DECONVOLUTION ESTIMATION OF ONSET OF PREGNANCY
WITH REPLICATE OBSERVATIONS

FABIENNE COMTE®, ADELINE SAMSON®™  AND JULIEN J STIRNEMANN(+2)

() MAP5, UMR CNRS 8145, Université Paris Descartes
@) Obstetrics and Maternal - Fetal Medicine, GHU Necker-Enfants Malades, Université
ParisDescartes.

ABSTRACT. In general, the precise date of onset of pregnancy is unknown and may
only be estimated from ultrasound biometric measurements of the embryo. We want
to estimate the density of the random variables corresponding to the interval between
last menstrual period and true onset of pregnancy. The observations correspond to
the variables of interest up to an additive noise. We suggest an estimation procedure
based on deconvolution. It requires the knowledge of the density of the noise which is not
available. But we have at our disposal another specific sample with replicate observations
for twin pregnancies. This allows both to estimate the noise density and to improve the
deconvolution step. Convergence rates of the final estimator are studied and compared
to other settings. Our estimator involves a cut-off parameter for which we propose a
cross-validation type procedure. Lastly, we estimate the target density in spontaneous
pregnancies with an estimation of the noise obtained from replicate observations in twin
pregnancies.

KEYWORDS. Deconvolution; Density estimation; Nonparametric methods; Dating of
pregnancy; Mean square risk; Replicate observations

1. INTRODUCTION

In spontaneously conceived pregnancies, the date of pregnancy is unknown. Although
pregnancies occur at around 14 days following last menstrual period (LMP), the fertile
window of a woman may vary widely based upon hormonal studies (Wilcox et al. [2000]).
These studies, however, provide day-specific probabilities of a fertile window within a
female cycle in non-pregnant women and not the probability density of onset of preg-
nancy in pregnant women. Since the exact date of pregnancy is never precisely known in
women conceiving spontaneously, the probability distribution function of onset of preg-
nancy within female cycles is unknown in the general population. This density, however,
may have important implications both for clinical practice and physiology knowledge.

Ultrasound is the most widely used method for dating pregnancies in clinical practice.
First trimester biometric measurements such as the crown-rump length (CRL) have been
proven to perform better than LMP for dating pregnancies. Several formulas, derived from
simple regression analysis have been developed for dating pregnancies (Sladkevicius et al.
[2005]), the most widely used being the formula initially suggested by Robinson [1973].
Denoting by X the interval between LMP and true onset of pregnancy, and by Y the
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interval between LMP and ultrasound estimate, the purpose of this study is to estimate
the density f of X. However, only the noisy observations

(1) }/}':Xj+€j, j=1....n

are available. Here, the X; and the ¢; for j = 1,...,n are independent identically dis-
tributed and the sequences (X;)i<j<n and (£5)1<j<n are independent. Moreover, in this
setting the density f. of ¢ is unknown and the noise cannot be directly estimated from a
preliminary sample of ¢;.

Since X is measured with an unknown error, the estimation of f may be seen as a
deconvolution problem. Regarding the assumptions on the distribution of the error, several
approaches have been studied in the literature. Numerous works have addressed this
problem under the assumption of a known density for the error. These works comprise
kernel methods (see Fan [1991], Liu and Taylor [1989], Stefanski and Carroll [1990], Hesse
[1999], Delaigle and Gijbels [2004]) as well as wavelet methods (see Fan and Koo [2002],
Pensky and Vidakovic [1999]). Minimax optimality of convergence rates have been studied
by Fan [1991], Butucea [2004], Butucea and Tsybakov [2008a]. When a sample of the error
is given, density estimation has been addressed by Diggle and Hall [1993] and Neumann
[1997]. The latter considers the case of ordinary smooth densities for both densities of the
error and X, and provides minimax rates of convergence. More contributions by Johannes
[2009] and Comte and Lacour [2011] propose different approaches with regard to bandwidth
selection. A full scheme of estimation in this setting with data-driven bandwidth selection
may be found in Comte and Lacour [2011].

In this article, we consider yet a different setting in which neither a known density nor
a sample of noise are available. Rather, we consider the situation of replicate and noisy
observations of the random variable X. Consider we have a sample of pregnancies with
two replicate measurements of X:

(2) Yoiji=Xngj+tenrjt, Yarjo=Xnyj +entj2, J=1,....M

with X1, enqj1 and ep452, for j = 1,..., M, independent and identically distributed.
The sequences (Xp4j)i<j<m, (En+tj1)i<j<m and (€n4j2)i1<j<m are independent. These
noisy observations could be replicate measurements of CRL of the same embryo or mea-
surements of CRL in twin pregnancies. Therefore, we consider that two independent
samples are available: the first, of size M, containing replicate observations and the sec-
ond, of size n containing non-replicate observations. Density estimation by deconvolution
with replicate observations has been studied by Delaigle et al. [2008], Li and Vuong [1998]
and Meister and Neumann [2009]. Our approach suggests an estimator that is related to
the truncated estimator of Neumann [1997]. The second sample with replicate observa-
tions allows both to estimate the noise density and to improve the deconvolution step. Our
estimator involves a cut-off parameter for which we propose a cross-validation type pro-
cedure. We also provide the first step towards the theoretical justification of an adaptive
procedure.

The outline of this article is as follows. In Section 2 we define our estimator. We
then majorate the L2 risk based upon a new version of the fundamental lemma of Neu-
mann [1997]. Convergence rates are compared to the settings of known noise density
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and observed noise samples. We discuss the relationship between M, n and the resulting
convergence rates and show that the convergence rate is the same as that found with an
assumed known noise density in several cases. In Section 4 we discuss model selection
and the choice of an appropriate penalty. Simulations are conducted to illustrate the
performance of our estimator together with a comparison with existing results in Section
5. Finally, in Section 6, we apply our method to real data and estimate the distribution
f of onset of pregnancy within a female cycle using ultrasound measurements in twin
pregnancies as replicate noisy observations.

2. MODEL AND ESTIMATOR

We denote fy, f and f- the densities of Y, X and e. We denote by ¢g*(z) = [ e g(z)dz,
the Fourier transform of any integrable function g. The characteristic functions of each of
the variables Y, X and € are therefore denoted fy-, f* and f respectively. For a function
g : R — R, we denote by ||g||* = [ ¢*(z)dz the L? norm. For two real numbers a and b,
we denote a A b= min(a,b). As a rule in this paper, unless otherwise specified, C' and C’
will denote universal constants that may change from line to line.

