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Abstract. We consider the problem of density deconvolution in the context of circular
random variable. We aim at estimating the density of a random variable X from a sample
Z1, · · · , Zn in the convolution model where Zi = Xi + εi, i = 1, . . . , n and ε is a noise
independent of X, all the variables being defined on R-modulo 2π. In this context, we
propose an adaptive estimator of the density of X by using a model selection procedure
allowing to find non-asymptotic bounds for the integrated quadratic risk. These bounds
hold in the independent case as well as in the dependent case.
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1. Introduction

In this paper, we consider the problem of density deconvolution with circular random
variables. Consider the following convolution model

Z = X + ε(1)

where the variables Z,X and ε are circular random variables defined on R-modulo 2π
and ε is a noise independent of X. We denote by µπ the Lebesgue measure on R-modulo
2π, by L2(µπ) the set of square integrable functions with respect to µπ, and by < ., . >
the associated scalar product. We assume that the errors ε are circular random variables
having known density fε with respect to µπ, and are independent from the Xi’s. We also
assume that the circular random variables Xi’s are identically distributed and admit a
density, denoted by g, with respect to the measure µπ. In this model we are interested in
the problem of the nonparametric estimation of the density g of the Xi’s from the sample
Z1, · · · , Zn of the circular random variable Z. Due to the independence between X and
ε, the density of Z is the convolution product (on R-modulo 2π) of g, the density of X,
and the one of ε, fε (see section 2.1). This motivates the term of deconvolution even in
the context of circular random variables.

Let us describe previous known results on density deconvolution, starting with those
for real random variables. The problem of density deconvolution for random variables on
the real line appears frequently in the literature. In particular, it has been widely studied
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using kernel estimators and Fourier transform properties. One can for instance cite Car-
roll and Hall (1988), Devroye (1989), Fan (1991a, b), Liu and Taylor (1989), Masry (1991,
1993a, b), Stefansky (1990), Stefansky and Carroll (1990), Taylor and Zhang (1990) and
Zhang (1990), Cator (2001), Youndje and Wells (2002). Those estimators were stud-
ied from many points of view: pointwise and global asymptotic optimality, asymptotic
normality, case of dependent εi’s...

In the same model but using a different estimator, Koo (1999) considers the problem
of logspline density deconvolution when the log-density belongs to a Besov space and the
errors are ordinary or super smooth and obtains usual rates of convergence.

It is well known that two factors determine the estimation accuracy in the standard
density deconvolution problem : first the smoothness of the density to be estimated and
second the smoothness of the error density. The smoother the error density, the slower
the optimal rate of convergence: logarithmic rates of convergence appear when the error
density is super smooth, in the standard context of ordinary smooth density g. All
these smoothness properties are described by the rate of decay of the Fourier transforms:
polynomial decay for what is called ordinary smoothness (or Sobolev-type smoothness)
and exponential decay for super smooth functions. Most previous results concern density
to be estimated with Sobolev-type smoothness and ordinary or super smooth error density.

In most of the previous papers, the smoothness parameters of the unknown density are
supposed to be known and thus those papers deal with non adaptive estimation. Let us
now give more details on recent results about adaptive estimation.

In the context of pointwise density deconvolution in the real Gaussian white noise
model, Goldenshluger (1999) proposes an adaptive estimator when the errors are ordinary
smooth or super smooth and the density g has Sobolev-type smoothness. Its pointwise
quadratic risk converges with a rate logarithmically slower than the minimax rate, when
the error density is ordinary smooth and with the minimax rate when the error density
is super smooth.

Following the development of wavelet methods, Pensky and Vidakovic (1999), Pen-
sky (2002) and Fan and Koo (2002) study some wavelet thresholding estimators to build
adaptive estimators in the context of density deconvolution for real variables. In partic-
ular, Pensky and Vidakovic (1999) study the case of super smooth functions in presence
of ordinary or super smooth errors which allows to recover much faster rates.

Again, for real variables, the case of super smooth functions is also studied by Bu-
tucea (2003) in case of ordinary smooth error density and by Butucea and Tsybakov (2003)
when both the density g and the error density fε are super smooth. In both papers, exact
upper and lower bounds for pointwise and integrated quadratic risk are given, using ker-
nel estimator. One consequence of Butucea and Tsybakov’s (2003) paper is that Pensky
and Vidakovic’s (1999) results are sub-optimal when both g and fε are super smooth.
This sub-optimality comes from the use of wavelets. In Comte and Taupin (2003) a
penalized contrast and adaptive estimator is proposed. Its construction is based on a
development of the function to be estimated in an orthonormal basis generated by the
function sin(πx)/(πx). This procedure allows to construct an adaptive and optimal or
nearly optimal estimator of the density by using model selection.

Let us now come to density deconvolution for circular data. Efromovich (1997) proposes
an estimator constructed as a truncated development of the density to be estimated
in the trigonometric basis where the theoretical coefficients are replaced by empirical



ADAPTIVE DENSITY DECONVOLUTION FOR CIRCULAR DATA 3

estimators. Let us be more precise. Denote by u∗, the Fourier transform of the function
u in L2([0, 2π]) defined as u∗(j) =

∫ 2π

0
exp{ijt}u(t)dt for j an integer and i2 = −1. If the

Fourier transform g∗ of the density of X is integrable, then g can be written as

g(x) =
1

2π

∑
j∈Z

g∗(j) exp{−ijx}, 0 ≤ x ≤ 2π.

In Model (1), if h denotes the density of Z, then (see section 2.1) h∗(j) = g∗(j)f ∗ε (j), for
j ∈ N. Therefore as soon as f ∗ε does not vanish, he proposes to estimate g(x) by

ĝ(x) =
1

2π

∑
|j|≤Jn

1

n

n∑
k=1

exp{ijZk}
f ∗ε (j)

exp{−ijx},(2)

for some Jn to be well chosen. For the pointwise quadratic risk and the integrated qua-
dratic risk, he establishes sharp minimax results for the estimation of g and its derivatives
when the errors are super smooth and the density g is ordinary smooth. He also gives
results when the errors density fε is unknown, by using additional observations. The rates
of convergence are the same as those obtained for random variables on the real line.

In a slightly different density deconvolution model, Goldenshluger (2001) considers the
problem of the estimation of the density f of a random variable θ in the model

Zt = exp{iθt}+ εt, t = 1, · · · , n,
where the errors ε have known density defined on the complex plane C = R2. In this
context the behavior of the minimax risk does not depend on the error density.

In the present work, we follow the idea of Efromovich (1997) based on the development
of the unknown density function in the trigonometric basis by noting that the estimator
defined by (2) can be seen as a minimum contrast estimator. Indeed, if we denote by
ϕj(x) = exp{−ijx}/

√
2π, this estimator is the projection estimator on the space

Vect{ϕj, |j| ≤ Jn},
associated to the contrast

‖ t ‖2
L2([0,π]) −2

∑
|j|≤Jn

1

n

n∑
i=1

〈t, ϕj〉ϕj(Zi)
f ∗ε (−j)

.

