̃2 − σ2
A‖

2
N ) ≤ C inf

m∈Mn

(
‖σ2
m − σ2

A‖
2
π∗ + pen(2)(m)

)
+ C′R̃es(N, k,∆), (23)

where

R̃es(N, k,∆) = N∆3 +N5/2∆11/2 +
(N∆)3/2

k2
+

1

k2∆2
. (24)

Now, if σ2
A belongs to a ball of some Besov space, σ2

A ∈ Bα,2,∞([0, 1]), then auto-

matically,

inf
m∈Mn

(
‖σ2
m − σ2

A‖
2
π∗ + pen(2)(m)

)
= O(N

−2α/(2α+1)
n )

without requiring the knowledge of α. Therefore,

E(‖σ̃2 − σ2
A‖

2
N ) ≤ C(α,L)N

−2α/(2α+1)
n + C′R̃es(Nn, kn,∆n).

It remains to study the residual term. Notice that we do not know the optimal min-

imax rate for estimating σ2, under our set of assumptions on the models and on the

asymptotic framework. However, Gloter (2000) and Hoffmann (2002), with observa-

tions within a fixed length time interval, obtain the parametric rate n−1/2 (in vari-

ance). Taking this as a benchmark, we try to make the residual less than O(n−1/2).

Let us set kn = na, ∆n = n−b, hence Nn = n/kn = n1−a and Nn∆n = n1−(a+b).

This yields that 1− a− 3b, (5− 5a− 11b)/2, (3− 7a− 3b)/2, 2(b− a) must all be less

than or equal to −1/2, in association with a+ b < 1 and N
1/(2α+1)
n ≤

√
Nn∆n. This

set of constraint is not empty (e.g. a = 9/16, b = 5/16 fits).

5 Examples and numerical simulation results

In this section, we consider examples of diffusions and implement the estimation algo-

rithm on simulated data for the stochastic volatility model X given by (1).

5.1 Simulated paths

We consider the processes V
(i)
t for i = 1, . . . , 4 specified by the couples of functions

bi, σ
2
i , i = 1, . . . , 4:

1. b1(x) = x
(
−θ ln(x) + 1

2c
2
)
, σ2

1(x) = c2x2 which corresponds to V
(1)
t = exp(Ut)

for Ut an Ornstein-Uhlenbeck process, dUt = −θUtdt+cdWt. Whatever the chosen

step, Ut is exactly simulated as an autoregressive process of order 1. We took θ = 1

and c = 0.75.
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2. b2(x) = b0(x− 2), σ2
2(x) = σ2

0(x− 2), where b0(x) = −(1− x2)
[
c2x+ θ

2 ln
(

1+x
1−x

)]
and σ2

0(x) = c(1− x2) are the drift and diffusion coefficients of the process th(Ut)

(th(x) = (ex − e−x)/(ex + e−x)), with the same parameters as for case 1). The

process V
(2)
t corresponds to th(Ut) + 2 which is a positive bounded process.

3. b3(x) = x(b0(ln(x)) + 1
2σ

2
0(ln(x))) and σ2

3(x) = x2σ2
0(ln(x)) which corresponds to

the process V
(3)
t = exp(th(Ut)).

4. b4(x) = dc2/4 − θx, σ2
4(x) = c2x which corresponds to the Cox-Ingersoll-Ross

process, V
(4)
t . An exact simulated path is obtained by taking the Euclidean norm

of a d-dimensional Ornstein-Uhlenbeck process with parameters −θ/2 and c/2. We

took d = 9, θ = 0.75 and c = 1/3.

We simulate discrete data (V
(j)
`δ′ )1≤`≤n′ for j = 1, . . . , 4 with δ′ = δ/6, n′δ′ = T , from

which we generate (X
(j)
`δ )1≤`≤n, by using that

X`δ −X(`−1)δ =

√∫ `δ

(`−1)δ
Vsds ε`,

with (ε`) i.i.d. N (0, 1) independent of (Vs, s ≥ 0). Approximations of the integrated

processes are computed by discrete integration (with a trapeze method).

The generated V
(i)
jδ′ , i = 1, . . . , 4 samples have length N ′ = 7.2 106, for a step

δ′ = 100/N ′, and the integrated process is computed using 6 data, therefore, we obtain

n = 1.2 106, for T = nδ = 100. Different values of k are used, but the best value,

k = 1000, corresponds to ∆ = kδ = 0.083 and N = 1200 realized quadratic variation.

5.2 Estimation algorithms and numerical results

1 2 3 4 5 6 7 8 9 10
0
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15

20
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selected degree

%

Fig. 1 Histogram of selected values m̂ with basis T for 100 paths of V
(3)
t .
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k = 250 500 750 1000 1250 1500 1750 2000

V
(1)
t mean T 0.803 0.187 0.196 0.253 0.271 0.291 0.302 0.341

(std) (0.368) ( 0.131) (0.176) (0.209) (0.215) (0.214) (0.206) (0.221)

V
(1)
t mean P 0.731 0.108 0.100 0.134 0.164 0.202 0.223 0.250

(std) (0.493) (0.146) (0.154) (0.168) (0.214) (0.225) (0.221) (0.240)

V
(2)
t mean T 11.15 0.784 0.181 0.076 0.049 0.042 0.044 0.047

(std) (2.086) (0.190) (0.063) (0.043) (0.026) (0.020) (0.017) (0.017)

V
(2)
t mean P 12.28 0.908 0.199 0.074 0.036 0.032 0.034 0.037

(std) (2.128) (0.219) (0.093) (0.062) (0.029) (0.018) (0.017) (0.017)

V
(3)
t mean T 0.960 0.114 0.068 0.070 0.074 0.076 0.081 0.084

(std) (0.353) (0.063) (0.034) (0.029) (0.029) (0.027) (0.030) (0.030)

V
(3)
t mean P 1.274 0.133 0.064 0.051 0.058 0.062 0.064 0.067

(std) (0.422) (0.105) (0.060) (0.028) (0.025) (0.022) (0.020) (0.022)