In the following, we consider the model described by the two independent samples (1)
and (2). The convolution problem may be written as fy (z) = f*fo(z) = [ f(z—y)f(y)dy
where x denotes the convolution operator. Using the characteristic functions, we have
fy(u) = f*(uw)fZ(u). Fourier inversion of f* = fy/fZ can then be used to propose an
estimator of f.

In the case of a known density fe of the noise, Comte et al. [2006] propose an estimate
of f based on this idea and using a wm cut-off for integrability purpose. More precisely,
they consider the following estimator:

1 ™m ) £ u
(3) _ e—za}u f}:( )du,
27r —TTm fE (u)
where f;} is the empirical characteristic function based on the observations of Y. The risk
bound obtained in this case is considered as a benchmark of the best reachable bound.

In our setting we consider f. unknown, therefore we must estimate it or at least the
square of its characteristic function f as we will see shortly. We suggest that the estima-
tion of f relies upon replicate observations given in (2). Because of replications, we can
only estimate (f*)? and not directly f* as when a noise sample is available.

The following preliminary assumption regarding the behavior of f. will be considered
fulfilled throughout the article.

Assumption(A1l) We assume ¢ is symmetric and that its characteristic function never
vanishes.

This assumption seems very acceptable in our context where errors have no reason to be
rather positive than negative. We emphasize that it implies simplification of the problem.
For non necessarily symmetric errors, the reader is referred to Li and Vuong [1998] where
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a solution in the general context is proposed and may be adapted to our setting.

Assuming € symmetric is equivalent to assuming f real-valued. Therefore, Assumption
(A1) implies that
Vu € R, f(u) € RY.

Under this reasonable assumption, we have:
E(eiu(€n+j,1—€n+j,2)) = ]IE(eiUEnJrj,l)‘2 (4D (E(eiufn+j,1)>2 = (f;(u))2

Therefore, given that E(ei“(enﬂ’l_enﬂ’?)) = E(ei“(Y"HJ_Y"JFJ%?)) and under the hypothesis
(A1), we have the following estimation of (fX):

M
() (F2P200) = 5 37 o8 (ulVarjt = Yssz)):
j=1

Our definition does not involve absolute value nor positive part since our estimator of f*

is used over a domain for which @ is positive. Indeed, we define a truncated estimate
of 1/f:
1
1
? Fw
: (f2)*(w)

(22 (w)>M~1/2

Fourier inversion of f* = f;-/ f yields the following estimator of f, when still using a mm
cut-off for integrability purpose :

(6)
R 1™ () . 1 n Mo
fm(x) / e @I Y2 2 du, where fi(u) = Z i 4 Z eWYn+i1
j=1 j=1

T or —mm fe(w) n+M

This estimator can also be viewed as a deconvolution kernel estimator with the sinc kernel
and the bandwidth 1/(7m).

Remark 1. Data (Y,4j2)1<j<m are not used in fi(u). Their use would slightly decrease
the main variance term (see Appendiz 8.1). But this would induce several technicalities
in the proofs due to the dependency between Yy 11 and Y, ;2.

The level of truncation required in (5) differs from the case where a noise sample is
available. As already said, because of replications, we can only estimate (f*)? and not
directly fZ. Therefore the truncation is in M —1/44n (5), instead of M —1/2,

The estimator fm(az) differs from the estimator proposed by Delaigle et al. [2008] in several
ways. A cut-off mm is used instead of a ridge parameter. This cut-off allows to consider
super-smooth densities f. and f, which is not the case with the ridge parameter. The cut-
off use yields to restrict to the sinc kernegn\ order to optimize the bias of the estimator.

We only use the estimation of fF where (f*)? is non-negative so the absolute value used
by Delaigle et al. [2008] is not required. This substantially simplifies the theoretical study.
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3. UPPER BOUND OF THE L2 RISK

Let us define f,, such that f, = f*1_rp m)(-). The function f, is the function which

is in fact estimated by fm Therefore, this implies a nonparametric bias measured by the
distance between f and f,,,.-We wish to bound the mean integrated squared error (MISE)
defined as E(||f — f|?). We will first generalize Neumann’s Lemma (Neumann [1997]) to
the case of replicate measurements and use this result to deduce a risk bound.

3.1. General MISE bound. The extension of Neumann’s lemma for replicate measure-
ments is

Lemma 1. Assume that (A1) holds, and let p be an integer, p > 1. There exists a

constant C, such that
”\ 2 s et '
<
) = <<f:>2<u> N " (f:)6(U)> |

“

with Cl =1.

1 1

fr(u)  f2(u)

Proof is given in appendix.

Let us define

™y, ) ™)
Ag(m) = / ———— and, for k =24, A’/ (m) = / —————du.
—rm (f2)?(u) g —rm (f2)F(u)
Using the previous lemma we may deduce the following bound for the MISE:

Proposition 1. Assume that (A1) holds and f,, is defined by (6). Then there exists a
constant C such that

AP AD (m
M R -l < ||f—fm||2+c<jz+<M> 20 AP >>_

Proof is given in appendix.

This decomposition is non asymptotic. It underlines the different terms involved in
the bound of the integrated risk. We recognize in inequality (7) the bias ||f — f||* and
variance denoted Var(m) := Q1(m) + Q2(m) with

Qi(m) = Ag(m)/(n+ M)
Qa(m) =AY (m)/VM A AP (m)/M.

We can also recognize QQ1(m) as the variance term that arises alone when f7 is assumed
as known with a Y-sample size n+ M. The following term Q2(m) is specific to our setting
involving replicate observations and shows the loss in the resulting rates. In the case of
observed noise, the upper bound is

1f = finll? + CAz(m) /n + (C +2)AY) (m) /M,

when the Y-sample has size n and the e-sample has size M. Moreover, for M > n, the
variance term is bounded by C'Ay(m)/n, which corresponds to known noise density for
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sample size equal to n. Therefore, compared to the case with observed noise or known
density, the term Qo (m) resulting from the estimation of (f*)? with replicate observations
is a substantial step in complexity.