As proved by Efromovich (1997), when the density g is ordinary smooth and the errors
are super smooth, this estimator is optimal in a sharp minimax sense. According to
Butucea’s (2003), and Butucea and Tsybakov’s (2003) results for variables on the real line,
it seems reasonable to infer that it is also optimal when g is super smooth. Nevertheless the
choice of the optimal Jn depends on the regularity of the unknown density. We deduce
from these facts, by using a model selection procedure, a penalized contrast estimator
which is adaptive and optimal or nearly optimal. More precisely, we establish a non-
asymptotic bound for the integrated quadratic risk of the penalized contrast estimator
that ensures an automatic trade-off between the squared bias of (2) and a penalty term
having the same order as the variance of (2), or the same order as the variance up to some
logarithmic factor. This possible loss in the penalty only appears in cases where such a
logarithmic term is negligible with respect to the rates. In particular, our estimator is
adaptive and optimal in a minimax sense when the density g is ordinary smooth, that is,
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in the cases described by Efromovich (1997), and is probably optimal (or nearly optimal)
when g is super smooth.

Let us go further in the comparison between the rates of convergence for adaptive
estimation obtained for random variables on the real line and those obtained for circular
random variables. According to Comte and Taupin’s (2003)result, it appears that the
results obtained for circular data are very close to the former ones except in one case
where the rate for the adaptive estimator for circular data is better than the one obtained
for variables on the real line. This a case where a logarithmic loss appearing for real line
random variables does not appear for circular variables: for instance, the logarithmic loss
is avoided for Gaussian errors (see also Remark 3.3).

The problem of a logarithmic loss in adaptation is already known in different models
but it generally appears only for the pointwise estimation. For instance, in Goldensh-
luger (1999) the adaptive estimator has a pointwise risk converging with a logarithmic
loss with respect to the minimax rate when both the errors density and g are ordinary
smooth. But in Comte and Taupin (2003), in the same case, the adaptive penalized con-
trast estimator has an optimal integrated quadratic risk. Nevertheless, such a logarithmic
loss in adaptation, for L2 estimation has been underscored by Tsybakov (2000) in case of
inverse problems for real random variables. In particular he exhibits some example where
a logarithmic loss in adaptation is not avoidable. His example for real line variables can be
compared to some particular case of our results for circular variables, where our estimator
has its quadratic risk with the same logarithmic loss. This logarithmic loss in adaptation
seems thus non avoidable at least in one case (see Remark 3.2).

The methodology following the line of model selection strategies as presented in Barron
et al (1999) allows, as in Comte and Taupin (2003) straightforward extensions to non
independent variables (β-mixing random variables).

In Section 2, we present some generalities about circular data, the model, the assump-
tions, the estimator and the aim of the study. Section 3 states the results while the proofs
are gathered in Section 4.

2. Description of the problem

2.1. About circular data. We briefly describe what is called circular random variables
and refer for instance to Mardia (1972) for more details on the subject.

We say that a random variable Y is circular or wrapped (around the circumference
of the unit circle) if its density is such that fYw ≥ 0 with

∫
fYw(x)µπ(dx) = 1. This

implies in particular that fYw is a 2π-periodic function on R with
∫ 2π

0
fYw(y)dy = 1.

Moreover, if Y is a circular random variable and ψ a function defined on R-modulo 2π,
then E(ψ(Y )) =

∫
ψ(y)fYw(y)µπ(dy).

If Yw = Y ( mod 2π) is a wrapped random variable coming from a random variable on
the real line Y with density fY , then the density fYw , of Yw is given by

fYw(x) =
∑
k∈Z

fY (x+ 2kπ).

The characteristic function of such a random variable Y , is defined as f ∗Y (t) = E(exp{itY }) =∫
R exp{ity}fY (y)dy and satisfies f ∗Y (t) = f ∗Yw

(t) for any integer value of t. In fact the the-
ory of Fourier series for 2π-periodic functions shows that, in order to define fYw , it is
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sufficient to take t as an integer in the definition of f ∗Yw
(see Mardia (1972), Section 3.2

and Rudin (1962), Section 1.2 for further details).
Subsequently, for f1 and f2 two functions defined on R-modulo 2π, belonging to L2(µπ),

we denote by

〈f1, f2〉 =

∫
f1(x)f2(x)µπ(dx), and ‖ f1 ‖2=‖ f1 ‖2

L2(µπ)=

∫
|f1(x)|2µπ(dx),

where zz = |z|2. If the density fYw defined on R-modulo 2π, belongs to L2(µπ), then it
can be developed in the trigonometric basis as follows

fYw(x) =
∑
k∈Z

aj(fYw)ϕj(x),

with

aj(fYw) = 〈fYw , ϕj〉 , and ϕj(x) = exp{−ijx}/
√

2π.(3)

We have moreover that the Fourier coefficient aj(fYw) of the density of Yw is such that,
for j an integer,

aj(fYw) = f ∗Yw
(j)/

√
2π = f ∗Y (j)/

√
2π.

Let us come to Model (1). For j an integer, by using the independence between X and
ε, we have E[exp{ijZ}] = E[exp{ijX}]E[exp{ijε}], and consequently,

h∗(j) = g∗(j)f ∗ε (j),(4)

Furthermore we have h = g ? fε, where, for two funtions f1 and f2 defined on R-modulo
2π and belonging to L2(µπ), we define the convolution product of f1 and f2 by

f1 ? f2(z) =

∫
f1(x)f2(z − x)µπ(dx).

We refer to Mardia (1972), Fisher (1993), and Efromovich (1997) for further details as
examples, models, results or references on circular variables.

2.2. Model and Assumptions. Consider Model (1) and the following assumptions.

A1 The Xi’s and the εi’s are identically distributed random variables.
A2 The sequences (Xi)i∈N and (εi)i∈N are independent.
A3 The εi’s and the Xi’s are independent random variables.
A3’ The εi’s and theXi’s are both absolutely regular (or β-mixing, see Doukhan (1994),

pp.4-5).

Under A2 and A3, the εi’s and the Xi’s are both independent and identically dis-
tributed random variables and therefore so is the sequence of the Zi’s.

Whereas, under A2 and A3’, the sequence of the (Xi, εi)’s is also absolutely regular
and therefore so is the sequence of the Zi’s. We denote by (βk)k∈N the mixing coefficients
of this last sequence.

The following assumption will be required for g.

A4 The density function g of the Zi’s, defined on R-modulo 2π, belongs to L2(µπ).

Our aim is to estimate g from a sample (Z1, . . . , Zn).
As it is mentioned in the introduction, the rate of convergence for estimating g is

strongly related to smoothness of the error density fε, described by the rate of decrease
of the Fourier Transform f ∗ε (j) as j goes to infinity. More precisely, the smoother fε, the
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slower is the rate of convergence for estimating g. Nevertheless, this rate of convergence
can be improved by assuming some additional regularity conditions on g. These regularity
conditions are described by considering functions of the space Sα,ν,ρ(Aα) defined by

(5) Sα,ν,ρ(Aα) =

{
f density :

∑
j∈Z

|f ∗(j)|2|j|2α exp{2ρ|j|ν} ≤ Aα

}
,

where α, ρ, ν are nonnegative real numbers. When ν = 0, this corresponds to some
Sobolev spaces of order α densities with respect to µπ. When ν > 0, this corresponds to
analytic functions, often called ”super-smooth” functions. For the sake of simplicity, we
shall set the constant ρ = 0 when ν = 0 and assume that ρ > 0 as soon as ν > 0.
At the same time we assume some slightly different conditions on fε described as follows.

