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Abstract. This paper presents a general methodology for nonparametric estimation of a function s
related to a nonnegative real random variable X, under a constraint of type s(0) = c. Three di�erent
examples are investigated: the direct observations model (X is observed), the multiplicative noise
model (Y = XU is observed, with U following a uniform distribution) and the additive noise model
(Y = X + V is observed where V is a nonnegative nuisance variable with known density). When
a projection estimator of the target function is available, we explain how to modify it in order to
obtain an estimator which satis�es the constraint. We extend risk bounds from the initial to the new
estimator. Moreover if the previous estimator is adaptive in the sense that a model selection procedure
is available to perform the squared bias/variance trade-o�, we propose a new penalty also leading to
an oracle type inequality for the new constrained estimator. The procedure is illustrated on simulated
data, for density and survival function estimation.
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1. Introduction

In the statistical literature, di�erent types of global constraints have been studied from nonpara-
metric functional estimation point of view, such as convexity or monotonicity constraints. Speci�c
procedures have been proposed to obtain for instance decreasing density estimators, see Huang and
Wellner (1995), Balabdaoui and Wellner (2007). We may also mention the proposal of Chernozhukov
et al. (2009) where an estimator of a weakly increasing function is modi�ed to get a weakly increas-
ing estimator, with no in�uence on the risk value. These authors propose an associated R-package
Rearrangement which may be used in our setting when considering decreasing survival functions.

We are interested in a di�erent question, namely: given an estimator built in the Laguerre basis,
can we coherently modify it in order to �x its value in one speci�c point?

More precisely, consider a square integrable function s with support R+, as this currently occurs for
lifetimes densities or survival functions in survival analysis, reliability and actuarial sciences. When s
is square integrable, a natural idea is to consider its development in the Laguerre basis, de�ned by

ϕ0(x) =
√

2e−x, ϕk(x) =
√

2Lk(2x)e−x for k ≥ 1, x ≥ 0, (1.1)

with Lk the Laguerre polynomials

Lk(x) =

k∑
j=0

(−1)j
(
k

j

)
xj

j!
. (1.2)

Indeed, the Laguerre basis is orthonormal for the integral scalar product on R+, 〈s, t〉 =
∫ +∞

0 s(x)t(x)dx.
In other words, we write that s =

∑
j≥0 aj(s)ϕj with aj(s) = 〈s, ϕj〉. Then we consider that

observations Y1, . . . , Yn related to s are available and allow us to build a projection estimator ŝm
of s: ŝm =

∑m−1
j=0 âjϕj where âj for j = 0, . . . ,m − 1 are known functions of the observations.

Moreover we assume that E[âj ] = aj(s) and call ŝm a projection estimator of s as it is an unbi-

ased estimator of sm =
∑m−1

j=0 aj(s)ϕj , the orthogonal projection of s on the m-dimensional space

Sm = span(ϕ0, . . . , ϕm−1).
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Now, our question in this paper is the following. If s is subject to a constraint s(0) = c, can we
coherently modify ŝm and propose a new estimate s̃m such that s̃m(0) = c. Indeed, obviously, if s is a
survival function supported on R+, it must satisfy the constraint with c = 1; and there are examples
where densities should be constrained by c = 0. As noted in Mabon (2015) and Comte and Dion
(2016), this starting value is rather unstable in the Laguerre basis, so including the constraint in the
procedure is likely to improve the estimator.

This is the problem solved in this work. We propose a general de�nition of the constrained estimator
and prove that its mean-square integrated risk on R+ is comparable to the risk of ŝm. The idea is to
write the projection estimator ŝm as a minimum contrast estimator and then to modify this contrast
by standard Lagrange multiplier strategy. If a model selection procedure allowing for a relevant choice
of m is available for ŝm, a modi�cation is proposed, ensuring also a relevant choice of m for s̃m, under
simple conditions.

The procedure is illustrated through several examples. First, s can simply be the density or the
survival function of the random observations at hand, and we discuss this setting in relation with
general procedures described in Efromovich (1999) or Massart (2007).