3.2. Resulting rates. Let us consider the following classical assumptions regarding the
behavior of f7:

Assumption (A2) There exist « > 0,5 >0, v € R (v > 0if « =0) and ko, k1 > 0 such
that, Vu € R,

ko(u? + 1)~ exp(=Blul") < |£2(w)] < ky(u® + 1) exp(—Blul")

The noise distribution is called ordinary smooth if v = 0 and super smooth otherwise.
A Gaussian noise is super smooth with v = 2 and a Laplace noise is ordinary smooth with
v=0and a = 2.

Now, we know that, under (A2), the dominating variance term has the following order:

_ Ao (m) < m2etl=y exp(26(7rm)7).

@1(m) n+M — n-+ M

Such orders are non standard for variance terms in nonparametric estimation and in par-
ticular larger than orders m/(n + M) which are obtained for standard problems (e.g.
density estimation without noise, corresponding to o =y =0, M = 0).

If we want to give precise examples of the rates that can be obtained in the deconvo-
lution context, we must also make assumptions on the rate of decrease of f*. Classically,
we consider the following smoothness spaces for density f on R:

Assumption (A3) f € Aup.(1) = {f € L'NL2 [|f*(w)]*(u® + 1)*exp(2b|ul®)du < I}
with ¢ > 0,6 >0,a €R (a >1/2if ¢=0), 1> 0.

As previously, when ¢ > 0, the function f is known as super smooth, and as ordinary
smooth otherwise. The spaces of ordinary smooth functions correspond to classical Sobolev
classes, while super smooth functions are infinitely differentiable (analytic function), and
we have necessarily ¢ < 2. It includes for example Gaussian (¢ = 2) and Cauchy (¢ = 1)
densities.

Then, under (A3), we have the following bias order:

(8) If = fml® < Om™@ exp(~2b(wm)°).
Moreover, under both (A3) and (A2), we have

2(a—a) o(2B(mrm)7)—2b(rm)°) 1 2(20—a) 4 ,(48(7m)") ~2b(wm)°) +
mesc<m © )A(m € ).

VI M

Therefore, we have the following results when both f and f. are ordinary smooth.
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Proposition 2. We consider assumptions (A1), (A2), (A3) and the ordinary smooth
case for both f and f. with ¢ =~ = 0. The bound (7) then becomes

~ 2a+1 2(a—a)+ m2(20¢—a)+
E — 2 < —2a m m

(15 = ful >_c<m R O
If moreover M > n and a > oo — 1/2, then we have for mep = M/(2a+20+1)
9) E(|[f - fmomHQ) < O M 20/ (2a+20+41)
IfM =n* with w < 1, Mopt = nl/(2a+2a+1)) and Zf

w 1

10 20 <a< 1
(10) oa_a_l_w(a+2)’
then
(11) E(Hf - fmoptH2) < Cn_Qa/(2d+2a+1).

The first inequality is a consequence of (7), (8) and elementary bounds for the variance.
Inequalities (9) and (11) allow us to recover the deconvolution rates as if the noise had
known density for a sample size of observations of order M and n respectively. This
rate is known to be the optimal one when the noise density is assumed to be known
(see Fan [1991], Butucea [2004], Butucea and Tsybakov [2008a,b]). The first case was
already mentioned in Delaigle et al. [2008]. The case M < n is new and interesting as it
corresponds to our real data setting. Note that condition (10) reduces to a > 2« when w
tends to 1. Another case is generally considered, where still ¢ = 0 but v > 0:

Proposition 3. We consider assumptions (A1), (A2), (A3) and the ordinary smooth
case for f while f. is super smooth: ¢ = 0, v > 0. Then if M > n and m = mep; =
7~ Ylog(M)/(88))Y/7, we have

(12) E(If = frne|2) < Cllog(M)] 727,

The rate in (12) is the optimal rate in this context. Unfortunately, it is logarithmic,
but practical experiments show that, nevertheless, the procedure works well. It happens
that, when the noise density is known, the choice of the optimal cutoff m,,; is known also.
In our case, an adaptive procedure would be required in this case as well, since 3, are
unknown. This enhances the interest of adaptive procedures in general.

Proposition 3 is often summarized as: ”when the noise is super-smooth, the rate of
deconvolution is logarithmic”. This is not true since the regularity parameters of f are
involved in the computation of the rate. Let us give two counterexamples.

Example 1. Consider M =n,a=a =0 and 2bwr =287 =1, c =~ = 1. We have
B - fnlP) < (4 S+ =05
mi = M M M)
Then the choice Mgyt = log(M)/2 yields

E(|f = frnopl?) < CM /2
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which is also still an optimal deconvolution rate in this case, and is obviously much better
than logarithmic.

Ezample 2: Gaussian-Gaussian case. Consider M = n and a = a = 0 and 2b = 25 = 1,
c =~ = 2. In that case, the risk bound can be written

. —1g(mm)? 1 (mm)?
o 2 < —(7rm)2 m e e
E([lf = fmll )_C<€ L v KA v

Then, choose

1 1 1/2
TMopt = <§ log(M) + 1 log(log(M))> ,
so that the risk is bounded by
E(|[f = fropell?) < Clog(M)) =/ 40171/

which is still a rate better than logarithmic for a sample size of order M.

We can give a more general result.

Proposition 4. Assume that assumptions (A1), (A2), (A3) are fulfilled with ¢ >~ > 0.
If M > n, then there exists a constant C' such that

1+
M ( VI
Consequently, for any e, 0 < € < 1/2, the choice mmgy = (Elog(M)/(Qﬁ))l/'y yields
E(”f - fm0”2) < C[lOg(M)](2O‘+1*’Y)/’7M71+6.

~ 2a+1—7 28(mm)7 2a ,28(7m)Y
E(|f — fml?) < C (mQaexp(—%(wm)c) L € mTer )

The last inequality also presents a general context where a polynomial rate can be reached
in the super smooth case.

4. CROSS-VALIDATION CUT-OFF SELECTION

4.1. General principle. Let us give the general principle for the automatic selection of
the cutoff m. First, assume that m belongs to a set of admissible values

M ={m e N; Var(m) < Cy}

for fixed Cy. The general outline of the method used to select among all considered
indexes M is borrowed from Comte and Lacour [2011]. Our approach aims to select
m € M based upon an adequate bias-variance compromise. First, notice that in our case
If = full® = [I£1I? = || fm|/?- Indeed, denoting (-,-) the scalar product, we have

1f = Fll® = AP = 2005 f) + [P
= [IfI* - 2/f*(U)(f*l[_m,m})(U)du 1wl = 1A = 1L fmll?.
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The theoretical optimal choice of m is defined as:

mith — argmin(Hf — fl?+ Var(m)) - argmin( Il + Var(m)).
meM M

me

The previous value of m! may only be estimated since ||f — f,u|| and Var(m) are both
unknown. Using the estimator f,, defined by (6), we would like to consider the following
preliminary estimate of m:

(13) argmin ( — | f|* + Var(m) ),
meM

where \//a\r(m) would be an adequate estimate of the variance. These are the ideas leading
to the following proposals.