A5 The density f ∗ε does not vanish and belongs to L2(µπ).
A6 There exist nonnegative real numbers γ,B and δ such that, for all j in Z,

|f ∗ε (j)| ≥ A0(j
2 + 1)−γ/2 exp{−B|j|δ}.

Assumption A7 when δ = 0 amounts to consider what we also call “ordinary smooth”
errors, and “super smooth” errors when δ > 0. For the sake of simplicity, we set B = 0
when δ = 0 and we assume that B > 0 when δ > 0. Assumption A7 holds for many
practically important wrapped distributions on the real line. When δ > 0 it includes
Gaussian or Cauchy wrapped distributions and when δ = 0 it includes for instance the
double exponential.

It is noteworthy that, again for sake of simplicity, the terms “ordinary smooth” and
“super smooth” can be as well as used for the density g and for the errors density with a
slight difference in the definition.

2.3. The projection spaces and the estimators. Let us consider a collection of spaces
(Sm)m∈Mn , where a space (or a model) Sm is a finite dimensional linear space of the form

Sm = Vect{ϕj, |j| ≤ Dm}, with dim(Sm) = 2Dm + 1,(6)

and the basis functions ϕj are defined by (3). In our context, Dm = m or Dm = 2m for
m a nonnegative integer; therefore we consider that, for two nonnegative integers m and
m′, Dm∨m′ = Dm∨Dm′ , the models are embedded models and that the cardinality of Mn

equals mn or log2(mn).
Denoting by gm the orthogonal projection of g on the space Sm, gm is given by

gm =
∑

|j|≤Dm

aj(g)ϕj with aj(g) = 〈g, ϕj〉.

Associate to this collection of models the following contrast function, for t belonging to
some model Sm of the collection (Sm)m∈Mn

γn(t) =
1

n

n∑
i=1

[
‖t‖2 − 2Vt(Zi)

]
, with Vt(x) =

∑
|j|≤Dm

〈t, ϕj〉
f ∗ε (−j)

ϕj(x).
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According to (4),

E [Vt(Zi)] =
∑

|j|≤Dm

〈t, ϕj〉
f ∗ε (−j)

E(ϕj(Z1)) =
1√
2π

∑
|j|≤Dm

〈t, ϕj〉
f ∗ε (−j)

f ∗ε (−j)g∗(−j)

=
∑

|j|≤Dm

〈t, ϕj〉〈g, ϕj〉 = 〈t, g〉,

and we find that E(γn(t)) = ‖t − g‖2 − ‖g‖2, which is all the smaller that t is nearer of
g. This illustrates that γn(t) is the relevant choice for the empirical version of the L2(µπ)
distance between t and g.
Associated to the collection of models , the collection of estimators ĝm of g is defined by

(7) ĝm = Argmin t∈Sm
γn(t),

where by using that, t 7→ Vt is linear, and that (ϕj)|j|≤Dm is an orthonormal basis of Sm,
we have

ĝm =
∑

|j|≤Dm

âj(g)ϕj where âj(g) =
1

nf∗ε (j)

n∑
k=1

ϕj(Zk) =
1

n
√

2πf ∗ε (j)

n∑
k=1

exp{ijZk},

with E(âj(g)) =< g, ϕj >= aj(g).

2.4. The aim of the study. In order to motivate our approach let us study the rate of
convergence of one estimator ĝm. According to (7), for any given m belonging to Mn, ĝm
satisfies,

γn(ĝm)− γn(gm) ≤ 0.(8)

Denoting by νn(t) the centered empirical process

νn(t) =
1

n

n∑
i=1

[Vt(Zi)− 〈t, g〉] ,(9)

we have that

γn(t)− γn(s) = ‖t− g‖2 − ‖s− g‖2 − 2νn(t− s)(10)

and therefore, by using (8), we deduce that

‖g − ĝm‖2 ≤ ‖g − gm‖2 + 2νn(ĝm − gm).

Since âj(g)− aj(g) = νn(ϕj), we get that

(11) νn(ĝm − gm) =
∑

|j|≤Dm

(âj(g)− aj(g))νn(ϕj) =
∑

|j|≤Dm

[νn(ϕj)]
2,

and consequently

E‖g − ĝm‖2 ≤ ‖g − gm‖2 + 2
∑

|j|≤Dm

Var[νn(ϕj)].(12)

The rate of convergence of ĝm is obtained by selecting the space Sm that makes ‖g −
gm‖2 +2

∑
|j|≤Dm

Var[νn(ϕj)] as small as possible. Let us study the order of the bias term

‖g − gm‖2 =
∑

|j|>Dm
|g∗(j)|2/(2π) which depends on the smoothness of the function g.
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Consider that g belongs to Sα,ν,ρ(Aα) defined by (5). Then, the bias term ‖g − gm‖2 is
bounded by

(2π)−1(Dm + 1)2α exp{−2ρ(Dm + 1)ν}
∑

|j|≥Dm+1

|g∗(j)|2|j|2α exp{2ρ|j|ν}

and consequently

‖g − gm‖2 ≤ (2π)−1Aα(Dm + 1)2α exp{−2ρ(Dm + 1)ν}.(13)

Let us come to the variance term
∑

|j|≤Dm
Var[νn(ϕj)]. If the Zi’s are independent random

variables, then

Var[νn(ϕj)] =
1

n2

n∑
i=1

Var
[
Vϕj

(Zi)
]

=
1

n
Var

[
Vϕj

(Z1)
]

which is bounded by

1

n
E
∣∣∣∣ϕj(Z1)

f ∗ε (−j)

∣∣∣∣2 ≤ 1

2πn|f ∗ε (j)|2
.

Consequently, we have the following bound for the variance∑
|j|≤Dm

Var[νn(ϕj)] ≤ ∆1(m)/(2πn)(14)

with ∆1(m) defined by

(15) ∆1(m) =
∑

|j|≤Dm

|f ∗ε (j)|−2.

Under A6, we get the bound

∆1(m) ≤ 2

A2
0

∫ Dm+1

0

(1 + x2)γ exp{2Bxδ}dx,

and therefore, arguing as in Comte and Taupin (2003), we infer that∑
|j|≤Dm

Var[νn(ϕj)] ≤ λ1

(Dm + 1)(2γ+1−δ) exp
{
2B(Dm + 1)δ

}
n

(16)

with λ1 = λ1(γ,A0, B, δ) defined by

λ1 =
2γR(B, δ)

πA2
0

,(17)

and R(B, δ) given by

(18) R(B, δ) = 1I{δ=0} +
1

2B(δ ∧ 1)
1I{δ>0} =

 1 if δ = 0
1/(2Bδ) if 0 < δ ≤ 1
1/(2B) if δ > 1.

Consequently, combining (12) and (16) we get that

(19) E(‖g − ĝm‖2) ≤ ‖g − gm‖2 + 2λ1

(Dm + 1)(2γ+1−δ) exp
{
2B(Dm + 1)δ

}
n

.
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Now, when the Zi’s are absolutely regular variables, we apply (38) (See Theorem 4.1 in
Section 4.2), which is the Delyon’s (1990) covariance Inequality, successfully exploited by
Viennet (1997). Hence Inequality (19) becomes

(20) E(‖g − ĝm‖2) ≤ ‖g − gm‖2 + 8(
∑
k

βk)λ1
(Dm + 1)(2γ+1−δ) exp{2B(Dm + 1)δ}

n
.