Our second example is the so-called multiplicative censoring model, a terminology introduced by
Vardi (1989), with applications in survival analysis in van Es et al. (2000). In this model, the ob-
servations are the Yi = XiUi with Xi and Ui independent and Ui following a uniform distribution
on [0, 1]. The random variables (Xi)1≤i≤n are independent and identically distributed (i.i.d.) and so
are the (Ui)1≤i≤n. We observe an i.i.d. sample of Yi's while we are interested in the density or the
survival function of X. Consider a setting where X is the true positive survival time of a patient, who
has been sampled, while Y represents his observed survival time, then van Es et al. (2000) explain
that it is natural to assume that the time point of sampling is uniformly distributed over the whole
survival period of length X. Besides, Andersen and Hansen (2001) study this problem as an inverse
problem, projection wavelet estimators are studied by Abbaszadeh et al. (2013), Brunel et al. (2016)
propose kernel estimators of the density and the survival function, and Belomestny et al. (2016) con-
sider Laguerre projection estimators when Ui follows a general β(1, k) distribution (the case k = 1
corresponds to the uniform). Here, we study a projection Laguerre estimator of both the density and
the survival function: our bound for density estimator is improved compared to all these works and in
particular Belomestny et al. (2016), under a mild assumption; moreover, the bounds for the survival
function are new in the Laguerre setting. They can however be related to the model studied in Comte
and Dion (2016), where U follows a uniform density on [1 − a, 1 + a] for 0 < a < 1: the application
setting is then corresponding to ampli�cation/attenuation of a signal. We show that we can deduce
from these projection estimators, constrained estimators with the same theoretical properties as the
�rst step estimators.

The third example is the convolution model, Yi = Xi + Vi, where all variables are nonnegative,
i.i.d., and V is a nuisance process with known density; the function of interest is the density or the
survival function of Xi while only the Yi's are observed. Jirak and Reiÿ (2014) study a one-sided
error regression model and explain an application to �nancial data: to infer bidders' private values
from observed bids. The convolution model has been widely investigated, mainly with a Fourier
approach (see Carroll and Hall, 1988; Fan, 1991; Comte et al., 2006; Pensky and Vidakovic, 1999, for
example). Recently Mabon (2015) proposed a projection estimator of the density and the survival
function supported by R+. This approach relies on a Laguerre projection estimator and can be rather
straightforwardly used in the present work to deduce constrained estimators.

The paper is organised as follows. In Section 2 we present the general method. The projection
estimator in the Laguerre basis is constructed, and its constrained version is deduced, their risk are
compared, and in particular the bias thanks to results from Bongioanni and Torrea (2009); Comte
and Genon-Catalot (2015). The conditions to obtain a model selection result for ŝm and deduce a
similar result for estimator s̃m are given. In section 3, the results are applied in the case of direct
observation of the variable of interest. Section 4, is dedicated to the multiplicative noise model case.
The procedure is applied to the additive model in Section 5. In all cases, both density and survival
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function estimation are considered. Finally some numerical results of the method in several examples
are presented, to highlight the good performances of our estimators.

2. A general strategy

2.1. Notations. The space L2(R+) is the space of square integrable functions on the positive real
line. The associated L2-norm is denoted ‖t‖2 =

∫
R+ |t(x)|2dx. Finally, the supremum norm of a

bounded function t is denoted by ‖t‖∞ = sup
x∈R+

|t(x)|. The Laguerre basis is de�ned by (1.1) and (1.2).

It satis�es the orthonormality property 〈ϕj , ϕk〉 = δj,k where δj,k is the Kronecker symbol, equal to 1
if j = k and to zero otherwise. The following properties are used in the sequel (see Abramowitz and
Stegun (1966)):

∀j ≥ 0, ‖ϕj‖∞ ≤
√

2, and ϕj(0) =
√

2. (2.1)

Any function of L2(R+) can be decomposed on this basis.

2.2. Estimation method and assumptions. Let us denote the sample of observations: (Yi)1≤i≤n
related to the variables of interest (Xi)1≤i≤n.

All along the paper our strategy is a projection strategy requiring that the following condition holds:

(A1)(s) s ∈ L2(R+).

Under (A1)(s), the development s =
∑

j≥0 aj(s)ϕj with aj(s) = 〈s, ϕj〉, holds in L2. As ϕj(0) =
√

2

for all j, the following condition ensures that s(0) exists and de�nes the constraint:

(A2)(s)
∑

`≥0 |a`(s)| < +∞ and s(0) = c.

Note that, by (2.1), this condition also implies that s is continuous and bounded, with ‖s‖∞ ≤√
2
∑

`≥0 |a`(s)| < +∞.