4.2. Theoretical result. Let us now give our theoretical result. Let
Mpym=1{keN, k=1,...,m(n, M)}
be a discrete set of cutoff with m(n, M) such that

Ao(m) AP (m) AP (m)
n+ M VM M

It is easy to see that fm can also be defined as the minimizer of

<C,Vme MTL,M'

1 F (u N
(@) = 2 = 2 [ L e
T fi(u)
over the functions ¢ belonging to Sy, where
S, = {t € L3(R),supp(t*) = [~7m, mm]}.

Here, supp(t) denotes the support of the function ¢ i.e. the domain where it is nonzero. We
recall that (¢ j)jez and ¢ ; = V/mp(mz — j), ¢(x) = sin(rx)/(7x), is an orthonormal
basis of Sy,. In other words, we have

Jin = arg min (1) and v (fin) = [l fmll?.

Next, let us define

() (f)
pen(m) = Ko {bg(M) log(n + M)% + <log(M)7A2\/]f_;n) Alog?2(a) 21 (m) (m)> } :

Then we take

(14) m = arg min (’ynM(fm) + pen(m)) .

mEMn,]u

We can prove the following result for the theoretical estimator fm (the proof is given in
supplementary material).
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Theorem 1. Assume that (A1)-(A3) hold and fy, is defined by (6) with 7 as in (14).
Then there exists a constant C such that for any m € My, v,

(15) E(1f ~ fall®) < O (I ~ fall* + pen(m)) + & +

where C is a numerical constant and C',C” are constants which do not depend on n, M.

We can see that logarithmic losses occur in all terms of the penalty pen(m) compared to
the terms appearing in the variance. The resulting rate may be deteriorated accordingly,
but this deterioration will remain negligible.

To complete the procedure, we suggest then a plug-in method to replace the terms in
the penalty and in the admissible set M,, ys by estimators

ooy [ A [T @ f
Ag(m)—/_ﬂm 72 and Ay (m)—/_ﬂm (f;)k+2(u)dus ce f*= I

see Section 5.2.

We do not prove any theoretical result concerning this complete procedure. Neverthe-
less, we can mention that the result proved in Comte and Lacour [2011] can be applied to
a complete procedure based on a slightly different estimator of f. Let us consider an esti-
mator f,, of f where only the n observations of the non-paired sample are used to estimate
fy- Let us also consider the case where the number M of paired observations is such that
M > n?*€ for some € > 0. Then the two terms Q1 (m) and Q2(m) involved in the bound of
the variance of f,, are such that Q1(m) = As(m)/n and Qa(m) < Agf) (m)/n < Agy(m)/n.
We can thus construct a complete procedure for f,, as follows. We first define an estimate
penalty pén(m) by:

A 2 .
pén(m) = Ky (ng((f;_(:?))) A27im)

and M,, = {1,...,1m,} with 7, = argmax{m € {1,...,n}, 1/4 < Ag(m)/n < 1/2}.
Then the model is selected by

m=arg _min (=, + pen(m))

yeees My

and we get a final estimator f;. The result proved in Comte and Lacour [2011] can be
extended to this complete procedure and we can prove that

log (Aa(m)) ) * Aa(m) LG

<m<m(n,0) log(m + 1) n n

E(|fn—fI?) <C1 _ int HM<W+<

where C] is a numerical constant, Cs a constant depending on f and f-.

This result allows to exhibit a convergent complete procedure. However it hides a
substantial loss in the rate of the estimator f,,. Indeed, the rate is related to a sample
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size of order n, while the number of observations is in fact of order n+ M with M > n?te.
This is the reason why we consider the estimator fm with an estimator of fy- based on the
n+ M observations (6), which may avoid the previous loss. Nevertheless, as the complete
convergence result is proved for a complete procedure with the penalty pén(m), we decide
to use the same penalty where n is replaced by n + M, as explained below.

5. SIMULATION STUDY

5.1. Discussion about the dominating variance term. We have shown in Section
3 that the optimal rate could be reached both for M < n or M > n, depending on the
configuration of the parameters. The dominating term in the bound of Var(m) is studied
numerically for these two conﬁgu\rations.

An estimation of Var(m) is Var(m) = Q1(m) + Q2(m) with

Ao(m) AD () AD (m

An example of empirical behavior of Q1(m) and Qo(m) is depicted in Figure 1 for M < n
and M > n and in the setting of ordinary smooth or super smooth functions for f chosen
as Laplace and Gaussian respectively, together with a super smooth Gaussian noise. The
Figure with ordinary smooth Gaussian noise is not reported since it is exactly similar to
Figure 1 with only a slight difference in the vertical scales. Expectedly, Ql(m) is larger
than the other term when M > n. Interestingly, this seems to be also true when M < n,
at least empirically: the only case where it is not true is for m less than one, and we
can check that in practice, in all the examples considered in Section 5.4, selected values
of m are larger than 2. This finding was invariable throughout simulations, thus making
\//a\r(m) ~ CAy(m)/(n + M) an appropriate choice regardless of the respective values of
n and M. The previous considerations become prominent in the choice of a penalty and
reinforce the justification of a penalty similar to pén(m).

5.2. Estimation procedure. In practice we define the estimated penalty pen(m) as:

. 2 .
__ log (Az(m)) \ " Ag(m)
16 =K .
(16) pen(m) ! < loglm+1) | n+ M
Throughout numerical estimations we will consider K1 = 1, after a set of simulation

experiments to calibrate it. The computation of || f, | is performed by using the following
expression of the estimator (6) as an orthogonal projection

(17) fm = Z dm,é@m,ﬁ

LeZ
where {¢n, ¢}ecz is the orthonormal sinus cardinale basis defined in Section 4.2 and
or (u) = e tut/ "1 _pm,am) (w)/v/m.  We also recall that the estimated projection co-
efficients can be computed by the following formula

2 £x

Ame = @(—1)5/ ew””Ji—i(wm(u —1))du.
0

£
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FIGURE 1. Empirical behavior of Q;(m) and Q(m) as a function of m
when M < n and M > n for f ordinary smooth and super smooth,
chosen as Laplace (left figures) and Gaussian (right figures) respectively.
The influence of M and n is illustrated by M = 200, n = 2000 (top figures)
and M = 2000, n = 200 (bottom figures). The noise is Gaussian.