Let us now study this risk E(‖g− ĝm‖2), starting by the study of a special case. Assume
for a moment that g belongs to Sα,ν,ρ(Aα) with ν = 0 and that fε satisfies Assumption A6
with δ = 0. Then according (16),

∑
|j|≤Dm

Var[νn(ϕj)] has the order D1+2γ
m /n, and accord-

ing to (13), ‖g−gm‖2 has the order D−2α
m . Those bounds lead to choose the space Sm̆ with

dimension Dm̆ = n1/(2α+2γ+1). Therefore the estimator gm̆ attains the rate n−2α/(2α+2γ+1),
which is known to be the optimal rate for real variables (see Fan (1991a)). One can see
that this choice of Dm̆ depends on the unknown smoothness of g, α. This motivates us to
complete the procedure by an automatic selection of the space via a penalization of the
contrast. Note that bounds (13) and (16), respectively for the square bias term and for
the variance are the same (up to constants) as the analogue for real random variables in
Comte and Taupin (2003), Butucea (2003) and Butucea and Tsybakov (2003), where the
trade-off has been studied and shown to provide optimal rates. Combining those facts,
with the results in Efromovich (1997) we may infer that those rates are also optimal for
circular density deconvolution. Table 1 details the optimal choices of Dm and the asso-
ciated rates in function of the smoothness of the errors ε and of the function g, the first
one being known and not the second one.

fε
g

δ = 0 δ > 0

ν = 0
Dm̆ + 1 = n1/(2α+2γ+1)

rate n−2α/(2α+2γ+1)

Dm̆ + 1 = [ln(n)/(2B + 1)]1/δ

rate (ln(n))−2α/δ

ν > 0

Dm̆ + 1 = [ln(n)/2ρ]1/ν

rate
ln(n)(2γ+1)/ν

n

Dm̆ and the rate depend on the integer k
such that ν

δ
∧ δ

ν
∈ [ k

k+1
, k+1
k+2

[.

Table 1. Optimal choice of the dimension (Dm̆) and obtained rates.

Remark 2.1. When δ > 0 and ν > 0, then Dm̆ has not an explicit expression but
is solution of Equation (15) in Comte and Taupin (2003). In fact it depends on the
integer k such that ν/δ or δ/ν (depending on which one is less than one) belongs to
[k/(k + 1), (k + 1)/(k + 2)[. The main point to keep in mind here is that the rate is
always faster than any powers of ln(n) and even reaches the order ln(n)bn−ρ/(B+ρ) with
b = [−2αB + (2γ − ν + 1)ρ]/[ν(B + ρ)] when ν = δ.
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3. The results

The model selection procedure is required when the optimal choice of the space Sm
(here the choice of Dm) depends on the unknown function g. We aim at finding the
best model m̂ in Mn, based on the data and not on prior information on g, such that
the risk of the resulting estimator is almost as good as the risk of the best estimator in
the family. The model selection is performed in an automatic way, using the following
penalized criteria

(21) g̃ = ĝm̂ with m̂ = Argmin m∈Mn
[γn(ĝm) + pen(m)] .

The quantity pen is a penalty function, based on the observations, that we would like to
find such that

(22) E ‖ g̃ − g ‖2≤ inf
m∈Mn

[
‖ g − gm ‖2 +2λ1

(Dm + 1)2γ+1−δ exp{2B(Dm + 1)δ}
n

]
.

in the independent case or such that
(23)

E ‖ g̃ − g ‖2≤ inf
m∈Mn

[
‖ g − gm ‖2 +8λ1(

∑
k

βk)
(Dm + 1)2γ+1−δ exp{2B(Dm + 1)δ}

n

]
,

in the β-mixing case, where λ1 = λ1(γ,A0, B, δ) is given by (17).
We do not reach (22) in all cases but state the following theorem.

Theorem 3.1. Consider the model (1) under Assumptions A1-A3, A4–A6 and the
collection of estimators ĝm defined by (7) for 1 ≤ m ≤ mn ≤ n1/(2γ+1).
1) Let δ > 1 and g̃ = ĝm̂ be defined by (21) with

pen(m) = κλ1
(Dm + 1)2γ−δ+1 exp{2B(Dm + 1)δ}

n
,

where κ is some universal numerical constant, and λ1 = λ1(γ,A0, B, δ) and R(B, δ) are
defined by (17) and (18).
2) Let 0 ≤ δ ≤ 1/3, and g̃ = ĝm̂ be defined by (21) with

pen(m) = κ

(
λ1 +

BR1/2(2B, δ)‖fε‖
A2

0

)
(Dm + 1)2γ−δ+1 exp{2B(Dm + 1)δ}

n
,

for some universal numerical constant κ.
3) Let 1/3 < δ ≤ 1 and g̃ = ĝm̂ be defined by (21) with

pen(m) = κ

(
λ1 +

BR1/2(2B, δ)‖fε‖
A2

0

)
(Dm + 1)2γ+1/2+δ/2 exp{2B(Dm + 1)δ}

n

where κ is some universal numerical constant.
Then in these three cases, g̃ satisfies

(24) E(‖g − g̃‖2) ≤ K inf
m∈{1,...,mn}

[‖g − gm‖2 + pen(m)] +
c

n
,

where K and c are constants depending on fε, B, δ, γ.
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Remark 3.1. The construction of the estimator g̃ does not require any knowledge on
the unknwon density g and its rate of convergence is nearly the rate of the best estimator
over the family (ĝm)m∈Mn . Furthermore, its rate is easily deduced from (24) as soon as g
belongs to some space Sα,ν,ρ(Aα) defined by (5), using Inequality (13) with the important
advantage that the procedure reach automatically the rate without any prior information
on α, ν and ρ.

Remark 3.2. In the first two cases, δ > 1, and 0 ≤ δ ≤ 1/3, Inequality (22) holds
up to constants, since the penalty function pen(m) is of the variance order. It follows
that in both cases, the resulting rates are optimal. In the last case, namely when 1/3 <
δ ≤ 1, the penalty function pen(m) is not exactly of the variance order, but of order

D
2γ+δ/2+1/2
m exp(2B(Dm + 1)δ)/n, with a loss of order D

(3δ−1)/2
m . This loss in the variance

term has no consequence on the rate when the rate is determined by the squared bias
term. It follows that the rate remains optimal if the bias ‖g − gm‖2 is the dominating
term in the trade-off between ‖g − gm‖2 and pen(m), which happens for instance, when
ν = 0. When pen(m) is the dominating term in the trade-off between ‖g − gm‖2 and

pen(m), there is a loss of order D
(3δ−1)/2
m . According to Remark 2.1, this happens in cases

where Dm is of logarithmic order and consequently the loss is logarithmic, when the rate
is faster than logarithmic: therefore the loss happens only in cases when it can be seen as
negligible.

Is this logarithmic loss avoidable? Tsybakov (2000) partially answers the question.
Indeed, in the particular case δ = ν = 1, he shows that, for general inverse problems with
real variables, a logarithmic loss in adaptivity of order ln(n)B/(ρ+B) appears and is not
avoidable. And, when ν = δ = 1, the optimal Dm̆ + 1 equals ln(n)B/(ρ+B) and therefore
the loss in adaptivity of our estimator is of order ln(n)B/(ρ+B), which is the same as the
loss exhibited by Tsybakov (2000) for real variables. It follows that, at least in this case,
the logarithmic loss seems not avoidable and consequently, the rate of our estimator seems
optimal among adaptive estimators .