We consider the following estimator ŝm of s on the subspace Sm = span{ϕ0, ϕ1, . . . , ϕm−1}:

ŝm =
m−1∑
j=0

âjϕj ,

with âj computed from a known transformation of the observations Y1, . . . , Yn. We assume that

∀j ∈ N, E[âj ] = aj(s) with aj(s) := 〈s, ϕj〉.

Clearly this implies that

E[ŝm] = sm :=
m−1∑
j=0

aj(s)ϕj ,

where sm is the orthogonal projection of s on Sm. Thus ŝm is an unbiased estimator of sm and is
called a projection estimator of s. As a consequence, the following decomposition of the MISE (Mean
Integrated Squared Error) holds:

E
[
‖ŝm − s‖2

]
= ‖sm − s‖2 + E[‖ŝm − sm‖2].

A useful description of the estimator is to note that ŝm is a minimum contrast estimator with
respect to the contrast

γn(t) = ‖t‖2 − 2〈t, ŝm〉, for t ∈ Sm. (2.2)

Indeed setting the gradient (∂γn(t)/∂ak)0≤k≤m−1 to zero for t =
∑m−1

j=0 ajϕj ∈ Sm also leads to

ŝm = arg mint∈Sm γn(t).
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Now if we intend to propose an estimator s̃m such that s̃m(0) = c, we consider the Lagrange
multiplier method and the contrast

γ̃n(t, λ) = ‖t‖2 − 2〈t, ŝm〉 − λ(t(0)− c), for t ∈ Sm. (2.3)

Considering for t =
∑m−1

j=0 ajϕj in Sm,
∂

∂ak
γ̃n(t, λ) = 2ak − 2âk − λϕk(0)

∂

∂λ
γ̃n(t, λ) = −

(
m−1∑
k=0

akϕk(0)− c

)
we get, using that ϕj(0) =

√
2,

s̃m =
m−1∑
j=0

ãj,mϕj , ãj,m = âj −Km, with Km =
1

m

(
m−1∑
`=0

â` −
c√
2

)
. (2.4)

Note that when m = 1, ã0,1 = c/
√

2 and ŝ1(x) = â0ϕ0(x) and s̃1(x) = ce−x.

Remark 2.1. The general formula for a constraint s̃m(b) = c, b > 0, would yield

˜̃aj,m = âj −
ŝm(b)− c∑m−1
`=0 ϕ2

` (b)
ϕj(b). (2.5)

Taking advantage of ϕj(0) =
√

2 is useful in the following computations, but not necessary. However,
we do not have any example where it would be useful to set a constraint at another point than 0.

Finally, we have the following estimator

s̃m := ŝm −Km

m−1∑
j=0

ϕj , (2.6)

with Km given by (2.4). Our aim is to compare the risk bound on s̃m to the one on ŝm.

2.3. Risk bound on the constrained estimator. As, under (A1)-(A2)(s), s(0) = c =
√

2
∑
`≥0

a`(s),

we get

E[Km] =
1

m

(
m−1∑
`=0

a` −
c√
2

)
=

1

m

∑
`≥m

a`(s).

Therefore, the new estimator is a biased estimator of sm since E[s̃m] = sm−(m−1
∑

`≥m a`(s))
∑m−1

j=0 ϕj .
To evaluate the quality of this new estimator we prove the following result.

Proposition 2.2. Under (A1)-(A2)(s), the MISE of the estimator s̃m of s, given by Equation (2.4)
satis�es,

E
[
‖s̃m − s‖2

]
= E[‖ŝm − s‖2] +Bm − Vn,m, (2.7)

where

Bm :=
1

m

∑
`≥m

a`(s)

2

, Vn,m :=
1

m
Var

m−1∑
j=0

âj

 . (2.8)

Therefore, the following bound holds

E
[
‖s̃m − s‖2

]
≤ ‖s− sm‖2 + E[‖ŝm − sm‖2] +

1

m

∑
`≥m

a`(s)

2

. (2.9)
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The proofs of Proposition 2.2, as well as most other proofs, is relegated to Section 8.
Equation (2.7) implies that the MISE of s̃m has the same order as the risk of ŝm up to two terms:

• Bm which depends only on m and may increase the bias,
• Vn,m which is of variance type and may decrease the variance.

We provide hereafter a general study showing that, under mild assumption, the additional bias term
Bm has the same order as ‖s− sm‖2, and thus does not change the order of the bias.