This expression of the estimator allows us to use Inverse Fast Fourier Transform (IFFT)
Algorithms in the estimation process. Therefore, for numerical tractability we use only
a finite sample of projection coefficients with fm = Z‘ <Ky G, 0Pm,e- Theoretical results
assert that K, = n always suits (see Comte et al. [2006]) but we make the constant choice
K, = 255.

Since M,, pr is unknown we consider an estimation of this domain,

—

Mg = {6, k=1,... Kinar}

where & is a fixed positive integer and 1, s is such that

Ag(m) < 2)

7 = eN,
My, M argmax(m ot M
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Following, we have the final estimation of m!”" defined by:

(18) = argmin (— | ful®+ pen(m))

mE{l,...,Thn,Iw}

with pen(m) given by (16). Finally, by considering (17) and (18), we obtain fa which is
our final estimator. The choice of the constant x will influence the quality of the final esti-
mation since it governs the number of models that are proposed before selection. Choosing
% small will offer only a restricted number of models for the algorithm to choose from,
whereas choosing k large will allow a more refined estimation of m,. For the simulations
in Section 5, we choose k = 4 to keep the computing time reasonable. Conversely, for the
real data application in Section 6, we choose k = 30.

5.3. Design of simulation. Noise was given a Laplace or a Gaussian density with vari-
ance o2 as follows:

e Laplace noise.

2
o _ . o
fe(w) = Se™ and f2(u) = ———s
e (Gaussian noise.
1 2/ 2 2,2
fe(x) _ e~ 0-5z /o and f:(u) — ¢ 0:50%u
V2T

We compared our results to estimations under the assumption of a known noise density
for the description of the estimation procedure and penalties for Gaussian and Laplace
noises). We considered the following four different densities of the X’s:

(i) Mixed Gamma distribution: X = 1/4/5.48W with W ~ 0.4I'(5,1) + 0.6I'(13,1)

(ii) Cauchy distribution: f(x) = (1/7)/(1 + z?)

(iii) Laplace distribution: f(z) = e_‘/im/\/?

(iv) Gaussian distribution: X ~ N(0,1)

(v) Beta distribution: X ~ 2v/7B(3,3)
Except the case of the Cauchy density, these densities are normalized with unit variance,
thus allowing the ratio 1/02 to represent the signal-to-noise ratio, denoted s2n. We con-
sidered signal to noise ratios of s2n = 5 and s2n = 10 in our simulations. To study the
influence of the relationship between n and M, we considered several values of n and
values of M = n and M = /n. Additionally, we considered the density (vi) defined by
X ~ 0.5N(=3,1)+0.5N(2,1) with a signal-to-noise ratio of 4 for comparison with Delaigle
et al. [2008].

5.4. Results. The values of the MISE risk multiplied by 100 for each density and sim-
ulation scenario and computed from 100 simulated data sets, are given in Table 1. As
expected, the risk decreases as n or M increases. Similarly, when increasing the level of
contamination of the data by reducing the signal-to-noise ratio, the risk increases. Com-
pared to Gaussian noise, Laplace noise demonstrates overall lower risks whatever the other
simulation parameters. Indeed, Gaussian noise is super smooth whereas Laplace noise is
ordinary smooth thus explaining the improvement in risk. Strikingly, in most cases the
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estimation of the square of the characteristic function of noise density f! has reduced the
risk compared to the known density case. This phenomenon is counter-intuitive and we
do not have a clear explanation. However, this has been noticed in Comte and Lacour
[2011]. Following Remark 1, we have also implemented the estimator of f; is based on the
samples (Y;), (Yn+j,1) and (Yy4;,2). The MISE are of the same order than those presented
in Table 1.

(=} (=}
[3 [3
(=} (=3
L o
— —
(=} (=3
(=} o
— - ~—
(=} (=}
Lo Lo
o S
=} =3
(=3 o
S - S
(=} (=3
Lo Lo
S | < _]
P T
T T T T T T
-5 o S -5 o 5

FIGUuRE 2. Estimations for n = M = 200 (dashed line) and n = M = 500
(dotted line) for the Gaussian mixture density (plain line) (vi). (left):
Laplace noise; (right): Gaussian noise. Two independent samples were
used, of size n and M respectively.

Table 2 presents the comparison of the penalized estimator and the estimator given
by Delaigle et al. [2008] for the Gaussian mixture density (vi). The integrated squared
error (ISE) is computed over 100 estimations and we present the results using the median
and inter-quartile range (IQR). In all cases, the penalized estimator enjoys lower risks
compared to those given by Delaigle et al. [2008].

In Figure 2, we present an estimation of f using the penalized estimator. We considered
the Gaussian mixture distribution (vi) contaminated by Gaussian and Laplace noise with
a signal-to-noise ratio of 4 with n = M = 200 and n = M = 500. The bimodal character
of distribution (v) is well described by the estimation in both cases whereas the increase
in precision for n = M = 500 is mostly visible in the Laplace noise case which closely
matches the theoretical density in that case.
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TABLE 1. Results of simulations presented as MISE x100. In each case the
MISE was averaged over 100 estimations. The case “f. known” corresponds
to the estimator given in (3) with Y-sample of size 2n (to be compared to
the case M = n).

