
PENALIZED CONTRAST ESTIMATOR FOR DENSITY DECONVOLUTION

Abstract. We consider the problem of estimating the density g of independent and identically
distributed variables Xi, from a sample Z1, . . . , Zn where Zi = Xi + σεi, i = 1, . . . , n, ε is a
noise independent of X, with σε having known distribution. We present a model selection
procedure allowing to construct an adaptive estimator of g and to find non-asymptotic bounds
for its L2(R)-risk. In all cases where lower bounds are available in density deconvolution,
our estimator is proved to reach automatically the optimal rates, except in one case where
a negligible logarithmic loss occurs, due to the adaptation. Furthermore we show that these
results still hold when the Xi’s and the εi’s are both absolutely regular random variables. A
short simulation study gives an illustration of the good practical performances of the method.
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Résumé

Considérons le problème de déconvolution c’est-à-dire de l’estimation de la densité de variables aléatoires
identiquement distribuées Xi, à partir de l’observation de Zi où Zi = Xi+σεi, pour i = 1, . . . , n et où
les erreurs σεi sont des variables aléatoires indépendantes des Xi, de densité connue. Par une procédure
de sélection de modèles qui permet d’obtenir des bornes de risque non asymptotiques, nous constru-
isons un estimateur adaptatif de la densité des Xi. Ces bornes de risque fournissent un compromis
automatique entre un terme de biais et un terme de pénalité qui a pour ordre de grandeur, l’ordre de
grandeur de la variance, éventuellement à un facteur logarithmique négligeable près. Par conséquent
notre estimateur atteint de façon automatique la vitesse minimax dans la plupart des cas, que les
erreurs ou la densité à estimer soient peu ou très régulières. Ces résultats sont valables aussi bien dans
le cas où les variables (Xi, εi) sont indépendantes que dans le cas où elles sont β-mélangeantes. Une
étude par simulation illustre les bonnes performances pratiques de la méthode.

Keywords and phrases. Adaptive estimation. Density deconvolution. Model selection.
Penalized contrast. Projection Estimator. Absolutely regular sequence.

1. Introduction

1.1. The problem. In this paper, we consider the problem of the nonparametric estimation
of the density g, of independent and identically distributed (i.i.d.) variables Xi, from a sample
Z1, . . . , Zn in the model

Zi = Xi + σεi, i = 1, . . . , n,(1)

where the Xi’s and εi’s are independent sequences, the εi’s are i.i.d. centered random variables
with common density fε and noise level σ. Due to the independence between the Xi’s and
the εi’s, the observations Z1, · · · , Zn have common density h(z) = σ−1g ∗ fε(./σ)(z), where ∗
denotes the convolution product. The function σ−1fε(./σ) is often called the convolution kernel
and is here completely known. We refer to Matias (2002) or Butucea and Matias (2003) for
results about density deconvolution when σ is unknown in such a model.

The aim of our paper is to construct an adaptive and optimal density deconvolution estimator
in model (1). More precisely we aim at estimating the density g on L2(R) without any prior
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knowledge on it, that is without the knowledge of its smoothness parameters and even without
the knowledge of what type is its smoothness. We want our estimator to be adaptive in a
minimax sense, simultaneously on various classes of functions.

We focus here on the independent case and we briefly mention that our results extend when
the Xi’s and the εi’s are both absolutely regular random variables.

1.2. Previous known results.

1.2.1. Previous upper and lower bounds for density deconvolution. The problem of density de-
convolution has been widely studied, especially using kernel estimators. It is well known that
since g∗(.) = h∗(.)/f∗ε (σ.), (u∗ denoting the Fourier transform of u), two factors determine the
estimation accuracy in the standard density deconvolution problem : first the smoothness of
the density to be estimated, usually described by

(2)

∫ +∞

−∞
|g∗(x)|2(x2 + 1)s exp{2b|x|r}dx ≤ C1,

and second the smoothness of the error density which is described by the rate of decay of the
Fourier transform of fε

κ0(x
2 + 1)−γ/2 exp{−µ|x|δ} ≤ |f ∗ε (x)| ≤ κ′0(x

2 + 1)−γ/2 exp{−µ|x|δ},(3)

with polynomial decay for ordinary smooth error density and exponential decay for super
smooth error density.

Most previous results concern cases where the density g to be estimated belongs to smooth-
ness classes, such as Hölder or Sobolev classes (r = 0 in (2)) and ordinary or super smooth error
density. One can cite among others Carroll and Hall (1988), Devroye (1989), Fan (1991a, b),
Liu and Taylor (1989), Masry (1991, 1993a, b), Stefansky (1990), Stefansky and Carroll (1990),
Taylor and Zhang (1990) and Zhang (1990), Koo (1999), Cator (2001). Most of them propose
kernel estimators which are studied from many points of view: pointwise and global asymptotic
optimality, asymptotic normality, case of dependent εi’s... One consequence of those results is
that the smoother the error density, the slower the optimal rate of convergence, with logarith-
mic rates of convergence when g belongs to a Sobolev or a Hölder class in presence of super
smooth error density (δ > 0 in (3)).

Much faster rates of convergence can be obtained if the density g to be estimated is much
smoother, that is if r > 0 in (2). To our knowledge, the first paper dealing with the case of
super smooth g is the paper by Pensky and Vidakovic (1999) who propose wavelet estimators.

When r > 0 and the errors are ordinary smooth (δ = 0), Butucea (2004) proposes a kernel
type estimator which is optimal in sharp asymptotical minimax sense under the pointwise and
the L2-risks. In the same context, Butucea and Tsybakov (2004) deal with super smooth errors,
and propose a kernel type estimator which is sharp asymptotical minimax, for the pointwise
and L2(R)-risks, when 0 < r < δ and s = 0: in this case, the variance of the estimator turns out
to be asymptotically negligible with respect to its squared bias. One consequence of Butucea
and Tsybakov’s (2004) paper is that Pensky and Vidakovic’s (1999) estimators are not optimal
in the minimax sense, when both r and δ are positive.

In the same context, Meister (2004) studies the effect of missspecifying the error density on
the asymptotic behavior of the risk.
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In the previously mentioned papers, except in Pensky and Vidakovic (1999) and marginally
in Butucea and Tsybakov (2004) who also consider adaptive estimation, the smoothness pa-
rameters of the unknown density are supposed to be known, and thus those papers deal with
non adaptive estimation.

1.2.2. Previous known results on adaptive deconvolution. Let us now give more details on results
about adaptive estimation. We do not develop the results concerning slightly different models
such as circular deconvolution (Efromovich (1997)) or inverse problems in Gaussian white noise
model (Goldenshluger (1999), Johnstone (1999), Cavalier and Tsybakov (2002)). Those results
usually deal with estimation on compact sets and not on R.

We focus on the description of results on adaptive density deconvolution on R, that is in the
same context as ours.

Following the ideas associated with wavelet methods (see Donoho and Johnstone (1995),
Donoho et al. (1996)), Pensky and Vidakovic (1999) study a wavelet thresholding method
to build an adaptive density deconvolution estimator, in the sense that its construction does
not depend on unknown smoothness parameters. They construct linear and nonlinear wavelet
estimators based on Meyer-type wavelets. Their estimators are asymptotically optimal and
adaptive if g belongs to some Sobolev space and a priori adjusted when g is supersmooth. The
same procedure is used by Pensky (2002), but with wavelets having bounded supports in order
to better perform the estimation of very irregular functions g.

Fan and Koo (2002), use both wavelet with bounded supports or Meyer-type wavelets, to
estimate densities belonging to Besov spaces Bσ,p,q with p < 2 and establish lower bounds for
the density deconvolution in both cases, ordinary and super-smooth errors. In particular, they
show that no linear deconvolution estimator can achieve the optimal rates of convergence, but
that, when the errors are ordinary smooth, a non linear thresholding estimator is asymptotically
minimax within logarithmic term, which is generally unavoidable in case of Bσ,p,q with p < 2.
Furthermore, when the errors are ordinary smooth, they construct an adaptive estimator which
is minimax within a logarithmic factor.

Using an automatic empirical bandwidth selection procedure, Hesse (1999) propose a data-
driven deconvolution estimator, when the errors are ordinary smooth (γ = 2, and δ = 0 in (3)).
The resulting estimator is asymptotically optimal for the integrated squared risk.

More recently, in the specific case 0 < r < δ/2, and s = 0 in (2) and (3), Butucea and
Tsybakov (2004) propose a sharp adaptive kernel type estimator of g for pointwise and L2(R)-
risks. Nevertheless, it requires to know that 0 < r < δ/2.

1.3. Estimator and new results. Our estimator is constructed by model selection, and more
precisely it is a penalized contrast estimator (see Birgé and Massart (1997), Barron et al.
(1999)). We show that this penalized contrast estimator g̃ is adaptive and optimal or nearly
optimal. More precisely, we establish a non-asymptotic bound for its integrated quadratic risk
that ensures an automatic trade-off between a bias term and a penalty term, only depending
on the observations, which shows that the estimator g̃ is adaptive in a minimax sense for the
L2(R)-risk simultaneously on Sobolev classes (r = 0), on classes of analytical densities (r = 1),
on some classes of super smooth densities (if s = 0 and r > 0 and probably if r > 0, s 6= 0)
and on classes of entire functions (having Fourier transform compactly supported), when the
errors are either ordinary smooth or super smooth, provided that δ ≤ 1/3 or that 0 < r < δ.
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When r ≥ δ > 0 and δ ≤ 1/3, then g̃ automatically adjusts and achieves the best rate obtained
by the collection of non penalized estimators. If r ≥ δ > 1/3, then g̃ automatically adjusts
and achieves the best rate obtained by the collection of minimum contrast estimators, within a
logarithmic factor. Nevertheless, it always significantly improves the rates given by the adaptive
estimator built in Pensky and Vidakovic (1999), when both the density and the errors are super
smooth.