Then, in each example, we shall study (or recall) the order the main variance term E[‖ŝm − sm‖2],
and compare it with the new variance term Vn,m. In most cases, we can prove that its order is less
than the main variance bound, and thus should not compensate it. Note that it always holds that

Vn,m ≤
m−1∑
j=0

Var(âj) = E[‖ŝm − sm‖2]. (2.10)

Remark 2.3. We complete Remark 2.1 by noting that equality (2.7) holds in the case of a constraint

at b and coe�cients ˜̃aj,m with Bm and Vn,m replaced by

Bm(b) =
(sm(b)− s(b))2∑m−1

`=0 ϕ2
` (b)

and Vn,m(b) =
Var(ŝm(b))∑m−1
`=0 ϕ2

` (b)
.

The bound (2.10) is also true for Vn,m(b).

2.4. Bias order on Sobolev spaces. Regularity spaces considered for Laguerre functions are Sobolev-
Laguerre spaces de�ned by

Wα(R+, L) =

p : R+ → R, p ∈ L2(R+),
∑
k≥0

kαa2
k(p) ≤ L < +∞

 with α ≥ 0 (2.11)

where ak(p) = 〈p, ϕk〉. These spaces have been introduced by Bongioanni and Torrea (2009) and the
link with the coe�cients of a function on a Laguerre basis was done by Comte and Genon-Catalot
(2015). Now for s ∈Wα(R+, L) de�ned by (2.11), we have

‖s− sm‖2 =

∞∑
k=m

a2
k(s) =

∞∑
k=m

a2
k(s)k

αk−α ≤ Lm−α.

Now, if α > 1, by Cauchy-Schwarz Inequality, under (A2)(s) it comes

Bm =
1

m

∑
`≥m

a`(s)

2

≤ 1

m

∑
`≥m

`−α
∑
`≥m

`αa2
` (s) ≤

L

α− 1
m−α

using that
∑

`≥m `
−α ≤ m1−α/(α− 1). Therefore, the additional bias term Bm has the same order in

m as the standard bias term. The following Corollary summarizes this �nding.

Corollary 2.4. Assume that (A1)-(A2)(s) hold, and moreover that s ∈Wα(R+, L) for α > 1, then
the MISE of the estimator s̃m of s, given by Equation (2.4) satis�es,

E
[
‖s̃m − s‖2

]
≤ 2α

α− 1
Lm−α + E[‖ŝm − sm‖2]. (2.12)

The consequence is that the order of the upper risk bounds of s̃m and ŝm are the same, and also their
rates of convergence.
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2.5. Model selection. Now we discuss the selection of m in order to get an automatic squared bias-
variance tradeo�. In our projection approach, the spaces Sm are nested and, to select an adequate
dimension, we look for m in a �nite set

Mn = {1, . . . ,mmax},
where, in any case, mmax ≤ n, and mmax is speci�cally de�ned in each context and can depend on n.
The contrast function de�ned by (2.2) can thus be written, for any t ∈ Sm,

γn(t) = ‖t‖2 − 2〈t, ŝmmax〉. (2.13)

This de�nition has the advantage that it no longer depends on m.
Assume that a selection procedure was settled up for the original estimator ŝm. The bias term ‖s−sm‖2
is estimated by −‖ŝm‖2: indeed, it is equal to ‖s‖2 − ‖sm‖2, and ‖s‖2 is an unknown constant that
can be dropped out from the minimization procedure. Thus, the selected dimension m̂ is de�ned by :

m̂ = argmin
m∈Mn

{−‖ŝm‖2 + p̂en1(m)},

where p̂en1 is a data driven increasing function of m, estimating the deterministic variance or an
upper bound on it, denoted by pen1(m). We require that this penalty satis�es three conditions. First,
pen1(m) is the smallest quantity such that

E

(
sup

t∈Bm,m̂

ν2
n(t)− 1

4
pen1(m ∨ m̂)

)
+

≤ C

n
, (2.14)

where C is a constant, Bm,m̂ := {t ∈ Sm∨m̂, ‖t‖ = 1}, and νn is the centred empirical process, de�ned
by

νn(t) := 〈t, ŝmmax − smmax〉. (2.15)

Then, the two following conditions are required to link pen1(m) and its estimator p̂en1(m). The
second condition is

E[p̂en1(m)] ≤ 2pen1(m). (2.16)

Lastly, we assume that, for a ∈ {0, 1, 2} and C ′ a constant,

E
[
(pen1(m̂)− p̂en1(m̂))+

]
≤ C ′

loga(n)

n
. (2.17)

Note that, in some examples, p̂en1(m) = pen1(m) and then conditions (2.16)-(2.17) are straightfor-
wardly satis�ed. The underlying idea is that pen1(m) has approximately the order of the variance
bound, and p̂en1(·) can be computed from the observations.