¢ Gaussian s2n =10 s2n =5
n =200 n = 2000 n =200 n = 2000
f Mixed Gamma f. known 0.447 0.104 0.700 0.668
M=\/n 0.631 0.092 0.788 0.277
M=n 0.374 0.059 0.508 0.149
f Cauchy fe known 0.371 0.044 0.728 0.624
M =\/n 0.513 0.107 0.808 0.274
M=n 0.511 0.075 0.445 0.123
f Laplace fe known 2.066 0.588 3.506 1.815
M =\/n 1.469 0.592 3.908 2.504
M=n 1.088 0.405 2.391 1.209
f Gaussian fe known 0.191 0.041 0.355 0.846
M =./n 0.848 0.120 0.847 0.175
M=n 0.681 0.093 0.476 0.133
f Beta M =./n 0.236 0.049 0.517 0.097
M=n 0.129 0.037 0.242 0.043
¢ Laplace s2n =10 s2n =15
n =200 n = 2000 n =200 n = 2000
f Mixed Gamma f. known 0.349 0.062 0.588 0.107
M =./n 0.570 0.095 0.771 0.198
M=n 0.395 0.062 0.535 0.108
f Cauchy fe known 0.339 0.167 0.420 0.149
M =/n 0.612 0.107 0.685 0.195
M=n 0.550 0.053 0.498 0.174
f Laplace fe known 1.110 0.367 1.967 0.664
M =/n 1.376 0.479 3.359 1.595
M=n 0.936 0.385 1.726 0.578
f Gaussian fe known 0.511 0.219 0.720 0.386
M=\/n 0.839 0.122 0.859 0.182
M=n 0.594 0.066 0.720 0.222
f Beta M=\/n 0.256 0.048 0.466 0.065
M=n 0.126 0.036 0.224 0.039

6. DENSITY ESTIMATION OF ONSET OF PREGNANCY

As defined previously, X denotes the interval between last menstrual period (LMP) and
the true onset of pregnancy. We denote Y the interval between LMP and the onset of
pregnancy estimated by the sonographic measurement of the crown-rump length (CRL)
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TABLE 2. Comparison of the ISE between the estimators of Delaigle et al.
[2008] and the penalized estimator for the Gaussian mixture density (vi).
For the sake of comparison, the results are presented by the median x 100
(inter-quartile range x 100) of 100 estimations with M = n.

Delaigle et al. [2008] Penalized estimator
n = 200 n = 500 n = 200 n = 500
¢ Laplace 1.41 (0.94) 0.89 (0.51) 0.35 (0.17) 0.24 (0.07)

e Gaussian 2,09 (1.33) 1.42 (0.92)  0.47 (0.90) 0.27 (0.08)

with Y = X +¢e. Two separate independent samples are available: the first is an M-sample
of spontaneous twin pregnancies, M = 86, each embryo with its own CRL measurement;
the second is an n-sample of spontaneous singleton pregnancies, n = 1378, with Y; =
X; +¢;. Each of these samples is a sample of the general unselected population and
was obtained from the screening unit of the department of obstetrics and maternal-fetal
medicine of the children’s hospital Necker - Enfants Malades in Paris, France. Since the
onset of pregnancy is identical for both twins, we thus have replicate noisy observations
YnJrj,l = Xj + €ntj,1 and Yn+j,2 = X,j + €n+tj,25 —j=1,...,M. We wish to estimate
f which represents the distribution of probability of onset of pregnancy within a female
cycle.

Figure 3 (b) presents the penalized estimator f%l (.). As expected, the mode of the
distribution is at around 13 days, meaning that the likelihood of onset of pregnancy is
greatest at 13 days following the last menstrual period. However this distribution looks
positively skewed with a significant remaining probability of onset after 20 days. The risk
was assessed by simulation in the setting of our data by considering X ~ I'(16,1.2) and
a Laplace ¢ ~ Lap(0,0.95) or Gaussian £ ~ N(0, 1.2) noise. These densities were chosen
empirically because they fitted our estimate (see Figure 3 (a) for the comparison of the
empirical characteristic function of ¢ with Laplace and Gaussian characteristic functions).
Under this simulation model, the risk MISEx100 was 0.038 and 0.034 for Laplace and
Gaussian noise respectively over 100 estimations. We emphasize that the strong side-
effects which are observed on the estimated characteristic function in Figure 3 (a) can also
be seen on simulated data (for a size sample 86) and mainly appear when going from the
direct noise observation to the replicate case (where only differences of noise are observed).

7. CONCLUDING REMARKS

We have presented an adaptive deconvolution estimator of a density when the noise den-
sity is unknown. Instead, a sample of noisy replicate observations is available. Although
this estimator seems to perform nicely in simulation, it can exhibit poorer theoretical rates
than in other settings. This expected loss is directly related to the use of replicate obser-
vations for the estimation of the characteristic function of noise density or more precisely
the square of its modulus. Simulations show that the influence of the relative values of M
and n is likely to be small. We also find that the gain in precision for increasing values
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(a) (b)

08

0.6

time (days)

FIGURE 3. (a): estimation of the characteristic function of the noise in
twin pregnancies (plain line). Laplace (dashed line) and Gaussian (dotted
line) characteristic functions are plotted for comparison. (b): estimation
of the density of onset of pregnancy (plain line) and estimated density of
the observations (dashed line).

of M may be small. Whereas this may be of little value in the field of engineering, it is
of importance in biomedical applications or clinical research. Indeed, obtaining a sample
of ¢ is often difficult or impossible in these applications, as well as a strong prior assump-
tion regarding its density. However, replicate data may be found in clinical or biomedical
applications. Nevertheless they are likely to be scarce since they involve multiple mea-
surements/observations in one patient. In the case of dating pregnancy this is dealt with
by using twin pregnancies instead. The estimation of a density of onset of pregnancy may
find multiple clinical applications. The knowledge of the underlying variability of onset
of pregnancy may help clinicians in the follow-up of pregnancies and mostly regarding
growth monitoring by ultrasound and delivery since both these aspects rely upon an ac-
curate estimation of onset of pregnancy. Furthermore, this density is of interest for the
physiology of the female cycle, confirming with simple clinical data the variation in onset
of pregnancy that could be expected from biological experiments (Wilcox et al. [2000]).
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8.1. Proof of Remark 1. Let us denote the estimator of f; based on the samples (Y;),
(Ynij1) and (Yoij2):

. 1
Fr(w) = 2507 (Z “”+Z " “1+Z " “2)-

Due to the dependency between (Y;,4;1) and (Y,,1;2), we have

n M M
- 1 ' ‘
Var f;}(u) = m (VCLT (Z qu) +Var (Z eZUYn+],1) +Var (Z eluYn+j72)

Jj=1 j=1 =1
M M
+ 2cov (Z giuyn‘F]',l’ Z 6z‘u}/ner) )
Jj=1 j=1
= - P@IS WP (R w) — IF W))

n+ 2M (n+2M)?