The paper is organized as follows. In Section 2, we describe the problem, the assumptions,

the construction of the minimum contrast estimator ĝ
(n)
m and of the penalized minimum contrast

estimator g̃. In Section 3 we give upper bounds for the L2(R)-risk of the minimum contrast

estimator ĝ
(n)
m , when the smoothness of g is known, and study the optimality of the resulting

rates. In Section 4, we give upper bounds of the L2(R)-risk of the penalized minimum contrast
estimator g̃ when no prior knowledge on g is used, starting with the independent framework
and then giving an extension to some β-mixing context. We provide in Section 5 a simulation
study that illustrates the good practical results that can be obtained with this method and
that compare with some other simulation results described in Delaigle and Gijbels (2004). All
the proofs are gathered in Section 6.

2. Construction of the estimators

For u and v two square integrable functions, we denote by u∗ the Fourier transform of u,
u∗(x) =

∫
eitxu(t)dt and by u∗v the convolution product, u∗v(x) =

∫
u(t)v(x− t)dt. Moreover

we denote by ‖ u ‖=
(∫
|u|2(x)dx

)1/2
, and by 〈s, t〉 =

∫
s(x)t(x)dx.

2.1. Model and Assumptions. Consider Model (1) under the following assumptions.

The Xi’s and the εi’s are identically distributed random variables.(AX
1 )

The sequences (Xi)i∈N and (εi)i∈N are independent from each other.(AX,ε
2 )

The sequences (εi)i∈N and (Xi)i∈N are both sequences of independent random(AX,ε
3 )

variables .

The density fε belongs to L2(R) and is such that for all x ∈ R, f∗ε (x) 6= 0.(Aε
4)

Under (AX
1 ) and (AX,ε

3 ), the εi’s and the Xi’s are both independent and identically distributed
random variables and therefore so is the sequence of the Zi’s.

Under Assumption (AX,ε
2 ) the (unknown density) h of the Zi’s equals σ−1g ∗ fε(./σ), and

h∗ = g∗(.)f ∗ε (σ.), that is g∗(.) = h∗(.)/f∗ε (σ.). It is well known that the rate of convergence for
estimating g is strongly related to the rate of decrease of the Fourier Transform of the errors
density f ∗ε (x) as x goes to infinity. More precisely, the smoother fε, the slower is the rate of
convergence for estimating g. Indeed, if fε is very smooth then so is h, the density of the
observations and thus it is difficult to recover g. Thie smoothness of fε is described by the
following assumption.

There exist nonnegative real numbers γ, µ, and δ such that(Aε
5)

κ0(x
2 + 1)−γ/2 exp{−µ|x|δ} ≤ |f ∗ε (x)| ≤ κ′0(x

2 + 1)−γ/2 exp{−µ|x|δ}.
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Note that only the left-hand side of (Aε
5) is required for upper bounds whereas the right-hand

side is useful when we consider lower bounds and optimality problems of our estimators.
Assumptions (Aε

4) and (Aε
5) are usual for the construction of an estimator in density decon-

volution. In particular Assumption (Aε
4) ensures that g is identifiable. Let us now comment

Assumption (Aε
5). When δ = 0 in (Aε

5), it amounts to consider what is usually called “ordinary
smooth” errors, and when µ > 0 and δ > 0, the error density is usually called “super smooth”.
Indeed densities satisfying (Aε

5) with δ > 0 and µ > 0 are infinitely differentiable. The stan-
dard examples for super smooth densities are the following : Gaussian or Cauchy distributions
are super smooth of order γ = 0, δ = 2 and γ = 0, δ = 1 respectively. For ordinary smooth
densities, one can cite for instance the double exponential (also called Laplace) distribution
with δ = 0 = µ and γ = 2. Although densities with δ > 2 exist, they are difficult to express
in a closed form. Nevertheless, our results hold for such densities. Furthermore, when δ = 0,
(Aε

4) and (Aε
5) require that γ > 1/2.

By convention, we set µ = 0 when δ = 0 and we assume that µ > 0 when δ > 0. In the same
way, if σ = 0, the Xi’s are directly observed without noise and we set µ = γ = δ = 0 in this
case.

Although, slower rates of convergence for estimating g are obtained for smoother error density,
those rates can be improved by some additional regularity conditions on g. These regularity
conditions are described as follows.

There exists some positive real numbers s, r, b such that the density(RX
1 )

g belongs to Ss,r,b(C1) =

{
f density :

∫ +∞

−∞
|f ∗(x)|2(x2 + 1)s exp{2b|x|r}dx ≤ C1

}
.

There exists some positive real numbers C2 and d such that the density(RX
2 )

g belongs to Sd(C2) =
{
f density such that for all x ∈ R, |f ∗(x)| ≤ C21I[−d,d](x)

}
.

The smoothness classes described by (RX
1 ) are classically considered both in deconvolution and

in “direct” density estimation, since they can be roughly viewed as extensions of Sobolev classes.
Note that densities satisfying (RX

1 ) with r > 0, b > 0 are infinitely many times differentiable.
Moreover, such densities admit analytic continuation on a finite width strip when r = 1 and on
the whole complex plane if r = 2. The densities satisfying (RX

2 ), often called entire functions,
admit analytic continuation in the whole complex plane (see Ibragimov and Hasminskii (1983)).

Subsequently, the density g is supposed to satisfy the following assumption.

The density g belongs to L2(R) and there exists some positive real M2(AX
6 )

such that g belongs to

{
f density such that

∫
x2f 2(x)dx ≤M2 <∞

}
.

Assumption (AX
6 ) which is due to the construction of the estimator, is quite unusual in density

estimation. Nevertheless it already appears in density deconvolution in a slightly different way
in Pensky and Vidakovic (1999) who assume, instead of (AX

6 ) that supx∈R |x|g(x) < ∞. It is
important to note that Assumption (AX

6 ) is very unrestrictive and can be refined. The main
drawback of this condition is that it is not stable by translation, but most practical problems
may be avoided by empirical centering of the data. Some improvements of Assumption (AX

6 )
may be searched but are omitted for the sake of simplicity. All densities having tails of order
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|x|−(m+1) as x tends to infinity satisfy (AX
6 ) only if m > 1/2. One can cite for instance the

Cauchy distribution or all stable distributions with exponent r > 1/2 (see Devroye (1986)). In
particular, the Levy distribution, with exponent r = 1/2 does not satisfies (AX

6 ).

2.2. The projection spaces and the estimators. Consider ϕ(x) = sin(πx)/(πx), and let
ϕm,j(x) =

√
Lmϕ(Lmx− j), where Lm = m and m ∈Mn = {1, · · · ,mn}. When Lm = 2m, the

basis (ϕm,j) is known as the Shannon basis. It is well known (see for instance Meyer (1990),
p.22) that {ϕm,j}j∈Z is an orthonormal basis of the space of square integrable functions having
a Fourier transform with compact support included into [−πLm, πLm]. We denote by Sm such
a space and by (Sm)m∈Mn , with Mn = {1, . . . ,mn}, this collection of linear spaces that is
Sm = Vect{ϕ

m,j
, j ∈ Z} = {f ∈ L2(R), with supp(f ∗) included into [−Lmπ, Lmπ]}. Denoting

by gm the orthogonal projection of g on Sm, gm is given by

gm =
∑
j∈Z

am,jϕm,j with am,j =< g, ϕm,j > .

Since the projection gm of g on Sm, involves infinite sums, we may prefer to consider the

truncated spaces S
(n)
m defined as

S(n)
m = Vect {ϕm,j, |j| ≤ Kn} where Kn is an integer.

It is easy to see that, {ϕm,j}|j|≤Kn is an orthonormal basis of S
(n)
m and the orthogonal projection

g
(n)
m of g on S

(n)
m is given by g

(n)
m =

∑
|j|≤Kn

am,jϕm,j with am,j =< g, ϕm,j >.
Associate this collection of models to the following contrast function, for t belonging to some

S
(n)
m of the collection (S

(n)
m )m∈Mn

γn(t) = n−1

n∑
i=1

[
‖t‖2 − 2u∗t (Zi)

]
, with ut(x) =

1

2π

(
t∗(−x)
f ∗ε (σx)

)
.

By using Parseval and inverse Fourier formulas we get that

E [u∗t (Zi)] =
1

2π
〈
(
t∗(−.)
f ∗ε (σ.)

)∗

, g ∗ fε〉 =
1

2π
〈 t∗(.)

f ∗ε (−σ.)
, g∗f ∗ε (σ.)〉 =

1

2π
〈t∗, g∗〉 = 〈t, g〉.

It follows that E(γn(t)) = ‖t− g‖2 − ‖g‖2, which shows that γn(t) suits well for the estimation
of g. This quantity u∗t also appears in a slightly different way in kernel deconvolution. The
problem of its practical calculation is usual and can be solved by using algorithms like Fast
Fourier Transform.

2.3. Construction of the minimum contrast estimators. Associated to the collection of
models, the collection of non penalized estimators ĝ

(n)
m of g is defined by

(4) ĝ(n)
m = arg min

t∈S(n)
m

γn(t).

By using that, t 7→ ut is linear, and that (ϕm,j)|j|≤Kn is an orthonormal basis of S
(n)
m , we have

ĝ
(n)
m =

∑
|j|≤Kn

âm,jϕm,j where âm,j = n−1
∑n

i=1 u
∗
ϕm,j

(Zi) and E(âm,j) =< g, ϕm,j >= am,j.
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2.4. Construction of the penalized contrast estimator. We aim at finding the best model
m̂ inMn, based on the data and not on prior information on g, such that the risk of the resulting
estimator is almost as good as the risk of the best estimator in the family. The model selection
is performed in an automatic way, using the following penalized criteria

(5) g̃ = ĝ
(n)
m̂ with m̂ = arg min

m∈Mn

[
γn(ĝ

(n)
m ) + pen(m)

]
,

where the penalty function pen must be chosen by using only the observations and the knowl-
edge of f ∗ε (σ.).