Consequently, the adaptive procedure remains a good strategy, even if in that case, it
implies a small loss in the rate as a price to pay for ignoring how smooth the unknown
function g is. This strategy is all the more relevant that it solves almost optimally the
problem in cases where the optimal Dm̆ and thus the rate are difficult to compute.

Remark 3.3. The case δ > 1 requires a special comment. In the case of real random
variables, Comte and Taupin (2003) exhibit an adaptive penalized constrast estimator
having a nearly optimal rate of convergence when δ > 1. This fact comes from a loga-
rithmic loss in the penalty function compared to the expected variance order. Whereas,
in the case of circular random variables, the adaptive estimator reaches the optimal rate
even when δ > 1. This fact is even more noteworthy that the case δ > 1 contains the case
of Gaussian errors (δ = 2).

In the mixing case, we establish the following Corollary.

Corollary 3.1. Consider the model (1) under A1, A2, A3’, A4–A6, and the collection
of estimators ĝm defined by (7) for 1 ≤ m ≤ mn where mn is such that pen(mn) is
bounded by some constant. Assume moreover that the Zi’s are arithmetically β-mixing,
that is βk ≤ Ck−(1+θ), for all k ∈ N, with θ > 3.
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1) Let 0 ≤ δ ≤ 1/3 or δ > 1. Let g̃ = ĝm̂ be defined by (21) with

pen(m) = C1(
∑
k∈N

βk)
(Dm + 1)2γ+1−δ exp{2B(Dm + 1)δ}

n
,

for some constant C1 depending on γ,A0, B, δ,
∑

k βk,
∑

k kβk and ‖h‖∞.
2) Let 1/3 < δ ≤ 1 and let g̃ = ĝm̂ be defined by (21) with

pen(m) = C2(
∑
k∈N

βk)
(Dm + 1)2γ+1/2+δ/2 exp{2B(Dm + 1)δ}

n

for some constant C2 depending on γ,A0, B, δ,
∑

k βk,
∑

k kβk and ‖h‖∞.
Then in these two cases, g̃ satisfies

(25) E(‖g − g̃‖2) ≤ K inf
m∈{1,...,mn}

[
‖g − gm‖2 + pen(m)

]
+
c

n
,

where K and c are constants depending on fε and on the mixing coefficients.

Obviously, the previous result holds in the geometrical β-mixing case, that is when
βk ≤ C exp{−θk}, for all k ∈ N with no condition on the rate θ.

The result given in Corollary 3.1 is analogous to the results obtained in the independent
case, up to the constants. Nevertheless, the above corollary is mainly a result of robustness
of the estimators since the penalty found in the mixing framework contains unknown
coefficients, namely ‖h‖∞,

∑
k βk and

∑
k kβk.

4. Proofs

4.1. Proof of Theorem 3.1 : the i.i.d. case. The following decompositions illustrate
that the deconvolution problem can be treated using a classical model selection scheme.
By definition, g̃ satisfies that for all m ∈Mn,

γn(g̃) + pen(m̂) ≤ γn(gm) + pen(m).

Therefore, by applying (10), we get

‖ g̃ − g ‖2 ≤ ‖g − gm‖2 + 2νn(g̃ − gm) + pen(m)− pen(m̂).(26)

Next, we use that if t = t1 + t2 with t1 in Sm and t2 in Sm′ , then t belongs to Sm∨m′ .
Denoting by Bm,m′(0, 1) the set

Bm,m′(0, 1) = {t ∈ Sm∨m′ / ‖t‖ = 1},
we get that

|νn(g̃ − gm)| ≤ ‖g̃ − gm‖ sup
t∈Bm,m̂(0,1)

|νn(t)|.

Consequently, by using that 2ab ≤ x−1a2 + xb2, we find

1

2
‖g̃ − g‖2 ≤ 3

2
‖g − gm‖2 + pen(m) + 4 sup

t∈Bm,m̂(0,1)

ν2
n(t)− pen(m̂).

For some positive function p(m,m′) such that 4p(m,m′) ≤ pen(m)+pen(m′), we get that

1

2
‖ g̃ − g ‖2 ≤ 3

2
‖ g − gm ‖2 +2pen(m) + 4

∑
m′∈Mn

Wn(m
′)(27)
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where Wn(m
′) is defined as

(28) Wn(m
′) :=

( sup
t∈Bm,m′ (0,1)

|νn(t)|

)2

− p(m,m′)


+

.

The main point of the proof lies in finding p(m,m′) such that

(29)
∑

m′∈Mn

E(Wn(m
′)) ≤ C/n,

where C is a constant. Combining (27) and (29) we infer that, for all m in Mn,

E‖g − g̃‖2 ≤ 3‖g − gm‖2 +
12C

n
+ 4pen(m),

which can also be written

(30) E‖g − g̃‖2 ≤ K inf
m∈Mn

[
‖g − gm‖2 + pen(m)

]
+

12C

n
,

where K = 4 suits. If pen(m) has the same order as the variance order ∆1(m)/n, then
equation (30) guarantees an automatic trade-off between the squared bias term ‖g−gm‖2

and the variance term, up to some multiplicative constant and (22) follows. It remains
thus to find p(m,m′) such that (29) holds. In the i.i.d. case, (29) follows by applying the
following version of Talagrand’s Inequality given below.

Lemma 4.1. Let Y1, . . . , Yn be i.i.d. random variables and ν̄n(f) be defined by ν̄n(f) =
(1/n)

∑n
i=1[f(Yi)−E(f(Yi))] for f belonging to a countable class F of uniformly bounded

measurable functions. Then

E
[
sup
f∈F

|ν̄n(f)|2 − 2(4 + ξ2)H2

]
+

≤ 6

K1

(
v

n
exp

{
−K1ξ

2nH
2

v

}
+

4M2
1

K1n2
exp

{
−K1ξ√

2

nH

M1

})
,

where K1 is a universal constant,

sup
f∈F

‖f‖∞ ≤M1, E
(

sup
f∈F

|ν̄n(f)|
)
≤ H, and sup

f∈F
Var(f(Y1)) ≤ v.

We apply Talagrand’s Inequality (see Lemma 4.1) to the process ν̄n(Vt) = νn(t) with
F = Bm,m′(0, 1). Indeed, by usual density arguments we can conclude that this result can
be applied to this class of functions. Let us denote by m∗ = m∨m′ and by H = H(m∗) a

judicious bound for E
(
supt∈Bm,m′ (0,1) |νn(t)|

)
. From Definition (28) of Wn(m

′), by taking

p(m,m′) = 2(4 + ξ2)H2, we get that

E(Wn(m
′) ≤ E

[
sup

t∈Bm,m′ (0,1)

|νn(t)|2 − 2(4 + ξ2)H2

]
+

.

By Applying Lemma 4.1 to the above right hand side , we get the global bound∑
m′∈Mn

E(Wn(m
′) ≤ K

∑
m′∈Mn

[I(m∗) + II(m∗)],
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where I(m∗) and II(m∗) are defined by

I(m∗) =
v

n
exp

{
−K1ξ

2nH
2

v

}
and II(m∗) =

M2
1

n
exp

{
−K1ξ√

2

nH

M1

}
,

with M1, H and v such that

sup
t∈Bm,m′ (0,1)

‖Vt‖∞ ≤M1, E

(
sup

t∈Bm,m′ (0,1)

|νn(t)|

)
≤ H and sup

t∈Bm,m′ (0,1)

Var(Vt(Z1)) ≤ v.