V
(4)
t mean T 0.090 9.7 e-3 5.9 e-3 5.5 e-3 6.4 e-3 6.2 e-3 7.3 e-3 7.7 e-3

(std) (0.036) (0.005) (0.003) (0.003) (0.004) (0.003) (0.005) (0.005)

V
(4)
t mean P 0.099 7.3 e-3 2.5 e-3 2.2 e-3 2.4 e-3 2.6 e-3 3.2 e-3 3.6 e-3

(std) (0.045) (0.007) (0.003) (0.002) (0.003) (0.002) (0.004 (0.004)

Table 1 Mean squared errors (with standard deviations in parenthesis) for the estimation of
b; 100 paths of the four examples, different values of k for the quadratic variation, when using
the trigonometric basis (T) or the polynomial basis (P). In bold, the risk value corresponding
to the best k.

We use the algorithm of Comte and Rozenholc (2004). In Comte et al. (2007),

the precise calibration of penalties, which is quite difficult, is done in detail for the

trigonometric basis (denoted hereafter by T) and also for another one, the piecewise

polynomial basis (described in this paper, and denoted below by P; see also Comte et

al. (2008)). The drift penalty (` = 1) and the diffusion penalty (` = 2) are given by

κ`
ŝ2`
n

(Dm + additive correcting terms) , with Dm at most [N∆/ ln1.5(N)].

The additive correcting terms involved in the penalty avoid under-penalization and are

in accordance with the fact that the theorems provide lower bounds for the penalty.

These correcting terms are asymptotically negligible and do not affect the rate of

convergence (for details see Comte et al. (2007, 2008)).

The constants κ1 and κ2 in the drift and diffusion penalties have both been set

equal to 6. The term ŝ21 replaces σ2
1/∆ for the estimation of b and ŝ22 replaces σ4

1 for the

estimation of σ2. Let us first explain how ŝ22 is obtained. We run once the estimation

algorithm of σ2 with the trigonometric basis and with a preliminary penalty where ŝ22
is taken equal to 2 maxm(γ

(2)
n (σ̂2

m)). This gives a preliminary estimator σ̃2
0 . Afterwards,

we take ŝ2 equal to twice the 99.5%-quantile of σ̃2
0 . We get σ̃2. We use this estimate and

set ŝ21 = max0≤k≤N−1(σ̃2( ˆ̄Vk))/∆ for the penalty of b. In Figure 1, we give a histogram

of the selected values m̂ with the trigonometric basis T for 100 paths of V
(3)
t . This shows

that the algorithm selects m̂ = 1 for 50 paths over 100, and essentially m̂ ∈ {1, . . . , 6}.
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k = 250 500 750 1000 1250 1500 1750 2000

V
(1)
t mean T 7.153 0.594 0.284 0.276 0.311 0.364 0.399 0.397

(std) (3.055) (0.437) (0.200) (0.241) (0.289) (0.327) (0.367) (0.241)

V
(1)
t mean P 7.375 0.576 0.216 0.177 0.216 0.222 0.304 0.331

(std) (3.171) (0.468) (0.257) (0.166) (0.270) (0.252) (0.385) (0.358)

V
(2)
t mean T 24.36 1.492 0.299 0.097 0.044 0.030 0.025 0.024

(std) (2.97) (0.208) (0.047) (0.023) (0.010) (0.008) (0.006) (0.004)

V
(2)
t mean P 24.47 1.543 0.3143 0.102 0.046 0.030 0.024 0.024

(std) (3.068) (0.212) (0.051) (0.025) (0.012) (0.008) (0.007) (0.004)

V
(3)
t mean T 3.819 0.231 0.043 0.017 0.013 0.014 0.016 0.021

(std) (0.353) (0.063) (0.034) (0.029) (0.029) (0.027) (0.030) (0.030)

V
(3)
t mean P 3.851 0.243 0.049 0.022 0.015 0.016 0.020 0.025

(std) (0.898) (0.077) (0.021) (0.012) (0.009) (0.011) (0.012) (0.012)

V
(4)
t mean T 0.034 2.6e-3 5.63e-4 2.22e-4 1.40e-4 1.09e-4 1.07e-4 1.08e-4

(std) (0.014) (9.44 e-4) (2.30 e-4) (1.23 e-4) (5.95 e-5) (8.91 e-5) (5.11 e-5) (6.46 e-5)

V
(4)
t mean P 0.040 2.56e-3 5.35e-4 1.87e-4 9.09e-5 5.37e-5 5.81e-5 6.82e-5

(std) (0.014) (0.001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001)

Table 2 Mean squared errors (with standard deviations in parenthesis) for the estimation of
σ2; 100 paths of the four examples, different values of k for the quadratic variation, when using
the trigonometric basis (T) or the polynomial basis (P). In bold, the risk value corresponding
to the best k.

We give in Tables 1-2 results of Monte-Carlo type experiments. Estimated risks

are computed as the mean over 100 simulated paths of the empirical norms (e.g.

(1/N
∑N−1
i=0 [b( ˆ̄Vi) − b̃( ˆ̄Vi)]

2 for b). Results for the estimator of b are given in Table

1 and for σ2 in Table 2. We use both bases T (trigonometric) and P (piecewise poly-

nomials) for the four processes choosing different values of k for building the quadratic

variations. Clearly, there is an optimal value. If k is too large, there are not enough

observations left for the estimation algorithm. If k is too small, bias phenomena appear,

related to the violation of the theoretical assumptions (mainly 1/k ≤ ∆). In general,

for this sample size, the choice k = 1000 seems to be relevant for the basis P. In view

of these tables, estimated risks are slightly better for basis P. This is why our graphs

(Figures 2-5) are done for basis P.