3. Rates of convergence of the minimum contrast estimators ĝ
(n)
m

In order to motivate our approach let us first give the rate of convergence of one estimator

ĝ
(n)
m , when the smoothness of g is known.

Proposition 3.1. Under Assumptions (AX
1 )-(Aε

4) and (AX
6 ), denote by ∆1(m) the quantity

∆1(m) = Lm

∫ π

−π
|f ∗ε (Lmxσ)|−2 dx/(2π).(6)

Then

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 + L2

m(M2 + 1)/Kn + 2∆1(m)/n.(7)

First the variance term ∆1(m)/n, defined in (6) depends on the rate of decay of the Fourier
transform of fε, with larger variance for smoother fε. By applying Lemma 6.3 (See Section
6.4), under (Aε

5), we get the bound

∆1(m) ≤ 2λ1Γ(m) where Γ(m) = L(2γ+1−δ)
m exp

{
2µσδπδLδm

}
,(8)

where λ1 = λ1(γ, κ0, µ, σ, δ) is given by

λ1(γ, κ0, µ, σ, δ) =
(σ2π2 + 1)γ

πδκ2
0R(µ, δ, σ)

with R(µ, δ, σ) =

 1 if δ = 0
2µδσδ if 0 < δ ≤ 1
2µσδ if δ > 1.

(9)

According to (8) we only consider Lm = m ≤ mn such that Γ(mn)/n is bounded. Consequently,
Mn = {1, · · · ,mn} with

mn ≤


π−1n1/(2γ+1) if δ = 0

π−1

[
ln(n)

2µσδ
+

2γ + 1− δ

2δµσδ
ln

(
ln(n)

2µσδ

)]1/δ

if δ > 0.
(10)

Second, if Kn ≥ n, then we have

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 + 2λ1Γ(m)/n+ L2

m(M2 + 1)/n(11)

≤ ‖g − gm‖2 + (2λ1 +M2)Γ(m)/n.

Remark 3.1. We point out that the {ϕm,j} are R-supported (and not compactly supported)
so that we obtain an estimation on the whole line and not only on a compact set as usual
for projection estimators. This is a great advantage of this basis. Nevertheless it induces the
residual term L2

m(M2 +1)/Kn, due to the truncation |j| ≤ Kn. But the most important thing is
that the choice of Kn does not influence the other terms. Consequently, it is easy to check that
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we can find a relevant choice of Kn (Kn ≥ n under (AX
6 )), that makes this last supplementary

term unconditionally negligible with respect to the others. The choice of large Kn does not
change the efficiency of our estimator from a statistical point of view but only changes some
practical computations.

Finally, the bias term ‖g − gm‖2 depends on the smoothness of the function g. It has the
expected order for classical smoothness classes since it is given by the distance between g and
the classes of entire functions having Fourier transform compactly supported on [−πLm, πLm]
(see Ibragimov and Hasminskii (1983)). Indeed, by using the fact that gm is the orthogo-
nal projection of g on Sm, closed subspace of functions f ∈ L2(R) such that supp(f ∗) ⊂
[−Lmπ, Lmπ], we get that g∗m = g∗1I[−Lmπ,Lmπ] and therefore ‖g − gm‖2 = (2π)−1‖g∗ − g∗m‖2 =
(2π)−1

∫
|x|≥πLm

|g∗|2(x)dx.
Let us precise the order of this risk when fε satisfies Assumption (Aε

5) and g satisfies As-
sumption (RX

1 ) or (RX
2 ).

3.1. Order of the risk of ĝ
(n)
m under (RX

2 ). Consider that g satisfies (RX
2 ). Therefore by

choosing πLm = d, and Kn ≥ n, the bias term ‖ g − gm ‖2= 0, (11) becomes

E(‖g − ĝ(n)
m ‖2) ≤ 2λ1d

(2γ+1−δ) exp
{
2µσδπδdδ

}
/n+ d2(M2 + 1)/(π2n),(12)

and the parametric rate of convergence for estimating g is achieved. We refer to Ibragimov
and Hasminskii (1983) for similar result for the “direct” estimation of a density g using the
observations X1, · · · , Xn of common density g satisfying Assumption (RX

2 ).

3.2. Order of the risk of ĝ
(n)
m under (RX

1 ). Consider now that g satisfies (RX
1 ). This implies

immediately that the squared bias term is less than

‖g − gm‖2 ≤ [C1/(2π)](L2
mπ

2 + 1)−s exp{−2bπrLrm}.(13)

Consequently, under (AX
6 ) with Kn ≥ n, and according to (11), the rate of convergence of

ĝ
(n)
m is obtained by selecting the space S

(n)
m that minimizes

C1(2π)−1(L2
mπ

2 + 1)−s exp{−2bπrLrm}+ 2λ1L
(2γ+1−δ)
m exp

{
2µσδπδLδm

}
/n+ L2

m(M2 + 1)/n.

Those optimal choices of Lm with the corresponding rates of convergence are given in Table 1,
for different types of smoothness of the unknown density g and different types of known density
errors fε.

3.3. About the optimality of the rates.
3.3.1. The standard cases.
• The case δ = 0, r = 0.

If g belongs to Ss,r,b(A) with r = 0 and fε satisfies Assumption (Aε
5) with δ = 0, then ∆1(m)

has the order L1+2γ
m /n. On the other hand, ‖g−gm‖2 has the order L−2s

m , which leads to choose
the space Sm̆ with Lm̆ of order n1/(2s+2γ+1). In this case the bias and the variance term have
the same order, and the estimator gm̆ reaches the rate n−2s/(2s+2γ+1), which is known to be
the optimal rate (see Fan (1991a)). Nevertheless, the Lm̆ which realizes the best compromise,
depends on s the smoothness parameter of the unknown density g.
• The case δ > 0, r = 0.

In this case, the rate of convergence, given by the order of the bias, is very slow, of order
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fε
δ = 0 δ > 0

ordinary smooth supersmooth

g

r = 0
Sobolev(s)

πLm̆ = O(n1/(2s+2γ+1))
rate = O(n−2s/(2s+2γ+1))
optimal rate

πLm̆ = [ln(n)/(2µσδ + 1)]1/δ

rate = O((ln(n))−2s/δ)
optimal rate

r > 0
C∞

πLm̆ = [ln(n)/2b]1/r

rate = O

(
ln(n)(2γ+1)/r

n

)
optimal rate

Lm̆ implicit solution of

Lm̆
2s+2γ+1−r exp{2µσδ(πL̆m)δ + 2bπrLm̆

r}
= O(n)

optimal rate if r < δ and s = 0

Table 1. Optimal choice of the length (Lm̆) and resulting (optimal) rates under
Assumptions (Aε

5) and (RX
1 ).

(ln(n))−2s/δ, known to be the minimax rate of convergence (see Fan (1991a)). In this case,
the optimal Lm̆ does not depend on the density g. Therefore adaptation with optimal rate of
convergence is simple since it can be achieved by a direct tuning of the smoothing parameters

πLm and ĝ
(n)
m is thus adaptive. It is important to note that this remark is valid provided that

we know that r, which is related to the unknown density g, equals 0.
• The case δ = 0, r > 0.

In this case, the rate of order ln(n)(2γ+1)/r/n is given by the variance term, that is mainly
explained by behavior of the noise. This case has been intensively studied by Butucea (2004)
who gives the optimal rate with exact constant for the pointwise and the L2-risks, by using

deconvolution kernel estimator with the kernel sin(x)/x. It follows that ĝ
(n)
m achieves the rate

proved to be optimal by Butucea (2004). In this case the πLm̆ that realizes the best compromise
clearly depends on the smoothness parameters of g.

3.3.2. New results in a non standard case. The case δ > 0, r > 0 requires a specific discus-
sion. To our knowledge, the first paper dealing with such a case is the paper by Pensky and
Vidakovic (1999) who propose estimators based on wavelets and study the problem of adaptive
estimation. Their estimators achieve optimal rates of convergence in the three previous cases.
But when r > 0, δ > 0, the rate of convergence of their estimator is not optimal as it is shown in

Butucea and Tsybakov (2004), who provide sharp minimax results in this case. Since ĝ
(n)
m has

the same bias and the same variance as the kernel estimator of Butucea and Tsybakov (2004),

we conclude that the rate of convergence of ĝ
(n)
m is also the minimax rate of convergence in the

case 0 < r < δ and s = 0.
An important remark is that when r > 0 and δ > 0 the optimal parameter Lm̆ which has

not an explicit form for general r > 0 and δ > 0, is the solution of the following equation

nO(1) = L2s+2γ+1−r
m̆ exp{2µσδπδLδm̆ + 2bπrLrm̆}.(14)
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This non explicit form of the optimal smoothing parameter appears in Butucea and Tsy-
bakov (2004) when 0 < r < δ and s = 0 who show that if we denote by πLm̆ the solution
of 2µσδ(πLm̆)δ + 2b(πLm̆)r = lnn − (ln lnn)2, then the minimax rate for the L2(R) is of or-
der exp{−2b(πLm̆)r}. Nevertheless, the order of this minimax rate can be precised by using
some additional information on the ratio r/δ. For instance, if r < δ, we have to distinguish if
r/δ ≤ 1/2 or 1/2 < r/δ ≤ 2/3, . . . . More precisely, if r/δ ≤ 1/2, the optimal choice Lm̆ is

πLm̆ =

[
ln(n)

2µσδ
− 2b

2µσδ

(
ln(n)

2µσδ

)r/δ

− c ln

(
ln(n)

2µσδ

)]1/δ

with c =
2γ − r + 2s+ 1

2µσδδ

and the rate is

ln(n)−2s/δ exp

[
−2b

(
ln(n)

2µσδ

)r/δ
]
.