The variance of f;:(u) is equal to nJrlM (1—(f)2(u)| f*(u)|?). The main term of the variance

of fi is 1/(n + 2M) while it is 1/(n + M) for f;(u), which explains Remark 1.

8.2. Proof of Lemma 1. Let us define
1 1

Frw  frw)

We first prove the following result, which is useful for the proof of Theorem 1.

(19) R(u) = and S(u) = R(u) +

THOREREE

Lemma 2. Consider R(u) and S(u) as defined by (19). Then we have:

2 M $\2(4,) — TRy, W2 an w2 1
(@) |S(W)]” < 7(']65*)2(,“)((.]65) (u) = (f2)*(u)) d E[[S(u)"] < TRED)
9 M1/2 N2 — (T2 2 . 1/2
) 1P < s (2700 - TRw) and E[S@P] < e
((2720w) ~ (2P (w))”
: 1/2 —
() [S(u)? (F2)5(u) + (%6(10 (( )2 (u) (f:)z(u)>3
M—l
and E[|S(u)|7] Q(fa*)G(u)

Proof of Lemma 2.

First remark that S(u) =
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Proof of (a). The following equality holds

S(u) = 1—, / ()2 () — (F2)%(w)
)2 (u)>M—1/2 — —
UMM ety ST ) 12 T2 )

Thus using fZ(u) + \/(fi*?2 (u) > \/(f??2 (u) and the bound given by the indicator, we get

IS(u)? < [M/(f£2)?(w)]((f2)*(u) — (f)?(u))?, and the expectation follows.
Proof of (b). We can also write

—— 2
*(u) — 2(y
1S(u)]> = Yrwsn-ve (ff( ) A (f2)*( )>
(f2)?*(w) =)
11— *\2 . /*\2 2
 gpape (P -GPW) e

(02)200) — T2

P2 — 7S

) () + TR0 ) e

Therefore E [|S(u)?] < M=Y2/(fX)*(u), which completes the proof of (b).

Proof of (c). We can also write

WP (UD0) — (2P)

ISP = T —= ——°
: P (120 + TP
— 2
g (P@-TPW) T 1 L
P (e 4 TR LG U P
Thus
— 2 — 3
S~ EPwea ( :)Q(u)—(f;‘)Q(u)>2+ LG5 o1 ((f:>2<u>—<f:>2<u>)2
P (e ERW) TR (120 + W)
(2 - GPe) gz - (2P|
= B (F2)5(u)

This implies E [|S(u)[?] <2M~1/|f#(u)|°, which completes the proof of (c). 0.
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Proof of Lemma 1. We give the proof for p = 2 but the extension to any p is straight-
forward. First, write the decomposition

ey ens-1/2
E(Rw)?) = E(i%%%§i>+MWWW»

Clearly, the bound for E[(S(u))?] obtained in Lemma 2 is the bound announced for
E(R%(u)). Therefore, we only have to prove that the first term of the decomposition
has the same bound. Clearly,

g (fErwenz) 1
(f£)*(u) T (f)P(w)
For the other terms to obtain as bounds, let us distinguish two cases. (i) If (f*)%(u) <

2M /2, we have both 1/(f2)?(u) < 2M 2 /(f2) (u) and M~'2/(f2)*(u) < 2M 1/ (f2)%(u).
Therefore, in this case

11 2M~YV2 oMt

(F2P) ~ 2P " %) " (P
(ii) If (f*)%(u) > 2M /2 using the Bernstein Inequality as in Neumann yields:

—

P((f2)? ()] < M72) < P2 () = () @)] > (£2)%(u) = M)

< P()2(w) — ()2 w)] > (£2)*(w)/2)
< 2exp(—M(f2)*(u)/16) < O (M1 (f2(u)~)").
Consequently,
(u <M 1/2 TERND 1/2 M
E( ) PSP < M) < ety
Thus, in that case where 1/(f)2(u) > 2M~Y2/(f5)*(u) > 4M~1/(£*)%(u), we get

ZUr P12 1 2M 2 aM!
E( (727 (w) ><Cm>m><ﬁwwA@meWﬁWM‘

This ends the proof of the lemma. [J

8.3. Proof of Proposition 1. Let us study the integrated mean square risk. By writing
in the Fourier domain that

f* - fArtL = (f* - f’:;’],) + (f* - f*) = f*l[fﬂm,ﬂm}c + (f’:’], - fArtL)l[fﬂm,ﬂm]v

we get, as ||f_fm||2 (277) 1Hf* fm”2 ( )_1(Hf*]-[ffrm,ﬂm]cH2+H(frtL_f;;1)1[f7rm,7rm}H2)a
that

(20) 1f = Foull® = 1f = fonll® + N fon = >



DECONVOLUTION WITH REPLICATE MEASUREMENTS 21

Moreover, by applying the Parseval formula, we obtain

~ 2
= full? = o [ | A

27r —7Tm

frlw)  f2(u)

It follows that

s

fe o L™ s L fy () = fr )
@) gl <1 [ I @PRWP du.
The last term of the right-hand-side of (21) is the usual term that is found when fF is
known, and the first one is specific to the framework with estimated f;.
We take the expectation of (21):
Fo2 2 [m™ % ) 2
E(lfm = full®) = — E(f3(u) = fy (u)"|R(u)|")du

—7Tm

™ ™ (n —1
2 [ irore(rwPes - [ B

Applying Lemma 1 yields:
) 9 [Tm .
E(llfm = ful®) < = / (E(f () = f3-()[E(R(u)[*) 2 du

—7Tm

-I—% /_7:; £ (W) 2(F)2 (w)E(| R(w)|?)du + 2%

IN

g m ; . 1 y
w/_wf M) e

@ o AR M—1/2 M1 y Ag(m)
) L, R )<(f;‘)4(u)A(f;‘)6(u)>d R

By gathering (20) and (22), we obtain the result. O
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SUPPLEMENTARY MATERIALS: PROOF OF THEOREM 1

Let us begin the proof as in Comte and Lacour (2011). We observe that for all ¢,¢" in
spaces Sp,’s

Yar(t) = s (') = [t = FIP = (|t = FI* = 2vm e (t — 1)
where

t(—u)
fe(w)

nan(t) = (n+ 207 {@t(yj) _ /t(m)f(:c)d:c}, () = % /em du,

with convention Y, =Y_j; for k=1,..., M.
Let us fix m € M, )y and recall that f,, is the orthogonal projection of f on S,,. Since

Yt (fin) + pen(m) < yu n1(fm) + pen(m), we have

I = FIP < Alfm = I + 20001 (fio — fin) + Pen(m) — pen(ri)

1 fm = FIP 2 fin — fm”t e v, (t) + pen(m) — pen(rn)
cB(m,m

IN

where, for all m,m/, B(m,m') = {t € S, + Spy, |t|| = 1}. Then, using inequality
22y < 2%/4 + 492,

A 1, 4 A
(23) = SIP < W = S+ Gl = Sll* 4 sup 5 (2) + pen(m) = pen(i).
teB(m,m

But || £ — fmll2 < 2l fm — FIIZ+ 2|lf — fml|? so that, introducing a function p(.,.)