It remains thus to suitably choose M1, H, v and also ξ2 = ξ2(m,m′) such that∑
m′∈Mn

[I(m∗) + II(m∗)] ≤ C/n,

in the way that (29) holds, with p(m,m′) = 2(4 + ξ2)H2(m∗) and pen(m) = 4p(m,m).
For t belonging to Bm,m′(0, 1), write t =

∑
|j|≤Dm∗ aj(t)ϕj with

∑
|j|≤Dm∗ aj(t)

2 = 1. It

follows, by applying (14), that

E

[
sup

t∈Bm,m′ (0,1)

|νn(t)|

]
≤ E


 ∑
|j|≤Dm∗

(νn(ϕj))
2

1/2
 ≤

 ∑
|j|≤Dm∗

Var(νn(ϕj))

1/2

≤
(

∆1(m
∗)

2πn

)1/2

,

with ∆1(m) defined by (15). Consequently, according to (16), we take

H2 = H2(m∗) = λ1
(Dm∗ + 1)2γ+1−δ exp{2B(Dm∗ + 1)δ}

n
,

with λ1 = λ1(γ,A0, B, δ) defined by (17). In the same manner,

‖Vt‖∞ ≤

 ∑
|j|≤Dm∗

aj(t)
2
∑

|j|≤Dm∗

∣∣∣∣ ϕj
f ∗ε (j)

∣∣∣∣2
1/2

≤

 1

2π

∑
|j|≤Dm∗

∣∣∣∣ 1

f ∗ε (j)

∣∣∣∣2
1/2

and therefore

‖Vt‖∞ ≤
(

∆1(m
∗)

2π

)1/2

.(31)

with ∆1(m) defined by (15). Consequently we takeM1 =
√
nH2. Lastly, since Var(Vt(Z1)) ≤

E|Vt(Z1)|2 with

E|Vt(Z1)|2 =
∑

|j|≤Dm∗ ,|k|≤Dm∗

aj(t)āk(t)f
∗
ε (j − k)g∗(j − k)

2πf ∗ε (j)f
∗
ε (−k)

,
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we get, by using that ‖g∗‖∞ ≤ 1 and by applying Cauchy-Schwarz Inequality, that

[Var(Vt(Z1))]
2 ≤ 1

(2π)2

∑
|j|≤Dm,|k|≤Dm

∣∣∣∣ f ∗ε (j − k)

f ∗ε (j)f
∗
ε (−k)

∣∣∣∣2

≤ 1

(2π)2

 ∑
|j|≤Dm,|k|≤Dm

|f ∗ε (j − k)|2

|f ∗ε (j)|4
∑

|j|≤Dm,|k|≤Dm

|f ∗ε (j − k)|2

|f ∗ε (−k)|4

1/2

.

Since
∑

k∈Z |f ∗ε (k)|2 = 2π‖fε‖2, we find [Var(Vt(Z1))]
2 ≤ ‖fε‖2∆2(m

∗)/(2π), with

∆2(m) =
∑

|j|≤Dm

|f ∗ε (j)|−4.(32)

Clearly, the resulting choices of v are given by the bounds found for ∆2(m). If δ > 1,
∆2(m) is bounded in the following way

∆2(m) ≤ 2A−4
0 (Dm + 1)(D2

m + 1)2γ exp{4BDδ
m}

≤ 2A−4
0 (Dm + 1)4γ+1 exp{4BDδ

m}.

It follows that, if δ > 1 we take

(33) v =
‖ fε ‖
A2

0

√
π

(Dm + 1)2γ+1/2 exp{2BDδ
m}.

Now, if δ ≤ 1, then write that

∆2(m) ≤ 2

A4
0

∫ Dm+1

0

(x2 + 1)4γ exp(4B|x|δ)dx

≤ 2R(2B, δ)

A4
0

(Dm + 1)4γ+1−δ exp{4B(Dm + 1)δ}

Consequently, if δ ≤ 1 we take

(34) v =
R1/2(2B, δ) ‖ fε ‖

A2
0

√
π

(Dm + 1)2γ+1/2−δ/2 exp{2B(Dm + 1)δ}.

Let us study
∑

m′∈Mn
E(Wn(m

′))
1) Case δ > 1. In that case, v is given by (33), I(m∗) equals

‖fε‖√
πA2

0

(Dm∗ + 1)2γ+1/2

n
exp

[
2BDδ

m∗ −
√
πA2

0λ1

‖ fε ‖
ξ2D∗

m
1/2−δ exp{2B[(Dm∗ + 1)δ −Dδ

m∗ ]}
]

and therefore, for some constant K ′,

I(m∗) ≤ K ′D
2γ+1/2
m∗

n
exp

{
2BDδ

m∗ −
√
πA2

0λ1

‖ fε ‖
ξ2 exp{2δBδDδ−1

m∗ }
}
.

Choose ξ2 = 1. For any m and m′ in Mn such that Dm∗ is great enough, the following
inequality always holds

2BDδ
m∗ −

√
πA2

0λ1

‖ fε ‖
exp

(
2δBδDδ−1

m∗

)
< −(Dm∗)1/2.
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It follows that there exists some constant c such that∑
m′∈Mn

I(m∗) ≤ c/n and
∑

m′∈Mn

II(m∗) ≤ c/n.

This choice for ξ2 ensures that
∑

m′∈Mn
E[Wn(m

′)] ≤ C/n, for some constant C. Conse-
quently we take

p(m,m′) = 10λ1
(D∗

m + 1)2γ+1−δ exp{2B(D∗
m + 1)δ}

n
,

and

pen(m) = 40λ1
(Dm + 1)2γ+1−δ exp{2B(Dm + 1)δ}

n
.

2) Case 0 ≤ δ ≤ 1/3. Then v is given by (34), δ ≤ (1/2− δ/2) and I(m∗) equals

(35)
R1/2(2B, δ)‖fε‖

A2
0

√
π

(D∗
m + 1)2γ+1/2−δ/2 exp{2B(D∗

m + 1)δ} exp{−K ′′ξ2D
(1/2−δ/2)
m∗ }

n

where K ′′ = (K1λ1A
2
0

√
π)/[R1/2(2B, δ)‖fε‖]. The choice ξ2 = (4B)/(K ′′) ensures the

convergence of
∑

m′∈Mn
I(m∗). Indeed, if we denote by ψ = 2γ + (1/2 − δ/2), by ω =

(1/2− δ/2), then for a, b ≥ 1, we infer that

(36) (a ∨ b)ψ exp{2B(a ∨ b)δ} exp{−K ′′ξ2(a ∨ b)ω}
≤ (aψ exp{2Baδ}+ bψ exp{2Bbδ}) exp{−(K ′′ξ2/2)(aω + bω)}
≤ aψ exp{2Baδ} exp{−(K ′′ξ2/2)aω} exp{−(K ′′ξ2/2)bω}

+ bψ exp{2Bbδ} exp{−(K ′′ξ2/2)bω)}.