The results given by our algorithm are also described in two types of figures. First,

Figures 2-3 show the functions (true (dotted) and estimated (thick)) and the data

points with coordinates (Y
(`)
i+1,

ˆ̄Vi), i = 1, . . . , N , for ` = 1 (left), ` = 2 (right). The

figures show that the points are scattered over a large area, and that, with the scale

they impose, the true function is well estimated. Second, we plot in Figures 4-5 the

true function (thick curve) and 10 estimated functions (thin curves) for b (left) and

σ2 (right). In the simulation, we generate a large sample of the integrated process. We

compare the estimated functions using data of the integrated process (top curves) with

the estimations using the realized quadratic variations (bottom curves). One must

keep in mind when looking at the figures that there are 1000 times more data for



15

estimation in the former case than in the latter. Therefore, these curves illustrate the

good performance of our approach.
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Fig. 2 Estimation of b (left) and σ2 (right) for one path of the exponential OU process (V
(1)
t )

with N = 1200 realized volatilities in the SV model (k = 1000, T = 100). True function
(dotted), estimated (thick). The scatter plot gives the data points used for the regressions.
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Fig. 3 Estimation of b (left) and σ2 (right) for one path of the CIR process (V
(4)
t ) with

N = 1200 realized volatilities in the SV model (bottom) (k = 1000, T = 100). True function
(dotted), estimated (thick). The scatter plot gives the data points used for the regressions.
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Fig. 4 Estimation of b (left) and σ2 (right) for 10 paths of the CIR process (V
(4)
t ) with

1.2 106 observations of the integrated process (top) and 1200 realized volatilities in the SV
model (bottom) (k = 1000, T = 100). True: bold dashed, estimated: full grey (red) lines.

Fig. 5 Estimation of b (left) and σ2 (right) for 10 paths of (V
(3)
t ) with 1.2 106 observations

of the integrated process (top) and 1200 realized volatilities in the SV model (bottom) (k =
1000, T = 100). True: bold dashed, estimated: full grey (red) lines.

5.3 Concluding remarks

In this paper, we have described a new nonparametric method for estimating both the

drift and the diffusion coefficient of the volatility in a stochastic volatility model. Many
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papers have shown that this is a difficult task that requires first to transform discrete

data by computing realized quadratic variations. A large number of observations are

thus needed for this purpose. Our theoretical method provides adaptive estimators that

can be implemented by feasible algorithms. Numerical results based on simulated data

demonstrate that the method performs well for sample sizes corresponding to real data

context (k = 1000, N = 1200).

Let us mention that the simulation method may generate some micro-structure

type noise which we do not take into account. Indeed, we generate exact samples of

the discretized processes (Vjδ′), but we approximate the integrals of V . Corrections

inspired by Zhang et al. (2005) may thus be experimented.

6 Discussion on the assumptions and proofs

6.1 Proof of Proposition 3.1

We start with some preliminaries. Let It =
∫ t
0 Vsds. The joint process (Vt, It)t≥0 is a

two dimensional diffusion satisfying:{
dVt = b(Vt)dt+ σ(Vt)dWt, V0 = η,

dIt = Vtdt, I0 = 0.

Under regularity assumptions on b and σ, this process admits a transition density,

say qt(v0, i0; v, i) for the conditional density of (Vt, It) given V0 = v0, I0 = i0. This

density is w.r.t. the Lebesgue measure on (0,+∞)2 (see Rogers and Williams (2000)).

We assume that these assumptions hold.

Now, let us set

J`δ =

∫ `δ

(`−1)δ
Vsds, ` ≥ 1. (25)

The discrete time process (V`δ, J`δ)`≥1 is strictly stationary and Markov. Its one step

transition operator is given by the density:

(v, j)→ qδ(v0, 0; v, j) := qδ(v0; v, j).

Its stationary density is given by
∫
π(v0)dv0qδ(v0; v, j) := πδ(v, j).

Let us set, for ` ≥ 1,

Z` = X`δ −X(`−1)δ (26)

and define ε` by the relation: Z` = J
1/2
`δ ε`. Conditionally on (Vt)t≥0, the random vari-

ables (r.v.) Z`, ` ≥ 1 are independent and Z` has distribution N (0, J`δ). Consequently,

the r.v. (ε`, ` ≥ 1) are i.i.d. with distribution N (0, 1) and the sequence (ε`, ` ≥ 1) is

independent of (Vt)t≥0. Hence (Z`)`≥1 and ( ˆ̄Vi)i≥0 are strictly stationary processes.

From the preliminaries and the above remarks, we deduce that the process (V`δ, J`δ, ε`)`≥1

is stationary Markov. Its `-step transition operator is given by:

Qδ`(v0; dv, dj, du) = q
(`)
δ (v0; v, j)n(u)dvdjdu
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where q
(`)
δ (v0; v, j) is the `-step transition density of (V`δ, J`δ) and n(u) is the standard

gaussian density. The stationary density of (V`δ, J`δ, ε`)`≥1 is πδ(v, j)n(u). Hence

‖Q(`)
δ (v0; dv, dj, du)− πδ(v, j)n(u)dvdjdu‖TV =

∫
|q(`)
δ (v0, vj)− πδ(v, j))|n(u)dvdjdu

=

∫
|q(`)
δ (v0; v, j)− πδ(v, j))|dvdj.

We may now use the representation of the β-mixing coefficient of strictly stationary

Markov processes (see e.g. Genon-Catalot et al. (2000)) to compute

βV.δ,J.δ,ε(`) =

∫
πδ(v0, j0)n(u0)du0dv0dj0‖Q

(`)
δ (v0; dv, dj, du)− πδ(v, j)n(u)dvdjdu‖TV

= βV.δ,J.δ (`).