If 1/2 < r/δ ≤ 2/3 the optimal choice of πLm̆ is

πLm̆ =

[
ln(n)

2µσδ
− 2b

2µσδ

(
ln(n)

2µσδ

)r/δ

+
r

δ

(2b)2

2µσδ

(
ln(n)

2µσδ

)2r/δ−1

− c ln

(
ln(n)

2µσδ

)]1/δ

with the same c as above, which gives the rate

ln(n)−2s/δ exp

[
−2b

(
ln(n)

2µσδ

)r/δ

+
(2b)2

2µσδ
r

δ

(
ln(n)

2µσδ

)2r/δ−1
]
.

If 2/3 < r/δ ≤ 3/4, we have another choice of πLm̆ with another rate. It follows that the rate
depends on the integer k such that r/δ belongs to the interval Ik =]k/(k + 1); (k + 1)/(k + 2)].

Consider finally the specific case r = δ which leads to the explicit solution

(15) πLm̆ =
{
[ln(n/ ln(n)a)/(2µσδ + 2b)]

}1/r
with a =

2s+ 2γ − r + 1

r

and to the rate [ln(n)]bn−b/(b+µσ
δ) with b = (−2sµσδ + (2γ − r + 1)b)/(r(µσδ + b)). The case

r = δ = 1 has also been studied by Tsybakov (2000) and Cavalier et al. (2003), in the case of
inverse problems with random noise. In this case and in both problems (density deconvolution
and inverse problem) the best compromise is explicit and so is the rate of convergence, of order

n−b/(b+µσ)[lnn](−2sµσ+2bγ)/(µσ+b). It is noteworthy that ĝ
(n)
m seems also to achieve the optimal

rate of convergence in this case.
As a conclusion, it is important to note that in this case, the solution of the best compromise

between the squared bias and the variance depends on the ration r/δ, with r related to the
strongly unknown density g.

All those facts give some strong motivation to consider adaptive estimation since the best
compromise depends on g or at least on the knowledge of the behavior of g with respect to
fε. We aim at finding some procedure that provides an estimator, that does not require prior
information on g, and whose risk automatically achieves the optimal rate.
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4. Adaptive estimation

We would like to find the penalty function pen, based on the observations, such that, for
Kn ≥ n

(16) E ‖ g̃ − g ‖2≤ inf
m∈Mn

[
‖ g − gm ‖2 +L2

m(M2 + 1)/n+ 2λ1Γ(m)/n
]
.

4.1. Main results : the independent case. First we give the result concerning the field on
which the oracle Inequality (16) is reached, up to some multiplicative constants.

Theorem 4.1. Under Assumptions (AX
1 )-(AX

6 ), consider the collection of estimators ĝ
(n)
m de-

fined by (4) with 1 ≤ m ≤ mn satisfying (10) and Kn ≥ n. Let Γ(m) = L2γ+1−δ
m exp{2µσδ(πLm)δ}

and λ1 = λ1(γ, κ0, µ, σ, δ) be defined by (9) and λ2 = λ2(γ, κ0, µ, σ, δ) be defined by

(17) λ2 =

{
λ1 if δ > 1,

λ
1/2
1 (1 + σ2π2)γ/2‖fε‖κ−1

0 (2π)−1/2 if δ ≤ 1.

1) If δ = 0 or 0 < δ < 1/3, let g̃ = ĝ
(n)
m̂ be defined by (5) with

pen(m) ≥ 6xλ1Γ(m)/n,

for some universal numerical constants ξ > 0 and x > 1.

2) If δ = 1/3, let g̃ = ĝm̂ be defined by (5) with

pen(m) ≥ 2x[λ1 + µσδπδλ2]Γ(m)/n

for some universal numerical constants ξ > 0 and x > 1.

Then in both cases, g̃ satisfies

(18) E(‖g − g̃‖2) ≤ Cx inf
m∈{1,...,mn}

[‖g − gm‖2 + pen(m) + L2
m(M2 + 1)/n] + xκxC

2
ξ /n,

where Cx = κ2
x ∨ 2κx, κx = (x+ 1)/(x− 1) and C2

ξ is a constant depending on fε and on ξ2.

Remark 4.1. The rates are easy to deduce from (18) as soon as g belongs to some smoothness

class, but the procedure will reach the rate without requiring the knowledge of any smoothness

parameter. For instance, if g satisfies (RX
1 ), ‖g − gm‖2 ≤ (C1/2π)L−2s

m exp{−2bπrLrm}, and,

associated to the value of pen(m), of order Γ(m)/n , the estimator g̃ automatically reaches the

best rate, without the knowledge of s, r nor b. This best rate is the minimax rate in all cases

here, except if r ≥ δ > 0 and δ ≤ 1/3 which is a case where no lower bounds are available.

If g satisfies (RX
2 ), then according to Section 3.1, ‖g − gm‖2 = 0 as soon as πLm ≥ d,

and therefore the parametric rate of convergence is still automatically achieved without the

knowledge of C2 and d and especially without requiring to know that (RX
2 ) is fulfilled.
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Next, we give a result concerning the case where a loss may occur and oracle Inequality (16)
is not completely reached. We explain hereafter why this loss is negligible with respect to the
rate.

Theorem 4.2. Under Assumptions (AX
1 )-(AX

6 ) with δ > 1/3, consider the collection of esti-

mators ĝ
(n)
m defined by (4) with Kn ≥ n and 1 ≤ m ≤ mn satisfying

mn ≤ π−1

[
ln(n)

2µσδ
+

2γ + (1/2 + δ/2) ∧ 1

2δµσδ
ln

(
ln(n)

2µσδ

)]1/δ

(19)

Let Γ(m) = L2γ+1−δ
m exp{2µσδ(πLm)δ}, λ1 = λ1(γ, κ0, µ, σ, δ) be defined by (9) and λ2 =

λ2(γ, κ0, µ, σ, δ) be defined by (17).

Let g̃ = ĝm̂ be defined by (5) with

pen(m) ≥ 2x[λ1 + µσδπδλ2]L
(3δ/2−1/2)∧δ
m Γ(m)/n

for some universal numerical constants ξ > 0 and x > 1. Then g̃ satisfies (18).

Remark 4.2. When δ > 1/3, the penalty function pen(m) has not exactly the order of the

variance Γ(m)/n, but a loss of order L
(3δ/2−1/2)∧δ
m occurs, that is of order L

(3δ−1)/2
m if 1/3 < δ ≤ 1

and of order Lδm if δ > 1. Consequently the rate remains optimal if the bias ‖g − gm‖2 is the

dominating term in the trade-off between ‖g − gm‖2 and pen(m). More precisely, when r = 0

and δ > 0, the optimal rate of order (ln(n))−2s/δ is given by the bias term, and the loss in the

penalty function does not change the rate achieved by the adaptive estimator g̃, which remains

thus optimal.

When 0 < r < δ, the rate is given by the bias term and thus this loss does not affect the

rate of convergence of g̃ either. Therefore, according to Butucea and Tsybakov (2004)’s lower

bounds, the rate of convergence of g̃ is still the optimal rate of convergence when s = 0 and

also probably if s 6= 0. In the specific case 0 < r < δ/2, Butucea and Tsybakov (2004) also

propose an adaptive estimator. But this requires to know that 0 < r < δ/2.

Let us now focus our discussion on the case where pen(m) can be the dominating term in the

trade-off between ‖g− gm‖2 and pen(m), that is when r ≥ δ > 1/3. In that case, there is a loss

of order L
(3δ/2−1/2)∧δ
m in the penalty function, compared to the variance term. Since it happens

in cases where the order of the optimal Lm is less than (lnn)1/δ, the loss in the rate is at most

of order lnn, when the rate is faster than logarithmic and consequently, the loss appears only

in cases where it can be seen as negligible.

For L2 estimation, such an unavoidable logarithmic loss in adaptation, has been pointed out

by Tsybakov (2000) and Cavalier et al. (2003) in case of inverse problems with random noise,
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when r = δ = 1, which shows that, in a slightly different model but with comparable rates

of convergence, a loss due to adaptivity of order ln(n)b/(µσ+b) is unavoidable, The main point

is that, according to (15), our estimator has its quadratic risk with the same logarithmic loss

when r = δ = 1. This logarithmic loss due to adaptation seems thus unavoidable at least in

one case.

Remark 4.3. Note that, when σ = 0, then by convention δ = µ = 0, λ1 = 1 and pen(m) =

2x(1+2ξ2)Lm/n which is the penalty function used in direct density estimation. More precisely,

if σ is very small, then the procedure selects the parameter Lm closed to the parameter selected

in usual density estimation.

In conclusion, according to Fan (1991a), Butucea (2004) and Butucea and Tsybakov (2004),
in all cases where lower bounds are available (r = δ = 0, r = 0 and δ > 0, r > 0 and δ = 0,
0 < r < δ and s = 0), g̃ achieves automatically the minimax rate of convergence. When
r = δ = 1, according to Tsybakov (2000) and Cavalier et al. (2003), g̃ seems to achieve the
optimal rate for adaptive estimators. In the last cases, no lower bounds are yet available. That
is, when r ≥ δ > 0 and δ ≤ 1/3, g̃ automatically adjusts and achieves the best rate of non
penalized estimators. And when r ≥ δ > 1/3, g̃ automatically adjusts and achieves the best
rate of non penalized estimators up to a logarithmic loss. Nevertheless, g̃ always improves the
rates given by the adaptive estimator built in Pensky and Vidakovic (1999), when both the
density and the errors are super smooth.

The adaptive procedure is all the more relevant that it provides an adaptive estimator which
achieves the optimal rate of convergence (possibly up to logarithmic factor) in all the cases,
without any prior information on the unknown density g, like the knowledge of its smoothness
parameters or the comparison of its smoothness with the error density smoothness. In particular
it solves almost optimally the problem when the best compromise would not be explicitly
computable (see Section 3.3.2).