It can be proved from (2.14)-(2.16)-(2.17) (see Massart, 2007, or the proof of Theorem 2.5) that

E[‖ŝm̂ − s‖2] ≤ 3 inf
m∈Mn

{
‖s− sm‖2 + 2pen1(m)

}
+
C ′′ loga(n)

n
, (2.18)

where C ′′ is a constant depending on s but not on m or n.

For the new estimator, we introduce a new term of penalization pen2: it can also be computed from
the observations, given the constraint, and heuristically contains both Bm and Vn,m:

p̃en(m) = p̂en1(m) + p̂en2(m) with p̂en2(m) =
m

2
K2
m =

1

2m

(
m−1∑
`=0

â` −
c√
2

)2

. (2.19)

Indeed, this second penalty term satis�es

E[2p̂en2(m)] =
1

m
E

m−1∑
`=0

(â` − a`)−
∑
`≥m

a`

2 = Bm + Vn,m. (2.20)
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Then we set
m̃ = argmin

m∈Mn

{−‖ŝm‖2 + p̃en(m)}. (2.21)

Therefore, the estimate of the bias of ŝm given by −‖ŝm‖2 is increased by the Bm term contained in
pen2(m), and thus we get an estimate of the bias of s̃m. The Vn,m contribution increases the variance
part, but in a negligible way in most speci�c cases studied hereafter. A general bound following from
(2.10) and (2.20) is

E[2p̂en2(m)] ≤ E[‖ŝm − sm‖2] +
1

m

∑
`≥m

a`(s)

2

. (2.22)

Theorem 2.5. Under (A1)-(A2)(s), if the empirical process νn satis�es (2.14)-(2.16)-(2.17), then
the �nal estimator s̃m̃ de�ned by (2.4) and (2.21) satis�es the oracle-type inequality:

E
[
‖s̃m̃ − s‖2

]
≤ 2 inf

m∈Mn

3E[‖ŝm − s‖2] +
1

m

∑
`≥m

a`(s)

2

+ 6pen1(m)

+
C ′′′ loga(n)

n
,

where C ′′′ is a constant which does not depend on n, a ∈ {0, 1, 2}.

Clearly, assumptions (2.14)-(2.16)-(2.17) imply both (2.18) and Theorem 2.5. Inequality (2.18)
means that ŝm̂ is adaptive realizing the compromise between the bias term ‖s−sm‖2 and the variance
pen1(m). The inequality in Theorem 2.5 states the same result for s̃m̃, with the additional bias Bm.
Both results are up to a negligible residual term loga(n)/n.

In each section hereafter, the above procedure is applied for di�erent models. After a quick presen-
tation of the context, the de�nition of the projection estimator is given, together with its constrained
version, with common notation (âj , ãj) for the coe�cients on the Laguerre basis. Then a speci�c risk
bound is provided associated to each example.

3. Direct observation model

We assume here that we have n direct observations of the variable of interest X: X1, . . . , Xn, which
are nonnegative and i.i.d. with common density denoted by f and survival function denoted by S,
S(x) = P(X > x).

3.1. Density estimation. For density estimation from direct observations, we may wish to �x f(0) =
0. This occurs for instance if f is the convolution of two R+-supported densities g and h, that is
f(x) =

∫ x
0 g(x− u)h(u)du; then under mild regularity assumptions on g and h, f(0) = 0.

Assume that f satis�es (A1)(f). Then the projection estimator of f (see e.g Efromovich, 1999;
Massart, 2007) is

f̂m =

m−1∑
j=0

âjϕj with âj =
1

n

n∑
i=1

ϕj(Xi) (3.1)

and

f̂m = arg min
t∈Sm

γn(t), γn(t) = ‖t‖2 − 2

n

n∑
i=1

t(Xi).