Now, we have βZ(`) ≤ βV.δ,J.δ,ε(`) = βV.δ,J.δ (`) ≤ βV ((`− 1)δ). Finally,

β ˆ̄V
(i) ≤ βZ(ik) ≤ βV ((ik − 1)δ) ≤ cβV (i∆). 2

6.2 Discussion on the assumptions

Actually, Assumption [A3] is too strong. We only need the existence of moments up to

a certain order. Let us now discuss [A5]. Using the representation

ˆ̄V0 =
1

kδ

k∑
`=1

J`δ ε
2
` ,

we see that ˆ̄V0 has a conditional density given (Vt, t ≥ 0). Integrating this density w.r.t.

the distribution of (J`δ, ` = 1, . . . , k), we get that ˆ̄V0 has a density π∗. However the

formula for π∗ is untractable.

On the other hand, we can obtain (12) by another approach. We have

t2(V̄0) = t2(V0) + (V̄0 − V0)(t2)′(V0) +
1

2
(V̄0 − V0)2

∫ 1

0
(t2)′′(V0 + u(V̄0 − V0))du.

Now we use that, for any t ∈ Sm, there exists some constant C such that

‖(t2)′‖∞ ≤ CD2
m‖t‖2 and ‖(t2)′′‖∞ ≤ CD3

m‖t‖2.

Noting that |E
(
V̄0 − V0|F0

)
| = O(∆), we get |E[(V̄0 − V0)(t2)′(V0)]| ≤ CD2

m∆‖t‖2 =

O(D2
m∆). On the other hand,∣∣∣∣∣E

[
(V̄0 − V0)2

∫ 1

0
(t2)”(V0 + u(V̄0 − V0))du

]∣∣∣∣∣ ≤ ‖(t2)′′‖∞E[(V̄0 − V0)2]

≤ CD3
m∆‖t‖2.

It follows that |E(t2(V̄0)− t2(V0))| ≤ C∆D3
m‖t‖2. Next,

t2( ˆ̄V0) = t2(V̄0) + ( ˆ̄V0 − V̄0)(t2)′(V0) + ( ˆ̄V0 − V̄0)[(t2)′(V̄0)− (t2)′(V0)]

+
1

2
( ˆ̄V0 − V̄0)2

∫ 1

0
(t2)′′(V̄0 + u( ˆ̄V0 − V̄0))du.
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By Gloter’s (2007) Proposition 3.1, we have |E[( ˆ̄V0− V̄0)|V0]| ≤ cδ(1+V0)c and E[| ˆ̄V0−
V̄0|2] ≤ c/k. Hence

|E(t2( ˆ̄V0)− t2(V̄0))| ≤ C‖t‖2(∆D2
m +

√
∆D3

m√
k

+
D3
m

k
).

Since 1/k ≤ ∆
|E(t2( ˆ̄V0)− t2(V0))| ≤ C‖t‖2∆D3

m.

As there exist two positive constants π0, π1 such that ∀v ∈ A, π0 ≤ π(v) ≤ π1, we

obtain

(π0 − C∆D3
n)‖t‖2 ≤ ‖t‖2π∗ ≤ (π1 + C∆D3

n)‖t‖2.

Under the constraint that ∆D3
n = o(1), we get (12) for n large enough. This constraint

is compatible with the other ones, see the discussion after Theorem 4.1.

6.3 Definition of the residuals and their properties

We have

R(1)(i+ 1) = b(V̄i)− b( ˆ̄Vi) +R
(1)
∗ ((i+ 1)),

where R
(1)
∗ is the residual term for b studied in Comte et al. (2008, Proposition 3.1)

and defined by

R
(1)
∗ (i+ 1) = b(V(i+1)∆)− b(V̄i) +

1

∆2

∫ (i+3)∆

(i+1)∆
ψ(i+1)∆(s)(b(Vs)− b(V(i+1)∆))ds.

On the other hand,

R(2)(i+ 1) =
3

2

(ui+1,k − ui,k)2

∆
+ [σ2(V(i+1)∆ − σ

2( ˆ̄Vi)] +R
(2)
∗ (i+ 1),

where R
(2)
∗ is the residual term for σ2 studied in Comte et al. (2008, Propositions 4.1,

4.2 and 4.3) defined by R
(2)
∗ =

∑3
m=1R

(2,m)
∗ with

R
(2,1)
∗ (i) =

3

2∆3

(∫ (i+2)∆

i∆
ψi∆(s)b(Vs)ds

)2

,

R
(2,2)
∗ (i) =

3

∆3

(∫ (i+2)∆

i∆
ψi∆(u)(b(Vu)− b(Vi∆))du

)(∫ (i+2)∆

i∆
ψi∆(u)σ(Vu)dWu

)
,

R
(2,3)
∗ (i) =

3

2∆3

∫ (i+2)∆

i∆

(∫ (i+2)∆

s
ψ2
i∆(u)du

)
τb,σ(Vs)ds,

where τb,σ = (σ2/2)(σ2)” + b(σ2)′. This decomposition is obtained by applying Ito’s

formula and Fubini’s theorem.

We may now summarize the following useful results, proved in Comte et al. (2008,

Propositions 3.1, 4.1, 4.2 and 4.3):

Lemma 6.1 Under Assumptions [A1]-[A2]-[A3],

1. For ` = 1, 2, for m = 1, 2, for all i, E{[R(`)
∗ (i)]2m} ≤ c∆2m` where c is a constant.
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2. Let Z
(1)
∗ (i) = (1/∆2)

∫ (i+2)∆
i∆ ψi∆(s)σ(Vs)dWs. For all i, E([Z

(1)
∗ (i)]2) ≤ (2/3∆)E(σ2(V0)).

3. For all i, E([Z
(2,1)
i ]2) ≤ c1E(σ4(V0)) and E([Z

(2,2)
i ]2) ≤ c2σ2

1∆.

We also need the following result:

Lemma 6.2 Under assumptions [A1]-[A3], for any integer i, E[(V̄i− ˆ̄Vi)
2] = E(u2

i,k) ≤
2E(V 2

0 )/k and E[(V̄i − ˆ̄Vi)
4] = E(u4

i,k) ≤ 56E(V 4
0 )/k2.