4.2. Extension to the mixing case. We show in this section that all results stated in the
independent framework, still hold when Assumption (AX,ε

3 ) is replaced by the following as-
sumption

The εi’s and the Xi’s are both absolutely regular.(Aε,X
7 )

Note that, under (AX,ε
2 ) and (Aε,X

7 ), the sequence of the (Xi, εi)’s is also absolutely regular and
therefore so is the sequence of the Zi’s. We denote by (βk)k∈N the mixing coefficients of this
last sequence. Note that if βk(X) and βk(ε) denote the β-mixing coefficients of X and ε, then
βk ≤ βk(X) + βk(ε). We refer to Doukhan (1994), pp.4-5 for further references on absolutely
regular variables.

For the non penalized estimator ĝ
(n)
m , the bound (7) in Proposition 3.1 becomes the following.

Under Assumptions (AX
1 )-(AX,ε

2 ), (Aε
4), (AX

6 ) and (Aε,X
7 ), then we have

‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 + 8(

∑
k

βk)∆1(m)/n+ L2
m(M2 + 1)/Kn,(20)
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with ∆1(m) and Γ, defined by (6) and (8). As a consequence, if we assume moreover that
Assumptions (Aε

5) and (RX
1 ) hold then, if Kn ≥ n, Bound (11) becomes

(21)

E(‖g − ĝ(n)
m ‖2) ≤ A(σ2L2

mπ
2 + 1)−s exp{−2bπrLrm} + 8(

∑
k

βk)λ1Γ(m)/n + L2
m(M2 + 1)/n,

with λ1 defined by (9). Consequently Table 1 is still valid and the rates of convergence are the
same as the one in the independent framework, as soon as

∑
k βk < +∞. In the same way,

under Assumptions (Aε
5) and (RX

2 ), if Kn ≥ n, then as soon as πLm ≥ d, (12) becomes

E(‖g − ĝ(n)
m ‖2) ≤ 2(

∑
k

βk)λ1d
(2γ+1−δ) exp

{
2µσδπδdδ

}
/n+ d2(M2 + 1)/(π2n),

and the parametric rate of convergence for estimating g is achieved as soon as
∑

k βk < +∞.
The proof of (20) follows the lines of the proof of Proposition 3.1 combined with Viennet’s (1997)
variance inequality for mixing variables.

For the adaptation, as in the independent case, we would like to find a penalty function, only
depending on the observations, such that for Kn ≥ n,

E ‖ g̃ − g ‖2≤ inf
m∈Mn

[‖ g − gm ‖2 +L2
m(M2 + 1)/n+ 8(

∑
k

βk)λ1Γ(m)/n].(22)

In the β-mixing framework, Theorems 4.1 and 4.2 become the following.

Theorem 4.3. Under Assumptions (AX
1 )-(AX,ε

2 ), (Aε
4)-(A

ε,X
7 ), consider the collection of esti-

mators ĝ
(n)
m defined by (4) with Kn ≥ n. Assume moreover that the Zi’s are arithmetically β-

mixing, that is βk ≤ Ck−(1+θ), for all k ∈ N, with θ > 3. Let Γ(m) = L2γ+1−δ
m exp{2µσδ(πLm)δ},

and λ1(γ, κ0, µ, σ, δ) be defined by (9) and let λ?2 = λ?2(γ, κ0, µ, σ, δ) defined by

(23) λ?2 =

{
λ1(

∑
k∈N βk) if δ > 1

λ
1/2
1 (1 + σ2π2)γ/2‖h‖1/2

∞ (
∑

k∈N(1 + k)βk)
1/2κ−1

0 if δ ≤ 1
.

1) If 0 ≤ δ < 1/3, let g̃ = ĝm̂ be defined by (5) with mn satisfying (10) and

pen(m) = κλ1(
∑
k∈N

βk)Γ(m)/n,

for some universal numerical constant κ.

2) If δ = 1/3, let g̃ = ĝm̂ be defined by (5) with mn satisfying (10) and

pen(m) = κ[λ1 + µσδπδλ?2](
∑
k∈N

βk)Γ(m)/n

where κ is some universal numerical constant.

3) If δ > 1/3, let g̃ = ĝm̂ be defined by (5) with mn satisfying (19) and

pen(m) = κ[λ1 + µσδπδλ?2](
∑
k∈N

βk)L
(3δ/2−1/2)∧δ
m Γ(m)/n
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where κ is some universal numerical constant.

Then in all the cases, g̃ satisfies

(24) E(‖g − g̃‖2) ≤ K inf
m∈{1,...,mn}

[
‖g − gm‖2 + pen(m) + L2

m(M2 + 1)/n
]
+ c/n,

where K and c are constants depending on fε and on the mixing coefficients.

Remark 4.4. Obviously the two previous results hold in the geometrical β-mixing case, that

is when βk ≤ C exp{−θk}, for all k ∈ N with no condition on the rate θ > 0.

Remark 4.5. This result is mainly a result of robustness which shows that the procedure

still works when the variables are not independent but β-mixing. The main drawback of the

result in Theorem 4.3 is that the penalty contains two unknown coefficients, namely the norm

‖h‖∞ which depends on the function to be estimated and the term
∑

k βk, which depends on

the mixing coefficients. The first one may be replaced by an estimator, but no estimator has

been yet found to replace the second one. From a practical point of view, there exists some

methods for finding the constants in the penalties; those practical methods are known to give

good results and are often preferred to methods where the unknown term is replaced by an

estimator, in the cases where an estimator is available (which is not the case here). We refer

to Birgé and Rozenholc (2002) or Comte and Rozenholc (2001) for further details in other

contexts.

Remark 4.6. The previous results are analogous to the results obtained in the independent

case, up to the constants. Therefore the comments in Remarks 4.1-4.3 apply here.

5. Simulation study

The implementation is conducted by using Matlab software. The algorithm uses Fast Fourier
Transform in order to compute the empirical coefficients

âm,j =
1

n

n∑
k=1

u∗ϕm,j
(Zk) =

1

2πn

n∑
k=1

∫
e−ixZk

ϕ∗m,j(x)

f ∗ε (σx)
dx

rewritten as

âm,j =
1

n

n∑
k=1

1

2π
√
Lm

∫ πLm

−πLm

eix(Zk−j/Lm)

f ∗ε (σx)
dx =

√
Lm
2π

∫ π

−π
e−ijx

ψZ(Lmx)

f ∗ε (σLmx)
dx,

where we denote by ψZ(x) = n−1
∑n

k=1 e
ixZk , the empirical Fourier transform of h(.) = σ−1g ∗

fε(./σ)). The algorithm chooses automatically, m̂ or Lm̂ as the minimizer of γn(ĝ
(n)
m )+pen(Lm)

with
γn(ĝ

(n)
m ) = −

∑
|j|≤Kn

|âm,j|2 = −‖ĝ(n)
m ‖2,
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where Kn is chosen as Kn = 28.
The integrated squared error (ISE) ‖ĝ(n)

m − g‖2 is computed via a standard approximation
and discretization of the integral on an interval of R denoted by I and given in each case. Then

the MISE, E‖ĝ(n)
m −g‖2 is computed by the empirical mean of the approximated ISE ‖ĝ(n)

m −g‖2,
over 500 simulation samples.

We illustrate our method on some test densities (with different smoothness properties) and
in the two contexts of errors, ordinary and super smooth. We start by describing the errors
densities and the associated penalties.

5.1. Two settings for the errors and the associated penalties. We consider two types of
error density fε, the first one is ordinary smooth, with polynomial decay of the Fourier Trans-
form, and the second one is supersmooth, with an exponential decay of the Fourier transform f ∗ε .

• Case 1: Double exponential (or Laplace) ε’s. In this case, the density of ε is given
by

(25) fε(x) = e−
√

2|x|/
√

2, f ∗ε (x) = (1 + x2/2)−1.

This density corresponds to centered ε’s with variance 1, and satisfying (Aε
5) with γ = 2,

κ0 = 1/2 and µ = δ = 0.
According to Theorem 4.1, the penalty function has the variance order and is in fact evaluated
as

κ(Lm/n)

∫ π

−π
|ϕ∗(x)/f∗ε (σLmx)|2dx,

where, here, ∫ π

−π
|ϕ∗(x)/f∗ε (σLmx)|2dx = 2π

(
1 +

π2

3
σ2Lm

2 +
π4

20
σ4Lm

4

)
.

Several simulations lead to fix κ = 3 and to choose the following penalty

pen(Lm) =
6πLm
n

(
1 +

(ln(Lm))2.5

Lm
+
π2

3
σ2Lm

2 +
π4

20
σ4Lm

4

)
.

The additional term (ln(Lm))2.5/Lm is motivated by the works of Birgé and Rozenholc (2002)
and Comte and Rozenholc (2004). In our case also, this term improves the quality of the results
by making the penalty slightly heavier when Lm becomes large.

• Case 2: Gaussian ε’s. In that case, the errors density fε is given by

(26) fε(x) =
1√
2π
e−x

2/2, f ∗ε (x) = e−x
2/2.

This density satisfies (Aε
5) with γ = 0, κ0 = 1, δ = 2 and µ = 1/2.

In this case, according to Theorems 4.1 and 4.2, the penalty is slightly bigger than the variance
term, that is of order

κLm
(3δ/2−1/2)∧δ(Lm/n)

∫ π

−π
|ϕ∗(x)/f∗ε (σLmx)|2dx with δ = 2,
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and ∫ π

−π
|ϕ∗(x)/fε(σLmx)|2dx =

∫ π

−π
exp(σ2Lm

2x2)dx.

As in the previous case, several simulations lead to fix κ = 3 and to choose the following penalty

pen(Lm) =
6πLm
n

(
1 +

(ln(Lm))2.5

Lm
+
π2σ2Lm

2

3

) (∫ π

0

exp(σ2Lm
2x2)dx/π

)
,

where the integral is numerically computed. According to the theory (see Theorem 4.2), the loss
due to the adaptation is the term π2σ2Lm

2/3. As previously, the additional term (ln(Lm))2.5/Lm
is motivated by simulations and the works of Birgé and Rozenholc (2002) and Comte and
Rozenholc (2004).