= F1% < 3l fon = FI* + 8 Sup )Vﬁ,M(t)—p(mfn)]+8p(m,m)+2pen(m)—2pen(m)'
te B(m,m

If p is such that for all m,m’,
(24) Ap(m, m') < pen(m) + pen(m)
then

(25)  Elfa— fI? <3llfm— FIP + BE( s va i (t) = p(m,1i2)] + 4pen(m).
ceb(m,m

~

Our study is now dedicated to find p(m,m') such that E[sup,c g, ) v2 () —p(m,m))]
is small.
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Recall that R(u) and S(u) are defined in (19). We write the following decomposition

2mvn i (t) = / t*(—w]}’zéz)du—“*vf*>

)
/t* P

du — (t*, f*) + / (=) f (w) R(uw)du

i@

/ £ (—u) §Y§Z§ du — (t*, f*)

+ [0 @ - )R+ [ o @ R
= [rewlia- e [eeodio - s

+ [ 1 @S = [ ) = 5 0) L 2

_/t*(—u)f*(u)l(/fg;?(uKM_l/Qdu
= UnpM1(t) + Unv2(t) + vnom3(t) + vnoaa(t) + v s(t)

The term v, 37,1(¢) is the empirical process corresponding to the case of known f* and has
already been studied in several works (see Comte et al. (2006)). It satisfies

c
n+ M

E

sup 5 11(t) —Pl(mam)] <
te B(m,m)

with p1(m,m’) = p1(m) + p1(m’) and

10g(A2(m))>2 Az (m)

pl(m):’i1<log(m+1) n+ M’

This gives a first contribution to the penalty pen(m).
We can prove the following Lemma:

Lemma 3. Under the assumptions of Theorem 1, we have:

1 1
26 ) E 2 o) — ,m)]y < C —
(20) @) B s v aralt) =palmo i) < € (o7 + 37

with pa(m,m') = pa(m) + pa(m') and

Ag(m
n +

~—

p2(m) = ko log(M)log(n + M)

g.

.. A c
(i) B[ sup v ara(t) = ps(m )]y < 57
teB(m,m)
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with p3(m,m’) = p3(m) + p3(m’) and

(f) (f)
p3(m) = k3 <10g(M)A2?A(;n) /\10g3/2(M)A47(m)> :
jii) E 2 ) — )]y < ——
(iid) [tE s Vo malt) = pa(m, )]y < ———
with pa(m,m') = ps(m) + pa(m’) and
_(Tog(Ag(m))\* Ag(m)
pa(m) = K4 <log(m+1) n+ M
(iv) E[ sup 2 1y5(t) = pa(m, )]y < 57
teB(m,m)

The bounds partly rely on Lemma 2 proved in Section 8.2.

8.4. Proof of Lemma 3. Proof of (i). Let m* = mAm. We have, by using (a) of Lemma
2, for t € B(m,m),

2 Tm*
s/ Fr () — £ (0)]21S () 2du

—mm*

panaOF = | [0 @ - st

™m Px —*UQL/*\U—*QUZU
< 7 1) = P e (R - (02

Let us define

D (u) = {u, |fy() = f5w)] < 4y/log(n + M)/vn + M}

and
Qo(u) = {u, |(f2)*(u) = (f2)*(w)] < 4/log(M)/V'M}.
We have
log(M)log(n + M) /”m* 1
sup  |va ()] < ——du
ety 420 M e (V)
mm’ £* * M Ry, *
[ 1) = @ e (TR — (@)L, sy dee
—mm* (fz—:) (u)
Now, by using Bernstein Inequality, there exists a constant C such that
C
< ¥ < —.
Bl )] < g e @04 BlO()] < 4

Moreover, Rosenthal Inequality yields

EVA(If () — f3(w)[®] < C/(n+ M), and EYA[((F2)2(w) — (f2)*(w)¥] < C/M.
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Therefore

E sup |Vn,M,2(t)|2 o log(M) log(n + M) Az(m*)
teB(m,m) n+ M I

wm(n, M) R —
< / BV (u) — f3-(0) Py B ) — ()2 ()

—mm(n,M) :2 (u)
{PV2(021 ()] + PV2[(2(w)] | du

since m(n, M) is chosen to ensure that Ay(m(n,M))/(n + M) < C. This ends the proof
of (i) of Lemma 3. [

Proof of (7).
We have vy, p3(t) = [ t*(—u) f*(u) f(u)S(u)du and therefore, for t € B(m,m),

nana®F < [ 17 @2 w)S(0) Pdu
With the same method as in (2) but using only Q9 (u), we can obtain, by usmg (b) of Lemma
2, the part log(M)AY) (m)/v/M, and by using (c), the part (log(M))32AY) (m)/M. O

Proof of (iii). We have

v alt) = [ 0 (F ) = F0) 1o L aear 2o

and thus

[ ma(®)]? < /ﬂm* () - f;(u)lzdu =  sup

—m* |f5>I< (u)|2 teB(m,m)

2
/t*(_u)m 01,

= swp |t
teB(m,m)

which implies the result. [
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Proof of (iv). We have, for t € B(m,m),

2 mm*
< [ P G ey

m*

pansOF = | [0 W1 50

m* i} )
= /7r @Y ey <copvar L G <ar-12 94

m

o’ * 2
Jr/7r I g2 v Gz a2 8

2 @B Y (A R,
(m e 2P ) A(M L. d)

Tm* . 9
+/7r |f (u)| 1‘(fE*)Q(u)f(fE*)Q(u)|>(f5*)2(u)/2du

< 4 2\/M A 4M
e ([P = (2] P W) = (PP
wf 1w ( EET () )d

and using the set y(u) again yields the result.C]
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