Proof of Lemma 6.2. This follows from Proposition 3.1 p.504 in Gloter (2007).2

6.4 Proof of Propositions 3.2 and 3.3

For sake of brevity, we give both proofs at the same time. The main difference lies in

the orders of the expectations and in the appearance of a specific term in the study of

the estimator of σ2. Let us thus define R
(`)
∗∗ for ` = 1, 2 as R

(1)
∗∗ = R(1) and

R
(2)
∗∗ (i+ 1) = R(2)(i+ 1)− [σ2(V(i+1)∆)− σ2( ˆ̄Vi)].

Moreover let T
(1)
N (t) = 0 and

T
(2)
N (t) =

1

N

N−1∑
i=0

(σ2(V(i+1)∆)− σ2( ˆ̄Vi))t(
ˆ̄Vi).

Let us consider the set

ΩN =

{
ω/

∣∣∣∣∣ ‖t‖2N‖t‖2π∗
− 1

∣∣∣∣∣ ≤ 1

2
, ∀t ∈ ∪m,m′∈Mn

(Sm + Sm′)/{0}

}
. (27)

On ΩN , ‖t‖π∗ ≤
√

2‖t‖N . From (11), we deduce

‖f̂ (`)
m − f (`)

A ‖
2
N ≤ ‖f

(`)
m − f (`)

A ‖
2
N +

1

8
‖f̂ (`)
m − f (`)

m ‖2π∗ + 16 sup
t∈Sm,‖t‖π∗=1

[ν
(`)
N ]2(t)

+16 sup
t∈Sm,‖t‖π∗=1

[T
(`)
N (t)]2

+
1

8
‖f̂ (`)
m − f (`)

m ‖2N +
8

N

N−1∑
i=0

[R
(`)
∗∗ (i+ 1)]2

≤ ‖f (`)
m − f (`)

A ‖
2
N +

3

8
‖f̂ (`)
m − f (`)

m ‖2N + 16 sup
t∈Sm,‖t‖π∗=1

[ν
(`)
N ]2(t)

+
16

π∗0
sup

t∈Sm,‖t‖=1
[T

(`)
N (t)]2 +

8

N

N−1∑
i=0

[R
(`)
∗∗ (i+ 1)]2.

In the last line above, we use the lower bound π∗0 introduced in [A5].

Setting Bm(0, 1) = {t ∈ Sm, ‖t‖ = 1} and Bπ
∗

m (0, 1) = {t ∈ Sm, ‖t‖π∗ = 1}, the

following holds on the set ΩN :

1

4
‖f̂ (`)
m −f

(`)
A ‖

2
N ≤

7

4
‖f (`)
m −f

(`)
A ‖

2
N+16 sup

t∈Bπ∗m (0,1)

[ν
(`)
N ]2(t)+

16

π∗0
sup

t∈Bm(0,1)
[T

(`)
N (t)]2+

8

N

N−1∑
i=0

[R
(`)
∗∗ (i+1)]2.

We have the following result:
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Lemma 6.3 Under assumptions [A1]-[A3] and [A5], if 1/k ≤ ∆, we have, for ` = 1, 2

E

(
sup

t∈Bπ∗m (0,1)

[ν
(`)
N ]2(t)

)
≤ K C`Dm

N∆2−` ,

with C` = E(σ2`(V0)).

The Lipschitz condition on b and Lemma 6.2 imply that

E[(b(V̄i)− b( ˆ̄Vi))
2] ≤ cbE[(V̄i − ˆ̄Vi)

2] ≤ 2cbE(V 2
0 )/k.

Consequently, there exists a constant c such that

E

(
8

N

N−1∑
i=0

[R
(1)
∗∗ (i+ 1)]2

)
≤ c(∆+ k−1).

Thus

E(‖b̂m − bA‖2N1IΩN ) ≤ 7‖bm − b‖2π∗ +
32

π∗0
E

(
sup

t∈Sm,‖t‖=1
[ν

(1)
N (t)]2

)
+ c”(∆+ k−1).

By gathering all bounds, we find

E(‖b̂m − b‖2N1IΩN ) ≤ 7‖bm − b‖2π∗ +K
E(σ2(V0))Dm

N∆
(1 +

1

k∆
) +K′(∆+ k−1).

On the other hand, Lemma 6.1 and Lemma 6.2 imply that

E(
1

N

N−1∑
i=0

[R
(2)
∗∗ (i+ 1)]2 ≤ 2E

[
1

N

N−1∑
i=0

(
[R

(2)
∗ (i+ 1)]2 +

9

4

(ui+1,k − ui,k)4

∆2

)]

≤ 2c∆2 +
36

∆2
E(u4

1,k) ≤ C(∆2 +
1

k2∆2
).

Next we need to bound E
(

supt∈Sm,‖t‖=1[T
(2)
N (t)]2

)
. This is obtained in the fol-

lowing Lemma:

Lemma 6.4 Under the Assumptions of Proposition 3.3 and if 1/k ≤ ∆, there exists

a constant C such that

E

(
sup

t∈Sm,‖t‖=1
[T

(2)
N (t)]2

)
≤ C(D2

m∆
2 +D5

m∆
3 +D3

m/k
2 +Dm/(Nk)).

We can use Lemma 6.1 in Comte et al. (2005) to obtain that, if Dn ≤ C
√
N∆/ ln(N),

then

P(ΩcN ) ≤ c

N4
.

This enables to check that E(‖f̂ (`)
m − f (`)‖2N1IΩcn) ≤ c/N using the same lines as the

analogous proof given p.532 in Comte et al. (2007). For this reason, details are omitted.

2
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6.5 Proof of Lemma 6.3.