Remark 5.1. Note that when σ = 0, both penalties are equal to (6πLm)(1+(ln(Lm))2.5/Lm)/n.

5.2. Test densities. First we consider densities having classical smoothness properties like
Hölderian smoothness with polynomial decay of their Fourier transform. Second we consider
densities having stronger smoothness properties, with exponential decay of the Fourier trans-
form.

Except in the case of the infinite variance density (Cauchy density), we consider density
functions g normalized with unit variance so that 1/σ2 represents the usual signal-to-noise
ratio (variance of the signal divided by the variance of the noise) and is denoted in the sequel
by s2n defined as s2n = 1/σ2.

The functions which are considered are listed below, associated with the interval I used to
evaluate the ISE:

(a) Chi2(3)-type distribution, X = 1/
√

6U , gX(x) =
√

6g(
√

6x), U ∼ χ2(3) where we know
that U ∼ Γ(3

2
, 1

2
),

gU(x) =
1

25/2Γ(3/2)
e−|x|/2|x|1/2, g∗U(x) =

1

(1− 2ix)3/2
,

and I = [−1, 16].
(b) Laplace distribution, as given in (25), I = [−5, 5].
(c) Mixed Gamma distribution, X = 1/

√
5.48W with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1),

gW (x) = [0.4 ∗ x
4e−x

Γ(5)
+ 0.6

x12e−x

Γ(13)
]1IR+(x), g∗W (x) =

0.4

(1− ix)5
+

0.6

(1− ix)13
,

and I = [−1.5, 26].
(d) Cauchy distribution, g(x) = (1/π)(1/(1 + x2)), g∗(x) = e−|x|, I = [−10, 10].
(e) Gaussian distribution, X ∼ N (0, σ2) with σ = 1, I = [−4, 4].
(f) Mixed Gaussian distribution: X ∼

√
2V with V ∼ 0.5N (−3, 1) + 0.5N (2, 1)

gV (x) = 0.5
1√
2π

(e−(x+3)2/2 + e−(x−2)2/2)), g∗V (x) = 0.5(e−3ix + e2ix)e−x
2/2,

and I = [−8, 7].

Densities (a), (b), (c) correspond to cases with r = 0 (Hölderian smoothness properties) with
different values of s, whereas densities (d), (e), (f) correspond to cases with r > 0 (infinitely
many times differentiable) with different values for the power r.



18 PENALIZED CONTRAST ESTIMATOR FOR DENSITY DECONVOLUTION

5.3. Results. Figure 1 illustrates the choice performed by the algorithm, when selecting one
dimension among several possibilities.
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Figure 1. Plots of the estimator of the true density and of its projection, when

estimating the Chi2 density - Laplace errors - n = 750, s2n=10, for different

values of L. The algorithm chooses L = 2, δγ + δpen is the difference between

the penalized contrast for the considered L and for L = 1.

Table 2 presents the MISE for the two types of errors, the different tested densities, different
s2n and different sample sizes. The greatest values of s2n amount to consider that there is
essentially no noise. In those cases, the results would have to be compared with results coming
from a direct density estimation method.

The main comment on Table 2 concerns the importance of σ. Clearly the MISE are smaller
when there is less noise (σ small, s2n large). Moreover, it appears that the results are globally
very good.

We can in particular compare the performances of our adaptive estimator with the perfor-
mances of the deconvolution kernel as presented in Delaigle and Gijbels (2004). This comparison
is done for densities (a), (c), (e) and (f) which correspond to the densities #2, #6, #1 and
#3 respectively, in Delaigle and Gijbels (2004). They give median ISE obtained with kernel
estimators by using four different methods of bandwidth selection. The comparison is given in
Table 3 between the median ISE computed for 500 samples generated with the same interval
length and signal to noise ratio as Delaigle and Gijbels (2004). The ISE are computed on the
same intervals I as them. We also give our corresponding means since we believe that they are

more meaningful than medians since the MISE is E‖ĝ(n)
m −g‖2, but we also give our medians. It

is noteworthy that it may happen that medians seems much better because means can become
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×10−2 n = 100 n = 250 n = 500 n = 1000 n = 2500
g s2n Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

C
hi

2(
3)

2 2.02 4.15 1.39 2.37 1.18 1.72 1.06 1.36 1.03 1.12
4 1.52 1.79 1.21 1.27 1.07 1.13 1.04 1.04 0.654 0.996

10 1.31 1.31 1.13 1.11 1.01 1.03 0.505 0.995 0.345 0.974
102 1.22 1.23 0.72 0.884 0.409 0.411 0.327 0.335 0.179 0.232
103 1.22 1.21 0.651 0.638 0.391 0.382 0.293 0.298 0.157 0.157

L
ap

la
ce

2 3.7 10.6 2.17 5.2 1.61 3.03 1.41 2.07 1.2 1.48
4 2.5 2.99 1.66 1.93 1.33 1.46 1.26 1.25 0.817 1.12

10 1.9 1.97 1.43 1.42 1.35 1.22 0.723 1.12 0.441 1.06
102 1.69 1.64 0.883 1.06 0.607 0.538 0.453 0.385 0.343 0.211
103 1.68 1.65 0.814 0.79 0.593 0.561 0.411 0.379 0.284 0.24

M
ix

.G
am

m
a 2 1.32 3.96 0.547 1.88 0.292 1.01 0.148 0.533 0.06 0.224

4 0.79 1.05 0.316 0.453 0.151 0.224 0.0815 0.116 0.0361 0.0497
10 0.495 0.524 0.194 0.215 0.103 0.11 0.0543 0.0565 0.024 0.0246

102 0.369 0.384 0.152 0.149 0.0789 0.0785 0.0409 0.0412 0.0194 0.0186
103 0.364 0.353 0.149 0.15 0.0762 0.0767 0.0404 0.0406 0.0184 0.0185

C
au

ch
y

2 2.72 9.09 1.22 4.26 0.645 2.3 0.353 1.25 0.158 0.513
4 1.66 2.27 0.716 0.967 0.364 0.514 0.205 0.28 0.138 0.127

10 1.15 1.13 0.437 0.46 0.249 0.257 0.215 0.142 0.219 0.0764
102 0.815 0.783 0.373 0.351 0.351 0.271 0.206 0.201 0.147 0.0962
103 0.783 0.78 0.366 0.355 0.34 0.331 0.189 0.189 0.121 0.118

G
au

ss
.

2 2.74 9.21 1.1 4.08 0.605 2.14 0.296 1.06 0.143 0.446
4 1.59 2.23 0.591 0.878 0.362 0.457 0.229 0.227 0.463 0.0894

10 0.885 1.02 0.397 0.42 0.372 0.21 0.515 0.112 0.229 0.046
102 0.711 0.713 0.565 0.432 0.396 0.394 0.279 0.195 0.171 0.15
103 0.739 0.705 0.606 0.592 0.352 0.355 0.259 0.246 0.167 0.145

M
ix

.
G

au
ss

. 2 2.97 9.98 1.26 4.45 0.693 2.31 0.328 1.26 0.132 0.509
4 1.73 2.37 0.709 1.02 0.375 0.478 0.185 0.257 0.0751 0.105

10 1.14 1.21 0.463 0.466 0.237 0.242 0.118 0.122 0.0468 0.0515
102 0.851 0.817 0.359 0.352 0.166 0.167 0.0866 0.0867 0.034 0.0351
103 0.823 0.828 0.344 0.327 0.169 0.163 0.0845 0.0839 0.0334 0.0336

Table 2. Mean MISE×100 obtained withN = 500 samples, for different sample
size (n = 100, 250, 500, 1000, 2500) and different values of s2n (2, 4, 10, 100, 1000),
the higher s2n the lower the noise level.

huge simply because a few numbers of bad paths. The cost of such errors seems therefore to
have a price given by means and completely hidden by medians.

We can see that our estimation procedure provides better results in all cases except in one
case, namely when we aim at estimating a Gaussian density, for both types of error density.
This is most probably due to the fact that the bandwidth selection methods are based on
computations assuming that the underlying density is Gaussian, so that they perform very
well when it is true. For the other cases, even our means are often better than Delaigle and
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n = 100 n = 250

density g method ε Lap. ε Gaus. ε Lap. ε Gaus.

(a) or #2
χ2(3)

(s2n=4)

DG, lower median 0.015 0.018 — —
DG, higher median 0.018 0.022 — —
Proj.: median 0.014 0.016 — —
Proj.: mean 0.015 0.018 — —

(c) or #6
Mix.Gamma

(s2n=10)

DG, lower median — — 0.0021 0.0023
DG, higher median — — 0.0024 0.0026
Proj.: median — — 0.0017 0.0020
Proj., mean — — 0.0019 0.0021

(e) or #1
Gauss

(s2n=4)

DG, lower median 0.0071 0.0080 0.0041 0.0051
DG, higher median 0.011 0.012 0.0059 0.0072
Proj.: median 0.012 0.017 0.0049 0.0066
Proj.: mean 0.016 0.022 0.0059 0.0088

(f) or #3
Mix.Gauss
(s2n=4)

DG, lower median 0.018 0.027 0.011 0.020
DG, higher median 0.031 0.034 0.023 0.028
Proj.: median 0.016 0.022 0.0063 0.0088
Proj.: mean 0.017 0.024 0.0071 0.010

Table 3. Median ISE obtained by Delaigle and Gijbels (2004) with a kernel esti-
mator and four different strategies of bandwidth selection, and with our penalized
projection estimator (median and mean).

Gijbels’(2004) medians which shows that our method provides a very good solution to the
deconvolution problem. We may also emphasize that our algorithm is a fast algorithm.