When 0 ≤ δ ≤ 1/3, (1/2−δ/2) ≥ δ and the function a 7→ aψ exp{2Baδ} exp{−(K ′′ξ2/2)aω}
is bounded on R+ by a constant, κ, only depending on γ, δ and K ′′. It follows that
there exists some constant C, such that

∑
m′∈Mn

I(m∗) ≤ C/n. The same holds for∑
m′∈Mn

II(m∗) and consequently, (29) holds. In that case we choose

p(m,m′) = 2(4 + ξ2)λ1
(D∗

m + 1)2γ+1−δ exp{2B(D∗
m + 1)δ}

n
,

and

pen(m) = 8(4 + ξ2)λ1
(Dm + 1)2γ+1−δ exp{2B(Dm + 1)δ}

n
.

3) Case 1/3 < δ ≤ 1. In that case, δ > (1/2− δ/2), v is given by (34) and I(m∗) by
(35). Bearing in mind Inequality (36) we choose ξ2 = ξ2(m,m′) such that

2B(Dm∗ + 1)δ − π1/2K1A
2
0λ1

R1/2(2B, δ) ‖ fε ‖
ξ2(Dm∗ + 1)ω = −2B(Dm∗ + 1)δ

that is

ξ2 = ξ2(m,m′) =
4BR1/2(2B, δ)‖fε‖(Dm∗ + 1)δ−ω

K1A2
0λ1

√
π

=
4BR1/2(2B, δ)‖fε‖(Dm∗ + 1)(3δ−1)/2

K1A2
0λ1

√
π

.

This choice for ξ2 ensures that, for some constant c,
∑

m′∈Mn
I(m∗) ≤ c/n, that

∑
m′∈Mn

II(m∗) ≤
c/n and consequently (29) is fulfilled. The result follows by taking

p(m,m′) = 2(4 + ξ2(m,m′))λ1(Dm∗ + 1)2γ+1−δ exp(2B(Dm∗ + 1)δ)/n,
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and

pen(m) = 8(4 + ξ2(m,m))λ1(Dm + 1)2γ+1−δ exp(2B(Dm + 1)δ)/n.

4.2. Proof of Corollary 3.1 : the absolutely regular case. We use below De-
lyon’s (1990) covariance Inequality, successfully exploited by Viennet (1997) for partial
sums of strictly stationary processes, that we start by recalling.

Theorem 4.1. (Delyon (1990), Viennet (1997)) Let P be the distribution of Z0 on a
probability space X ,

∫
fdP = EP (f) for any function f P -integrable. For r ≥ 2, let

L(r, β, P ) be the set of functions b : X → R+ such that

b =
∑
l≥0

(l + 1)r−2bl with 0 ≤ bl ≤ 1 and EP (bl) ≤ βl,

We define Br as Br =
∑

l≥0(l + 1)r−2βl. Then for 1 ≤ p < ∞ and any function b in
L(2, β, P ),

(37) EP (bp) ≤ pBp+1,

as soon as Bp+1 < ∞. The following result holds for a strictly stationary absolutely
regular sequence, (Zi)i∈Z, with β-mixing coefficients (βk)k≥0: if B2 < +∞, there exists
b ∈ L(2, β,∞) such that for any positive integer n and any measurable function f ∈ L2(P ),
we have

(38) Var

(
n∑
i=1

f(Zi)

)
≤ 4nEP (bf 2) = 4n

∫
b(x)f 2(x)dP (x).

By applying Inequality (38), we state (20).
We also use Berbee’s coupling Lemma extended to sequences (see Bryc’s (1982) con-

struction), to build approximating variables for the Zi’s. More precisely, we build variables
Z?
i such that if n = 2pnqn + rn, 0 ≤ rn < qn, and ` = 0, · · · , pn − 1

A?` = (Z?
2`qn+1, ..., Z

?
(2`+1)qn), B?

` = (Z?
(2`+1)qn+1, ..., Z

?
(2`+2)qn),

and analogous definition without stars, then

- A?` and A` have the same law,
- P(A` 6= A?`) ≤ βqn ,
- A?` and (A0, A1, ..., A`−1, A

?
0, A

?
1, · · · , A?`−1) are independent.

The blocks B?
` are built in the same way. Without loss of generality and for sake of

simplicity we assume that rn = 0.
Starting from (26), and denoting by ν?n the empirical contrast computed on the Z?

i , we
write

‖g̃ − g‖2 ≤ 2|νn(g̃ − gm)− ν?n(g̃ − gm)|+ 2|ν?n(g̃ − gm)|+ ‖g − gm‖2 + pen(m)− pen(m̂)

and therefore arguing as for (27) in the independent case we get that

1

2
‖g̃ − g‖2 ≤ 3

2
‖g − gm‖2 + 2pen(m) + 4

(
sup

t∈Bm,m̂(0,1)

|ν?n(t)|2 − p(m, m̂)

)
+2|νn(g̃ − gm)− ν?n(g̃ − gm)|,(39)
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where p(m,m′) is a function such that 4p(m,m′) ≤ pen(m)+pen(m′) as previously. Now
write that

2|νn(g̃ − gm)− ν?n(g̃ − gm)| =
2

n

∣∣∣∣∣
n∑
i=1

[V(g̃−gm)(Zi)− V(g̃−gm)(Z
?
i )]

∣∣∣∣∣
≤ 4

n
‖g̃ − gm‖ sup

t∈Bmn (0,1)

‖Vt‖∞
n∑
i=1

1IZi 6=Z?
i
,

and apply (31) to get the Bound

2|νn(g̃ − gm)− ν?n(g̃ − gm)| ≤ 4‖g̃ − gm‖
(

∆1(mn)

2π

)1/2
(

1

n

n∑
i=1

1IZi 6=Z?
i

)
.

It follows, again by using that 2ab ≤ x−1a2 + xb2, that

2|νn(g̃ − gm)− ν?n(g̃ − gm)| ≤ 1

4
‖g̃ − gm‖2 +

16∆1(mn)

2π

(
1

n

n∑
i=1

1IZi 6=Z?
i

)2

≤ 3

8
‖g̃ − g‖2 +

3

4
‖g − gm‖2 +

16∆1(mn)

2π

(
1

n

n∑
i=1

1IZi 6=Z?
i

)2

.(40)

Let W ?
n(m′) be defined as in (28) with Z?

i replacing Zi. By gathering (39) and (40) we
get that

1

8
‖g̃ − g‖2 ≤ 9

4
‖g − gm‖2 + 4

∑
m′∈Mn

W ?
n(m′) + 2pen(m) +

16∆1(mn)

2π

(
1

n

n∑
i=1

1IZi 6=Z?
i

)2

.

Consequently

‖g̃ − g‖2 ≤ 18‖g − gm‖2 + 16pen(m) + 32
∑

m′∈Mn

W ?
n(m′) +

64∆1(mn)

π

(
1

n

n∑
i=1

1IZi 6=Z?
i

)2

.

Therefore by using that E
(
n−1

∑n
i=1 1IZi 6=Z?

i

)2 ≤ βqn , we infer that, for all m ∈Mn,

E‖g − g̃‖2 ≤ 18‖g − gm‖2 + 16pen(m) +
C1 + 32C2

n
,

provided that

(41)
64∆1(mn)

π
βqn ≤

C1

n

and

(42)
∑

m′∈Mn

E(W ?
n(m′)) ≤ C2

n
.