Case ` = 1. Next, let us define Ft = σ((Ws, Bs), 0 ≤ s ≤ t, η). We can use martingale

properties to see that, ∀t ∈ Sm,

E(t( ˆ̄Vi)Z
(1)
i+1) = E(E(t( ˆ̄Vi)Z

(1)
i+1|F(i+1)∆)) = E(t( ˆ̄Vi)E(Z

(1)
i+1|F(i+1)∆)) = 0

because the last conditional expectation is zero. Moreover, the same tool shows that

the covariance term E(t( ˆ̄Vi)t(
ˆ̄V`)Z

(1)
i+1Z

(1)
`+1) for ` ≥ i + 2 is also null by inserting a

conditional expectation given F(`+1)∆. Consequently, it is now easy to see that

E

(
sup

t∈Sm,‖t‖=1
[ν

(1)
N (t)]2

)
≤
Dm∑
j=1

E[ν2
N (ϕj)] ≤

Dm∑
j=1

Var

[
1

N

N−1∑
i=0

ϕj(
ˆ̄Vi)Z

(1)
i+1

]

≤ 2

N

Dm∑
j=1

Var
(
ϕj(

ˆ̄V1)Z
(1)
2

)

≤ 2

N

Dm∑
j=1

E(ϕ2
j (

ˆ̄V1)Z
(1)
2 )2) ≤

2DmE[(Z
(1)
2 )2]

N
.

Now, Lemma 6.2 implies that E[(ui+2,k − ui+1,k)2/∆2 = E[(u2
i+2,k + u2

i+1,k)/∆2 ≤
c/(k∆2). Then, applying also Lemma 6.1 (ii), it follows that, with

E

(
sup

t∈Sm,‖t‖=1
[ν

(1)
N (t)]2

)
≤ KDm

N∆

(
1 +

1

k∆

)
.

Case ` = 2. Next, for the martingale terms, we write

E( sup
t∈Bπ∗m (0,1)

[ν
(2)
N (t)]2) ≤ 1

π∗0
E( sup
t∈Bm(0,1)

[ν
(2)
N (t)]2) ≤ 1

π∗0

Dm∑
j=1

E([ν
(2)
n (ϕj)]

2)

=
1

π∗0

Dm∑
j=1

E

(
1

N

N−1∑
i=0

ϕj(
ˆ̄Vi)Z

(2)
i+1

)2

≤ 2

π∗0

Dm∑
j=1

E

( 1

N

N−1∑
i=0

ϕj(
ˆ̄Vi)(Z

(2,1)
i+1 + Z

(2,2)
i+1 )

)2

+

(
9

N∆

N−1∑
i=0

ϕj(
ˆ̄Vi)(V̄i+2 − V̄i)(ui+2,k − ui+1,k)

)2
Both terms are bounded separately. For the first one, we use that, for r = 1, 2

cov(ϕj(
ˆ̄Vi)Z

(2,r)
i+1 , ϕj(

ˆ̄V`)Z
(2,r)
`+1 ) = 0
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if ` ≥ i + 2, by inserting a conditional expectation with respect to F(`+1)∆. Now, for

r = 1, 2,

Dm∑
j=1

E

( 1

N

N−1∑
i=0

ϕj(
ˆ̄Vi)Z

(2,r)
i+1

)2 ≤ 1

N2

Dm∑
j=1

E

 ∑
0≤i,`≤N−1

ϕj(
ˆ̄Vi)Z

(2,r)
i+1 ϕj(

ˆ̄V`)Z
(2,r)
`+1


=

1

N2

∑
j=1

DmE

{
N−1∑
i=0

[
ϕ2
j (

ˆ̄Vi)[Z
(2,r)
i+1 ]2 + ϕj(

ˆ̄Vi)Z
(2,r)
i+1 ϕj(

ˆ̄Vi+1)Z
(2,r)
i+2

]}

≤ 2

N
‖
Dm∑
j=1

ϕ2
j‖∞E[(Z

(2,r)
2 )2] ≤ 2

Dm
N

[c̃1E(σ4(V0)) + c̃2∆]

by using Lemma 6.1.

For the second part, let us define the filtration generated by B and the whole path

of V , i.e.

GVt = σ(Vs, s ∈ R+, Bs, s ≤ t) = σ(Ws, s ∈ R+, Bs, s ≤ t, η).

Now we observe that

E(t( ˆ̄Vi)(V̄i+2 − V̄i+1)ui+1,k) = E
[
E(t( ˆ̄Vi)(V̄i+2 − V̄i+1)ui+1,k)|GV(i+1)∆)

]
= E

[
t( ˆ̄Vi)(V̄i+2 − V̄i+1)E(ui+1,k)|GV(i+1)∆)

]
= 0

as E(ui+1,k)|GV(i+1)∆) = 0. Moreover for any ` > i,

E(t( ˆ̄Vi)(V̄i+2 − V̄i+1)ui+1,kt(
ˆ̄V`)(V̄`+2 − V̄`+1)u`+1,k)) = 0

by inserting a conditional expectation with respect to GV(`+1)∆. The last remark is that

one can easily see that

E[(V̄i+1 − V̄i)4] ≤ 1

∆4
E

(∫ (i+2)∆

(i+1)∆
(Vs − Vs−∆)ds

)4
 ≤ C∆2.

Now we have

Dm∑
j=1

E

(
1

N∆

N−1∑
i=0

ϕj(
ˆ̄Vi)(V̄i+2 − V̄i)ui+1,k

)2

=
1

N2∆2

Dm∑
j=1

N−1∑
i=0

E
(
ϕ2
j (

ˆ̄Vi)(V̄i+2 − V̄i)2u2
i+1,k

)
≤ Dm
N∆2

E1/2[(V̄2 − V̄1)4]E1/2[u4
2,k]

≤ C
Dm
N

1

k∆
.

The second part of this term can be treated in the same way, and it follows that if

1/k ≤ ∆, then this term is less than C′Dm/N . 2
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6.6 Proof of Lemma 6.4.

Let us recall that we know from Comte et al. (2008) that

T ∗N (t) =
1

N

N−1∑
i=0

(σ2(V(i+1)∆ − σ
2(V̄i))t(V̄i)

is such that

E( sup
t∈Bm(0,1)

[T ∗N (t)]2) ≤ C(D2
m∆

2 +D5
m∆

3).