6. Proofs

6.1. Proof of Proposition 3.1. According to (4), for any given m belonging to Mn, ĝ
(n)
m

satisfies, γn(ĝ
(n)
m )− γn(g

(n)
m ) ≤ 0. Denoting by νn(t) the centered empirical process

νn(t) =
1

n

n∑
i=1

[u∗t (Zi)− 〈t, g〉] ,(27)

we have that

γn(t)− γn(s) = ‖t− g‖2 − ‖s− g‖2 − 2νn(t− s),(28)

and therefore,

‖g − ĝ(n)
m ‖2 ≤ ‖g − g(n)

m ‖2 + 2νn(ĝ
(n)
m − g(n)

m ).(29)

Since âm,j − am,j = νn(ϕm,j), we get that

(30) νn(ĝ
(n)
m − g(n)

m ) =
∑
|j|≤Kn

(âm,j − am,j)νn(ϕm,j) =
∑
|j|≤Kn

[νn(ϕm,j)]
2,
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and consequently

E‖g − ĝ(n)
m ‖2 ≤ ‖g − g(n)

m ‖2 + 2
∑
j∈Z

Var[νn(ϕm,j)].(31)

Now, since the Xi’s and the εi’s are independent and identically distributed random variables,
we get that

Var[νn(ϕm,j)] =
1

n2

n∑
i=1

Var
[
u∗ϕm,j

(Zi)
]

=
1

n
Var

[
u∗ϕm,j

(Z1)
]
.

Apply Lemma 6.2 in Section 6.4 to get that
∑

j∈Z Var[νn(ϕm,j)] ≤ ∆1(m)/n, where ∆1(m) is

defined by (6). It remains to study ‖g−g(n)
m ‖2. By applying Pythagoras Theorem, we have ‖g−

g
(n)
m ‖2 =‖ g−gm ‖2 +‖gm−g(n)

m ‖2, where ‖gm−g(n)
m ‖2 =

∑
|j|≥Kn

a2
m,j ≤ (supj jam,j)

2
∑

|j|≥Kn
j−2.

Now we write that

jam,j = j
√
Lm

∫
ϕ(Lmx− j)g(x)dx

≤ L3/2
m

∫
|x||ϕ(Lmx− j)|g(x)dx+

√
Lm

∫
|Lmx− j||ϕ(Lmx− j)|g(x)dx

≤ L3/2
m

(∫
|ϕ(Lmx− j)|2dx

)1/2 (∫
x2g2(x)dx

)1/2

+
√
Lm sup

x
|xϕ(x)|.

This implies finally that jam,j ≤ Lm(M2)
1/2 +

√
Lm, and (7) follows. �

6.2. Proof of Theorems 4.1 and 4.2 : the i.i.d. case. By definition, g̃ satisfies that for

all m ∈Mn, γn(g̃) + pen(m̂) ≤ γn(g
(n)
m ) + pen(m). Therefore, by applying (28) we get that

‖ g̃ − g ‖2 ≤ ‖ g(n)
m − g ‖2 +2νn(g̃ − g(n)

m ) + pen(m)− pen(m̂).(32)

Next, we use that if t = t1 + t2 with t1 in S
(n)
m and t2 in S

(n)
m′ , then t is such that t∗ has its

support in [−πLm∨m′ , πLm∨m′ ] and therefore t belongs to S
(n)
m∨m′ . If we denote by Bm,m′(0, 1) the

set Bm,m′(0, 1) = {t ∈ S
(n)
m∨m′ / ‖t‖ = 1}, then |νn(g̃ − g

(n)
m )| ≤ ‖g̃ − g

(n)
m ‖ supt∈Bm,m̂(0,1) |νn(t)|.

Consequently, by using that 2ab ≤ x−1a2 + xb2, for x > 1, we get

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + x−1‖g̃ − g(n)

m ‖2 + x sup
t∈Bm,m̂(0,1)

ν2
n(t) + pen(m)− pen(m̂)

and therefore, by writing that ‖g̃ − g
(n)
m ‖2 ≤ (1 + y−1)‖g̃ − g‖2 + (1 + y)‖g − g

(n)
m ‖2, with

y = (x+ 1)/(x− 1) for x > 1, we infer that

‖g̃ − g‖2 ≤
(
x+ 1

x− 1

)2

‖g − g(n)
m ‖2 +

x(x+ 1)

x− 1
sup

t∈Bm,m̂(0,1)

ν2
n(t) +

x+ 1

x− 1
(pen(m)− pen(m̂)).

Choose some positive function p(m,m′) such that xp(m,m′) ≤ pen(m) + pen(m′). Conse-
quently, for κx = (x+ 1)/(x− 1) we have

(33) ‖g̃ − g‖2 ≤ κ2
x

[
‖g − gm‖2 + ‖gm − g(n)

m )‖2
]
+ xκxWn(m̂)

+ κx (xp(m, m̂) + pen(m)− pen(m̂))
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(34) with Wn(m
′) := [ sup

t∈Bm,m′ (0,1)

|νn(t)|2 − p(m,m′)]+,

that is, according to the proof of Proposition 3.1,

(35) ‖g̃ − g‖2 ≤ κ2
x‖g − gm‖2 + κ2

x(M2 + 1)L2
m/Kn + 2κxpen(m) + xκx

∑
m′∈Mn

Wn(m
′).

The main point of the proof lies in studying Wn(m
′), and more precisely in finding p(m,m′)

such that for a constant K,

(36)
∑

m′∈Mn

E(Wn(m
′)) ≤ K/n.

In this case, combining (35) and (36) we infer that, for all m in Mn,

E‖g − g̃‖2 ≤ κ2
x‖g − g(n)

m ‖2 + κ2
x(M2 + 1)L2

m/Kn + 2κxpen(m) + xκxK/n,

which can also be written

(37) E‖g − g̃‖2 ≤ Cx inf
m∈Mn

[
‖g − gm‖2 + pen(m) + (M2 + 1)L2

m/Kn

]
+ xκxK/n,

where Cx = κ2
x ∨ 2κx suits. It remains thus to find p(m,m′) such that (36) holds. This will be

done by applying the following immediate integration of Talagrand’s Inequality (see Talagrand
(1996)):

Lemma 6.1. Let Y1, . . . , Yn be i.i.d. random variables and rn(f) = (1/n)
∑n

i=1[f(Xi) −
E(f(Xi))] for f belonging to a countable class F of uniformly bounded measurable functions.

Then for ξ2 > 0

(38) E
[
sup
f∈F

|rn(f)|2 − 2(1 + 2ξ2)H2

]
+

≤ 6

K1

(
v

n
exp

{
−K1ξ

2nH
2

v

}
+

8M2
1

K1n2C2(ξ2)
exp

{
−K1C(ξ)ξ√

2

nH

M1

})
,

with C(ξ) =
√

1 + ξ2 − 1, K1 is a universal constant, and where

sup
f∈F

‖f‖∞ ≤M1, E[sup
f∈F

|rn(f)|] ≤ H, sup
f∈F

Var(f(X1)) ≤ v.

Usual density arguments show that this result can be applied to the class of functions F =
Bm,m′(0, 1). Let us denote by m∗ = m ∨ m′. Combining Lemma 6.4 and Inequality (8) in
Section 6.4, we propose to take

H2 = H2(m∗) = λ1L
2γ+1−δ
m∗ exp{2µσδ(πLm∗)δ}/n and M1 =

√
nH2,

where λ1 = λ1(γ, κ0, µ, σ, δ) is defined by (9). Again, by applying Lemma 6.4, we take v ≥
∆2(m

∗, h) with

(39) ∆2(m,h) = L2
m

∫∫ ∣∣∣∣ ϕ∗(x)ϕ∗(y)

f ∗ε (σLmx)f
∗
ε (σLmy)

h∗(Lm(x− y))

∣∣∣∣2 dxdy.
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For δ > 1 we use a rough bound for ∆2(m,h) given by
√

∆2(m∗, h) ≤ 2πnH2. When δ ≤ 1,
write that

∆2(m,h) ≤ κ−2
0 L2

m(1 + (σπLm)2)γ exp{2µσδ(πLm)δ}
∫ π

−π

dx

|f ∗ε (σLmx)|2

∫
|h∗(Lmu)|2du

≤ 2κ−2
0 πλ1(1 + σ2π2)γ‖h∗‖2L4γ+1−δ

m exp{4µσδ(πLm)δ}.

Using that ‖h∗‖2 ≤ ‖f ∗ε ‖2 <∞ under (Aε
4), we take v = λ2L

2γ+(1/2−δ/2)∧(1−δ)
m∗ exp{2µσδ(πLm∗)δ},

where λ2 = λ2(γ, κ0, µ, σ, δ) is defined in Theorem 4.1. From the definition (34) of Wn(m
′), by

taking p(m,m′) = 2(1 + 2ξ2)H2, we get that

E(Wn(m
′)) ≤ E[ sup

t∈Bm,m′ (0,1)

|νn(t)|2 − 2(1 + 2ξ2)H2]+.

By applying (38), we get the global bound E(Wn(Lm′)) ≤ K[I(Lm∗) + II(m∗)], where I(m∗)
and II(m∗) are defined by

I(m∗) =
λ2L

2γ+(1/2−δ/2)∧(1−δ)
m∗ exp{2µσδ(πLm∗)δ}

n
exp{−K1ξ

2(λ1/λ2)L
(1/2−δ/2)+
m∗ }

and II(m∗) =
λ1L

2γ+1−δ
m∗ e2µσ

δ(πLm∗ )δ

n2
exp

{
−K1ξC(ξ)

√
n/
√

2
}
,

with λ2 = λ2(γ, κ0, µ, σ, δ) defined in Theorem 4.1.
• Study of

∑
m∈Mn

II(m∗). According to the choices for v, H2 and M1 we have∑
m∈Mn

II(m∗) ≤ |Mn| exp
{
−K1ξC(ξ)

√
n/
√

2
}

2λ1Γ(mn)/n
2.