In order to ensure that our estimators converge, we only consider models such that the
penalty is bounded, that is, by using (16), such that (Dmn +1)2γ+1−δ exp{2B(Dmn +1)δ} ≤
n. This implies that (41) is fulfilled as soon as

(43) βqn ≤ C ′
1/n

2.
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When the mixing is geometrical, (43) holds with no condition on θ by choosing qn =
ln(n)/(4θ). When the mixing is arithmetical, we take qn = [nc] with c ∈]0, 1/2[ and (43)
becomes n−c(1+θ) ≤ κn−2 which holds as soon as θ > 3. We now come to the proof of (42),
and study W ?

n(m′) which must be split into two terms 1
2
(W ?

,1(m
′) + W ?

n,2(m
′)) involving

respectively the odd and even blocks and which are of the same type. More precisely
W ?
n,1(m

′) and W ?
n,2(m

′) are given, for k = 1, 2 by

W ?
n,k(m

′) =

( sup
t∈Bm,m′ (0,1)

∣∣∣∣∣ 1

pnqn

pn∑
`=1

qn∑
i=1

(
Vt(Z

?
(2`+k−1)qn+i)− 〈t, g〉

)∣∣∣∣∣
)2

− p1(m,m
′)


+

We only study W ?
n,1(m

′) and conclude for W ?
n,2(m

′) by using analogous arguments. Let
us denote by m∗ = m ∨m′. We apply Lemma 4.1 to the process ν?n,1(t) defined by,

ν?n,1(t) =
1

pnqn

pn∑
`=1

qn∑
i=1

(
Vt(Z

?
2`qn+i)− 〈t, g〉

)
=

1

pn

pn∑
`=1

ν?qn,`(t),(44)

considered as the sum of the pn independent random variables ν?qn,`(t) defined as

ν?qn,`(t) = (1/qn)

qn∑
j=1

Vt(Z
?
2`qn+j)− 〈t, g〉.(45)

If we denote by H? = H?(m′) a bound for E
[
supt∈Bm,m′ (0,1) |ν?n,1(t)|

]
, to be suitably

chosen, and if we take p1(m,m
′) = 2(4 + ξ2)(H?)2, we get that

E(W ?
n,1(m

′)) ≤ E

[
sup

t∈Bm,m′ (0,1)

|ν?n,1(t)|2 − 2(4 + ξ2)(H?)2

]
+

.

Apply Lemma 4.1 to the above right hand side to obtain the global bound∑
m′∈Mn

E(W ?
n,1(m

′)) ≤ K
∑

m′∈Mn

[I?(m∗) + II?(m∗)],

with I?(m∗) and II?(m∗) defined by

I?(m∗) =
v?

pn
exp

{
−K1ξ

2pn(H
?)2

v?

}
and II(m∗) =

(M?
1 )2

p2
n

exp

{
−K1ξ√

2

pnH
?

M?
1

}
,

with M?
1 , H? and v? such that

sup
t∈Bm,m′ (0,1)

‖ ν?qn,`(t) ‖∞≤M?
1 , E( sup

t∈Bm,m′ (0,1)

|ν?n,1(t)|) ≤ H?, sup
t∈Bm,m′ (0,1)

Var(ν?qn,`(t)) ≤ v?.

As in the independent case, it remains thus to suitably choose M?
1 , H?, v? and also

ξ2 = ξ2(m,m′) such that ∑
m′∈Mn

[I?(m∗) + II?(m∗)] ≤ C/n.

in the way that (42) holds, with p(m,m′) = 2(4 + ξ2)(H?)2(m∗) and pen(m) = 4p(m,m).
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Clearly, M?
1 = 2M1. By applying Inequalities (37) and (38) for p = 1, we propose to

take (H?)2 given by

(H?)2 = (H?(m∗))2 =
4λ1(

∑
k βk)(Dm∗ + 1)2γ+1−δ exp{2B(Dm∗ + 1)δ}

n
,

where λ1 = λ1(γ,A0, B, δ) is still given by (17). By using again Inequality (38) and
arguing as in the independent case,[

sup
t

Var(ν?qn,`(t))

]2

≤
(

2

πqn

)2 ∑
|j|≤Dm∗ ,|k|≤Dm∗

∣∣∣∣ (bh)∗(j − k)

f ∗(j)f ∗(−k)

∣∣∣∣2
≤

(
2

πqn

)2 ∑
|k|≤Dm∗

|(bh)∗(k)|2∆2(m
∗),

where ∆2(m) is defined by (32). Then, write∑
k∈Z

|(bh)∗(k)|2 = 2π‖bh‖2 ≤ 2π‖h‖∞
∫
b2(x)h(x)dµπ(x) ≤ 4π‖h‖∞

∑
k∈N

(1 + k)βk.

It follows that for δ ≤ 1, we take

(46) v? =
4‖h‖1/2

∞ R1/2(2B, δ)
(∑

k∈N(1 + k)βk
)1/2

A2
0

√
π

(Dm∗ + 1)2γ+1−δ exp{2B(Dm∗ + 1)δ}
qn

,

and for δ > 1 we take

(47) v? =
4‖h‖1/2

∞
(∑

k∈N(1 + k)βk
)1/2

A2
0

√
π

(Dm∗ + 1)2γ+1/2 exp{2BDδ
m∗}

qn
.

Now, by taking p1(m,m
′) = 2(4 + ξ2)(H?)2 we get the global bound∑

m′∈Mn

E(W ?
n,1(m

′)) ≤ K
∑

m′∈Mn

[I?(m∗) + II?(m∗)],

with m∗ = m ∨m′, where I?(m∗) has the same order as the analogous term I(m∗) in the
independent case and is bounded in the same manner, and where II?(m∗) is defined by

II?(m∗) =
λ2

1q
2
n(Dm∗ + 1)4γ+2−2δ exp{4B(Dm∗ + 1)δ}

n2
exp

{
−K1ξ (

∑
k βk)

1/2

√
2

√
n

qn

}
.

The main difference lies in the study of the second term II?(m∗). When the mixing is
geometrical then qn = ln(n)/(4θ) ensures that

q2
n

n2

∑
m′∈Mn

(Dm∗ + 1)2γ+1−δ exp{2B(Dm∗ + 1)δ} exp

{
−K1ξ(

∑
k βk)

1/2

√
2

√
n

qn

}
≤ C/n.(48)

When the mixing is arithmetical, then qn = [nc], with c in ]0, 1/2[ ensures that (48) holds
and consequently ∑

m′∈Mn

II?(m∗) ≤ C/n.
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Finally
∑

m′∈Mn
E[W ?

n(m′)] ≤ 2
∑

m′∈Mn
E[W ?

n,1(m
′) +W ?

n,2(m
′)] ≤ C/n, if

p1(m,m
′) = p2(m,m

′) = 8λ1(4 + ξ2(m,m′))(
∑
k

βk)D
2γ+1−δ
m∗ exp{2B(πDm∗)δ}/n,

with ξ2(m,m′) = 1 if δ > 1, ξ2(m,m′) = 4B/K(3), and

K(3) =

√
πK1A

2
0

∑
k βk

4‖h‖1/2
∞ R1/2(2B, δ) (

∑
k(1 + k)βk)

1/2

if 0 ≤ δ ≤ 1/3 and ξ2(m,m′) = (4B/K(3))(Dm∗ + 1)(3δ−1)/2 if 1/3 < δ ≤ 1. The result
follows by choosing p(m,m′) = 2p1(m,m

′) + 2p2(m,m
′) and

pen(m) = 128λ1(4 + ξ2(m,m))(
∑
k

βk)D
2γ+1−δ
m exp{2B(πDm)δ}/n.
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