Here, we write that T
(2)
N (t) = T

(2,1)
N (t) + T

(2,2)
N (t) + T

(2,3)
N (t) + T ∗N (t) with

T
(2,1)
N (t) =

1

N

N−1∑
i=0

[t( ˆ̄Vi)−t(V̄i)][σ2( ˆ̄Vi)−σ2(V̄i)], T
(2,2)
N (t) =

1

N

N−1∑
i=0

t(V̄i)[σ
2( ˆ̄Vi)−σ2(V̄i)],

T
(2,3)
N (t) =

1

N

N−1∑
i=0

[t( ˆ̄Vi)− t(V̄i)][σ2(V̄i)− σ2(V(i+1)∆)].

We shall use the following decompositions obtained by the Taylor formula:

σ2( ˆ̄Vi)− σ2(V̄i) = ( ˆ̄Vi − V̄i)(σ2)′(V̄i) +Ri, t(
ˆ̄Vi)− t(V̄i) = ( ˆ̄Vi − V̄i)t′(V̄i) + Si(t)

with E(R2
i ) ≤ C/k2 and E(R4

i ) ≤ C/k4 if (σ2)” is bounded, and E
(

supt∈Bm(0,1) Si(t)
2
)
≤

CD5
m/k

2, E1/2
(

supt∈Bm(0,1) Si(t)
4
)
≤ CD5

m/k
2 because ‖t”‖2∞ ≤ CD5

m‖t‖2. Now,

the three terms can be studied as follows. First

T
(2,1)
N (t) =

1

N

N−1∑
i=0

( ˆ̄Vi − V̄i)2(t′)(V̄i)(σ
2)′(V̄i) +

1

N

N−1∑
i=0

( ˆ̄Vi − V̄i)t′(V̄i)Ri

+
1

N

N−1∑
i=0

( ˆ̄Vi − V̄i)(σ2)′(V̄i)Si(t) +
1

N

N−1∑
i=0

RiSi(t)

:= T
(2,1,1)
N (t) + T

(2,1,2)
N (t) + T

(2,1,3)
N (t) + T

(2,1,4)
N (t),

and we bound each term successively. Clearly by Schwarz inequality applied to each

term, we find,

E( sup
t∈Bm(0,1)

[T
(2,1,1)
N (t)]2) ≤ CE1/2(V̄ 4

1 )
D3
m

k2

using that ‖t′‖2∞ ≤ CD3
m‖t‖2,

E( sup
t∈Bm(0,1)

[T
(2,1,2)
N (t)]2) ≤ CD

3
m

k3
, E( sup

t∈Bm(0,1)
[T

(2,1,3)
N (t)]2) ≤ CE1/2(V̄ 4

1 )
D5
m

k3
,

and

E( sup
t∈Bm(0,1)

[T
(2,1,4)
N (t)]2) ≤ CD

5
m

k4
.

Therefore, if 1/k ≤ ∆, E(supt∈Bm(0,1)[T
(2,1)
N (t)]2) ≤ C(D3

m/k
2 +D5

m/k
3).
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Next, we write that

T
(2,2)
N (t) =

1

N

N−1∑
i=0

t(V̄i)(σ
2)′(V̄i)(

ˆ̄Vi)− V̄i) +
1

N

N−1∑
i=0

t(V̄i)Ri

= T
(2,2,1)
N (t) + T

(2,2,2)
N (t).

We obtain easily that

E( sup
t∈Bm(0,1)

[T
(2,2,2)
N (t)]2) ≤ E( sup

t∈Bm(0,1)
‖t‖2∞

1

N

N∑
i=1

R2
i ) ≤ cDmE(R2

1) ≤ CDm/k2,

a term which is negligible with respect to the previous ones.

Then ( ˆ̄Vi − V̄i)ψ(V̄i) is a martingale increment with respect to the filtration (GVt ),

for any measurable function ψ. In particular,

E[( ˆ̄Vi − V̄i)ψ(V̄i)] = E[E[( ˆ̄Vi − V̄i)ψ(V̄i)|GVi∆]]

= E[ψ(V̄i)E[( ˆ̄Vi − V̄i)|GVi∆]] = 0

since E( ˆ̄Vi|GVi∆) = V̄i. In the same way, for i < `,

E
(

( ˆ̄Vi − V̄i)ψ(V̄i)(
ˆ̄V` − V̄`)ψ(V̄`)

)
= 0

by inserting a conditional expectation with respect to GV`∆. Therefore

E( sup
t∈Bm(0,1)

[T
(2,2,1)
N (t)]2) ≤

Dm∑
j=1

E

(
1

N

N−1∑
i=0

ϕj(V̄i)(σ
2)′(V̄i)(

ˆ̄Vi − V̄i)

)2

=

Dm∑
j=1

1

N
E
(
ϕj(V̄1)(σ2)′(V̄1)( ˆ̄V1 − V̄1

)2

≤ 1

N
E

(

Dm∑
j=1

ϕ2
j (V̄1))[(σ2)′(V̄1)]2( ˆ̄V1 − V̄1)2


≤ Dm

N
E1/2[(σ2)′(V̄1)4]E1/2[u4

1,k] ≤ CE1/2(V̄ 4
1 )
Dm
Nk

.