Then it is easy to see that

E[‖f̂m − f‖2] ≤ ‖f − fm‖2 +
2m

n

with fm =
∑m−1

j=0 aj(f)ϕj the orthogonal projection of f on Sm. The new estimator of f de�ned by

f̃m =
m−1∑
j=0

ãj,mϕj with ãj,m = âj −Km, Km =
1

m

m−1∑
`=0

â` (3.2)
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satis�es Proposition 2.2. More precisely, under assumption (A2)(f), we can use the bound (2.9) and
obtain the following result.

Proposition 3.1. Consider the estimator f̃m de�ned by (3.1)-(3.2), based on the i.i.d. sample
X1, . . . , Xn of random variables with common density f satisfying (A1)-(A2)(f). Then, for any
m ≥ 1, we have

E[‖f̃m − f‖2] ≤ ‖f − fm‖2 +
2m

n
+

1

m

∑
`≥m

a`(f)

2

and Vn,m ≤
2‖f‖∞
n

, (3.3)

where Vn,m is de�ned by (2.8).

The bound on Vn,m shows that this term has negligible order O(1/n), and in particular negligible
order w.r.t. the variance order (which is O(m/n)). It also follows from Corollary 2.4 that, if f ∈
Wα(R+, L) for α > 1, then for mopt = n1/(α+1),

E[‖f̃mopt − f‖2] ≤ C(L,α)n−α/(1+α).

This rate is the optimal rate on the Sobolev Laguerre space Wα(R+, L), as proved in Belomestny
et al. (2016).

For the model selection step, as

νn(t) =
1

n

n∑
i=1

(t(Xi)− 〈t, f〉)

satis�es (2.14) with pen1(m) = κ0m/n, for κ0 a constant (see Chapter 7 in Massart (2007)), and
(2.16)-(2.17) are straightforwardly ful�lled for p̂en1(m) = pen1(m), we can deduce that m̃ de�ned by

(2.19)-(2.21) provides an estimate f̃m̃ satisfying the inequality of Theorem 2.5.

3.2. Survival function estimation. If E[X1] < +∞ then the survival function S is squared inte-

grable on R+: indeed
∫ +∞

0 S2(x)dx ≤
∫ +∞

0 S(x)dx = E[X1]. Therefore, we can adopt a projection

strategy on L2(R+) for its estimation. An estimator of S is given by

Ŝm =
m−1∑
j=0

âjϕj , âj =
1

n

n∑
i=1

∫
R+

ϕj(x)1Xi≥xdx, E[âj ] = aj(S) = 〈ϕj , S〉. (3.4)

This estimator satis�es the following bound.

Proposition 3.2. Assume that E[X1] < +∞. Then the estimator Ŝm (3.4) is an unbiased estimator

of Sm =
∑m−1

j=0 aj(S)ϕj and it satis�es

E
[∥∥∥Ŝm − S∥∥∥2

]
≤ ‖Sm − S‖2 +

E[X1]

n
. (3.5)

Note that the estimator Ŝm is also the minimizer of the following contrast:

γn(t) = ‖t‖2 − 2

n

n∑
i=1

∫
R+

t(x)1Xi≥xdx, Ŝm = argmin
t∈Sm

γn(t)

The new estimator of S noted S̃m is de�ned in (2.4) with c = 1 and s = S. It satis�es S̃m(0) = 1
along with Proposition 2.2.

As the variance does not depend on m, we recover that the estimator can reach the parametric
rate, by taking m as large as possible: for instance if S ∈Wα(R+, L) for α > 1, then choosing m = n

implies that S̃n converges with parametric rate to S.

This is only a toy example since clearly, the simple empirical survival function Ŝn(x) = n−1
∑n

i=1 1Xi≥x
satis�es Ŝn(0) = 1 and E[‖Ŝn − S‖2] ≤ E[X]/n.
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4. Multiplicative noise model

We consider in this section the multiplicative model. The common density and survival function of
i.i.d. Xi's are still denoted by f and S but we observe

Yi = XiUi, i = 1, . . . , n,

where the Ui's follow a continuous uniform distribution on [0, 1]: Ui ∼ U([0, 1]).