Consequently, since under (10), Γ(mn)/n is bounded,
∑

m∈Mn
II(m∗) ≤ C/n.

• Study of
∑

m∈Mn
I(m∗). Denote by ψ = 2γ + (1/2 − δ/2) ∧ (1 − δ), ω = (1/2 − δ/2)+,

K ′ = K1λ1/λ2, then for a, b ≥ 1, we infer that

(a ∨ b)ψe2µσδπδ(a∨b)δ

e−K
′ξ2(a∨b)ω ≤ (aψe2µσ

δπδaδ

+ bψe2µσ
δπδbδ)e−(K′ξ2/2)(aω+bω)

≤ aψe2µσ
δπδaδ

e−(K′ξ2/2)aω

e−(K′ξ2/2)bω + bψe2µσ
δπδbδe−(K′ξ2/2)bω .(40)

Consequently, if we denote by Γ̃ the quantity Γ̃(m) = L
2γ+(1/2−δ/2)∧(1−δ)
m∗ exp{2µσδ(πLm∗)δ}

then∑
m′∈Mn

I(m∗) ≤ 2λ2Γ̃(m)

n
exp{−(K ′ξ2/2)(Lm)(1/2−δ/2)}

∑
m′∈Mn

exp{−(K ′ξ2/2)(Lm′)(1/2−δ/2)}

+
∑

m′∈Mn

2λ2Γ̃(m′)

n
exp{−(K ′ξ2)(Lm′)(1/2−δ/2)}.(41)

1) Case 0 ≤ δ < 1/3. In that case, since δ < (1/2 − δ/2)+, the choice ξ2 = 1 ensures that
Γ̃(m) exp{−(K ′ξ2/2)(Lm)(1/2−δ/2)} is bounded and thus the first term in (41) is bounded by
C/n. In the same way, since 1 ≤ m ≤ mn which satisfies (10),∑

m′∈Mn

Γ̃(m′)

n
exp{−(K ′ξ2)(Lm′)(1/2−δ/2)} ≤ ˜̃C/n,
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and hence
∑

m′∈Mn
I(m∗) ≤ C/n. Consequently, (36) hold if we choose pen(m) = 2x(1 +

2ξ2)λ1(Lm)2γ+1−δ exp{2µσδ(πLm)δ}/n.
2) Case δ = 1/3. In that case, bearing in mind Inequality (40) we choose ξ2 such that
2µσδπδ(Lm∗)δ − (K ′ξ2/2)Lδm∗ = −2µσδ(πLm∗)δ that is ξ2 = (4µσδπδλ2)/(K1λ1). By the same
arguments as for the case 0 ≤ δ < 1/3, this choice ensures that

∑
m′∈Mn

I(m∗) ≤ C/n, and con-

sequently (36) holds. The result if we take p(m,m′) = 2(1+2ξ2)λ1L
2γ+1−δ
m∗ exp(2µσδ(πLm∗)δ)/n,

and pen(m) = 2x(1 + 2ξ2)λ1(Lm)2γ+1−δ exp(2µσδ(πLm)δ)/n.
3) Case δ > 1/3. In that case, δ > (1/2−δ/2)+. Bearing in mind Inequality (40) we choose ξ2 =
ξ2(Lm, Lm′) such that 2µσδπδ(Lm∗)δ− (K ′ξ2/2)Lωm∗ = −2µσδπδ(Lm∗)δ that is ξ2 = ξ2(m,m′) =
(4µσδπδλ2)/(K1λ1)L

δ−ω
m∗ . This choice ensures that

∑
m′∈Mn

I(m∗) ≤ C/n, and consequently

(36) holds and (18) follows if p(m,m′) = 2(1 + 2ξ2(m,m′))λ1L
2γ+1−δ
m∗ exp(2µσδ(πLm∗)δ)/n, and

pen(m) = 2x(1 + 2ξ2(Lm,m))λ1(Lm)2γ+1−δ exp(2µσδ(πLm)δ)/n. �

6.3. Proof of Theorem 4.3: the absolutely regular case. The proof of the absolutely
regular case is rather similar to the one of the independent case with some additional technical-
ities due to the approximation of the dependent variables by blockwise independent variables,
based on Berbee’s coupling Lemma extended to sequences (see Bryc’s [6] construction). It uses
also Delyon’s (1990) covariance inequality, successfully exploited by Viennet (1997) for partial
sums of strictly stationary variables. Since the methods and tools are standard, the proof is
omitted for the sake of place but is available from the authors upon request.

6.4. Technical Lemmas.

Lemma 6.2. Let νn(t) be defined by (27), ∆1(m) be defined by (6). Under Assumptions (AX
1 ),

(AX,ε
2 ), (AX,ε

3 ), then we have

‖
∑
j∈Z

|u∗ϕm,j
|2 ‖∞≤ ∆1(m), and sup

g∈Ss,r,b(A)

∑
j∈Z

Var[νn(ϕm,j)] ≤ ∆1(m)/n.(42)

Proof of Lemma 6.2. Use the definition of u∗ϕm,j
(z) to get that∑

j∈Z

∣∣∣u∗ϕm,j
(z)

∣∣∣2 =
∑
j∈Z

∣∣∣∣∫ exp{ixz}uϕm,j
(x)dx

∣∣∣∣2 =
Lm

(2π)2

∑
j∈Z

∣∣∣∣∫ exp{−ixzLm} exp{ijx} ϕ∗(x)

f ∗ε (xLmσ)
dx

∣∣∣∣2 .
By Parseval’s Formula,

(43)
∑
j∈Z

∣∣∣u∗ϕm,j
(z)

∣∣∣2 = (2π)−1Lm

∫ ∣∣∣∣ ϕ∗(x)

f ∗ε (xLmσ)

∣∣∣∣2 dx = ∆1(m),

which entails that the first part of the bound (42) is proved. The second part follows since∑
j∈Z

Var[νn(ϕm,j)] ≤ n−1

∫ ∑
j∈Z

∣∣∣u∗ϕm,j
(z)

∣∣∣2 h(z)dz. �

Lemma 6.3. Let ∆1(m) and R(µ, δ, σ) be defined by (6) and (9). Then under Assumption

(Aε
5), ∆1(m) ≤ 1

πκ2
0R(µ, δ, σ)

(πLm)1−δ(σ2L2
mπ

2 + 1)γ exp{2µσδπδLδm}.
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Proof of Lemma 6.3. Under Assumption(Aε
5), ∆1(m) is bounded in the following way,

∆1(m) ≤ 1

πκ2
0

(σ2L2
mπ

2 + 1)γ
∫ πLm

0

exp{2µσδuδ}du.

If δ = 0, by convention µ = 0, and hence the integral in the above bound is less than πLm.
Consider now the case 0 < δ ≤ 1. Easy calculations provide that∫ πLm

0

exp{2µσδuδ}du =

∫ πLm

0

(
2µσδδuδ−1 exp{2µσδuδ}

) du

2µσδδuδ−1

≤ (πLm)1−δ

2µσδδ

[
exp(2µσδuδ)

]πLm

0

and therefore ∫ πLm

0

exp{2µσδuδ}du ≤ (πLm)1−δ

2µσδδ
exp(2µσδ(πLmσ)δ).

Now, if δ > 1, then by using that uδ = uδ−1u we get that∫ πLm

0

exp{2µσδuδ}du ≤
∫ πLm

0

exp{2µσδ(πLm)δ−1u}du ≤ (πLm)1−δ

2µσδ
exp(2µσδ(πLm)δ),

and consequently Lemma 6.3 follows �.

Lemma 6.4. Let νn(t), ∆1(m) and ∆2(m,h) be defined by (27), (6) and (39). Then under

Assumptions (AX
1 ), (AX,ε

2 ), (AX,ε
3 ) and (Aε

4) we have

sup
t∈Bm,m′ (0,1)

‖ u∗t ‖∞≤
√

∆1(m∗) E[ sup
t∈Bm,m′ (0,1)

|νn(t)|] ≤
√

∆1(m∗)/n,

and sup
t∈Bm,m′ (0,1)

Var(u∗t (Z1)) ≤
√

∆2(m∗, h)/(2π).

Proof of Lemma 6.4. By combining Cauchy-Schwarz Inequality and (43), the square of the
first term supt∈Bm,m′ (0,1) ‖ u∗t ‖2

∞ is bounded by

∑
j∈Z

∫ ∣∣∣∣ϕ∗m∗,j(u)

f ∗ε (σu)

∣∣∣∣2 du = ∆1(m
∗).

Now,

E[ sup
t∈Bm,m′ (0,1)

|νn(t)|] ≤ E

[
(
∑
j∈Z

(νn(ϕm∗,j))
2)1/2

]
≤

[∑
j∈Z

Var(νn(ϕm∗,j))

]1/2

which is bounded, by applying the second part of (42) in Lemma 6.2, by
√

∆1(m∗)/n. Now
write that

sup
t∈Bm,m′ (0,1)

Var(u∗t (Z1)) ≤ sup
t∈Bm,m′ (0,1)

E[|u∗t (Z1)|2] ≤ [
∑
j,k∈Z

|Qj,k(m
∗)|2]1/2,
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with Qj,k(m) = E[u∗ϕm,j
(Z1)u

∗
ϕm,k

(−Z1)] also given by

Qj,k(m) =
Lm

(2π)2

∫∫
exp{ijx− iky} ϕ∗(x)ϕ∗(y)

f ∗ε (σLmx)f
∗
ε (σLmy)

h∗(Lm(x− y))dxdy.

Apply Parseval’s Formula to get the result since∑
j,k∈Z

|Qj,k(m)|2 =
L2
m

(2π)2

∫∫ ∣∣∣∣ ϕ∗(x)ϕ∗(y)

f ∗ε (σLmx)f
∗
ε (σLmy)

h∗(Lm(x− y))

∣∣∣∣2 dxdy.
�
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