For the last term, we write T
(2,3)
N (t) = T

(2,3,1)
N (t) + T

(2,3,2)
N (t) where

T
(2,3,1)
N (t) = (1/N)

N−1∑
i=0

( ˆ̄Vi − V̄i)t′(V̄i)(σ2(V̄i)− σ2(V(i+1)∆)),

T
(2,3,2)
N (t) = (1/N)

N−1∑
i=0

Si(t)(σ
2(V̄i)− σ2(V(i+1)∆)).
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Moreover, we know from Comte et al. (2008) that E[(σ2(V̄i) − σ2(V(i+1)∆))2] ≤
E1/2[(σ2(V̄i)−σ2(V(i+1)∆))4] ≤ C∆. Now, for T

(2,3,1)
N (t), we proceed as for T

(2,2,1)
N (t)

since both have the same martingale property w.r.t. GVs . We get

E( sup
t∈Bm(0,1)

[T
(2,3,1)
N (t)]2) ≤

Dm∑
j=1

E

(
1

N

N−1∑
i=0

ϕ′j(V̄i)(
ˆ̄Vi − V̄i)(σ2(V̄i)− σ2(V(i+1)∆))

)2

≤ 1

N

Dm∑
j=1

E
(

(ϕ′j)
2(V̄1)( ˆ̄V1 − V̄1)2(σ2(V̄1)− σ2(V2∆))2

)
≤ CD3

m

N
E1/2(u4

1,k)E1/2[(σ2(V̄1)− σ2(V2∆))4]

≤ C
D3
m∆

Nk

as
∑
j(ϕ
′
j)

2(x) ≤ CD3
m. UsingD2

m ≤ N∆ and 1/k ≤ ∆ implies E(supt∈Bm(0,1)[T
(2,3,1)
N (t)]2) ≤

CDm∆
3. On the other hand, E(supt∈Bm(0,1)[T

(2,3,2)
N (t)]2) ≤ CD5

m∆/k
2 ≤ CD5

m∆
3,

as 1/k ≤ ∆.

By gathering and comparing all terms and assuming that 1/k ≤ ∆, we obtain the

bound given in Lemma 6.4.2

6.7 Proof of Theorem 4.1

The proof of this theorem relies on the following Bernstein-type Inequality:

Lemma 6.5 Under the assumptions of Theorem 4.1, for any positive numbers ε and

v, we have

P

[
N−1∑
i=0

t( ˆ̄Vi)Z
(1)
(i+1)∆

≥ Nε, ‖t‖2N ≤ v
2

]
≤ exp

(
−N∆ε

2

2σ2
1v

2

)
.

Proof of Lemma 6.5: Noting that W is a Brownian motion with respect to the

augmented filtration Fs = σ((Bu,Wu), u ≤ s, η), the proof is obtained as the analogous

proof in Comte et al. (2007), Lemma 2 p.533. 2

Now we turn to the proof of Theorem 4.1.

As in the proof of Proposition 3.2, we have to split ‖b̃− bA‖2N = ‖b̃− bA‖2N1IΩN + ‖b̃−
bA‖2N1IΩcN . For the study on ΩcN , the end of the proof of Proposition 3.2 can be used.

Now, we focus on what happens on ΩN . For simplicity, we set m̂(1) = m̂. From the

definition of b̃, we have, ∀m ∈Mn, γN (b̂m̂)+pen(m̂) ≤ γN (bm)+pen(m). We proceed

as in the proof of Proposition 3.2 with some additional penalty terms and obtain

E(‖b̂m̂ − bA‖2N1IΩN ) ≤ 7‖bm − bA‖2π∗ + pen(m) + 32E

(
sup

t∈Sm+Sm̂,‖t‖π∗=1
[ν

(1)
N (t)]21IΩN

)
−E(pen(m̂)) + 32c′∆.
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The difficulty here is to control the supremum of ν
(1)
N (t) on a random ball (which

depends on the random m̂). This is done by setting ν
(1)
N = ν

(1,1)
N + ν

(1,2)
N , with

ν
(1,1)
N (t) =

1

N

N−1∑
i=0

Z
(1)
(i+1)∆

t( ˆ̄Vi), ν
(1,2)
N (t) =

1

N

N−1∑
i=0

t( ˆ̄Vi)

(
ui+2,k − ui+1,k

∆

)
.

We use the martingale property of ν
(1,1)
N (t) and a rough bound for ν

(1,2)
N (t) as follows.

For ν
(1,2)
N , we simply write, as previously

E

(
sup

t∈Sm+Sm̂,‖t‖π∗=1
[ν

(1,2)
n (t)]2

)
≤ 1

π∗0
E

(
sup

t∈Sn,‖t‖=1
[ν

(1,2)
n (t)]2

)

≤ 1

π∗0

Dn∑
j=1

E[(ν
(2)
N (ϕj))

2]

≤ 4Dn
π∗0N

E[(u1,k/∆)2] ≤ 4Dn
π∗0Nkn∆

2
≤ 4

π∗0

1

kn∆
.

For ν
(1,1)
N , let us denote by

Gm(m′) = sup
t∈Sm+Sm′ ,‖t‖π∗=1

ν
(1,1)
N (t)

the quantity to be studied. Introducing a function p(m,m′), we first write

G2
m(m̂)1IΩN ≤ [(G2

m(m̂)− p(m, m̂))1IΩN ]+ + p(m, m̂)

≤
∑

m′∈Mn

[(G2
m(m′)− p(m,m′))1IΩN ]+ + p(m, m̂).

Then pen is chosen such that 32p(m,m′) ≤ pen(m)+pen(m′). More precisely, the next

Proposition determines the choice of p(m,m′) which in turn will fix the penalty.

Proposition 6.1 Under the assumptions of Theorem 4.1, there exists a numerical

constant κ1 such that, for p(m,m′) = κ1σ
2
1(Dm +Dm′)/(n∆), we have

E[(G2
m(m′)− p(m,m′))1IΩN ]+ ≤ cσ2

1
e−Dm′

N∆
.

Proof of Proposition 6.1. The result of Proposition 6.1 follows from the inequality

of Lemma 6.5 by the L2-chaining technique used in Baraud et al. (2001b) (see Section

7 p.44-47, Lemma 7.1, with s2 = σ2
1/∆). 2

It is easy to see that the result of Theorem 4.1 follows from Proposition 6.1 with

pen(m) = κσ2
1Dm/(N∆). 2

6.8 Proof of Theorem 4.2

The lines of the proof are the same as the ones of Theorem 4.1. Moreover, they follow

closely the analogous proof of Theorem 2 p.524 in Comte et al. (2007), see also Comte

et al. (2008). Therefore, we omit it.
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