4.1. Useful Laguerre formulae. We state two useful properties of the Laguerre basis, which are
speci�cally used for the multiplicative model, proved in Comte and Dion (2016). First, we have

ϕ′0(x) = −ϕ0(x), ϕ′j(x) = −ϕj(x)− 2

j−1∑
k=0

ϕk(x), j ≥ 1. (4.1)

Moreover, the following relation (see Abramowitz and Stegun (1966))

∀y ∈ R+, (yϕj(y))′ = − j
2
ϕj−1(y) +

1

2
ϕj(y) +

j + 1

2
ϕj+1(y), j ≥ 0, (4.2)

with convention ϕ−1 = 0, implies in particular that (yϕj(y))′ is bounded, with bound of order O(j)

(namely
√

2(j + 1)).
Let us now give a useful property, implied by the model, see Brunel et al. (2016). If t : R → R is

bounded, derivable, then

E[t(Y1) + Y1t
′(Y1)] = E[t(X1)]. (4.3)

This relation follows from an integration by part and the fact that limy→0 yfY (y) = limy→+∞ yfY (y) =
0. Lastly, for any t ∈ L2(R+), the following bound holds (see Comte and Genon-Catalot (2015)):

E[(Y1t(Y1))2] ≤ ‖t‖2E(X1). (4.4)

4.2. Density estimation. The common density fY of the i.i.d. observations (Yi)1≤i≤n is given by

fY (y) =

∫ +∞

y

f(x)

x
dx, y ∈]0,+∞[, (4.5)

and the condition f(0) = 0 is required if we expect that fY is �nite in 0 (even if it is not su�cient).

As fY is a non-increasing function, if it is bounded, then its supremum is
∫ +∞

0 (f(x)/x)dx, and
thus, the condition ‖fY ‖∞ < +∞ also requires f(0) = 0.

Equality (4.3) explains the projection estimator of the density f de�ned by Belomestny et al. (2016)
in the Laguerre orthonormal basis of L2(R+):

f̂m =

m−1∑
j=0

âjϕj , âj =
1

n

n∑
i=1

(Yiϕ
′
j(Yi) + ϕj(Yi)). (4.6)

Indeed by applying (4.3) to the function t = ϕj , we get E[âj ] = aj(f) = 〈ϕj , f〉. Thus f̂m is an
unbiased estimator of the projection fm on subspace Sm. Moreover, we can prove the following result.

Proposition 4.1. Assume that f satis�es (A1)(f). Then, the estimator f̂m given by (4.6) satis�es:

E[‖f̂m − f‖2] ≤ ‖f − fm‖2 +
2m3

n
+

3m

2n
. (4.7)

If in addition E[X1] <∞, then we have

E[‖f̂m − f‖2] ≤ ‖f − fm‖2 + 4E[Y1]
m2

n
+ 2

m

n
. (4.8)
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Note here that the constants appearing in the �rst bound (4.7) are numerical constants. This is due
to the use of equality (4.2). Note also that E[X1] = 2E[Y1]. The bound (4.8) improves (4.7), which is
stated in Belomestny et al. (2016), under the mild additional condition E[X1]. We keep this second
bound in the sequel.

This estimator is also the minimizer of the following contrast:

γn(t) = ‖t‖2 − 2

n

n∑
i=1

(Yit
′(Yi) + t(Yi)), f̂m = argmin

t∈Sm
γn(t)

Then, under (A2)(f), the corrected estimator de�ned by f̃m =
∑m−1

j=0 ãj,mϕj with ãj,m = âj −Km

and Km = (1/m)
∑m−1

`=0 â` satis�es Proposition 2.2. Therefore we obtain, by using Equation (2.7),
the following result.

Proposition 4.2. Assume that f satis�es (A1)-(A2)(f), that E[X1] <∞, and that fY is bounded.

Then the estimator f̃m de�ned by (3.2) and (4.6) satis�es

E[‖f̃m − f‖2] ≤ ‖f − fm‖2 + 4E[Y1]
m2

n
+ 2

m

n
+

1

m

∑
`≥m

al(f)

2

and Vn,m ≤
m‖fY ‖∞

2n
.

Again, we obtain that the order of Vn,m is negligible with respect to the main variance term, 4E[Y1]m2/n.
From Corollary 2.4, the upper rate bound on Sobolev Laguerre space, i.e. for f ∈ Wα(R+, L) with

α > 1 and for mopt = n1/(α+2), is of order n−α/(α+2) for both f̂mopt and f̃mopt .

We can propose a model selection method to select m automatically

m̂ = arg min
m∈Mn

(
−‖f̂m‖2 + p̂en1(m)

)
with p̂en1(m) = κ1

m log(2 +m)

n
(1 + 4Ȳnm),

where Ȳn = n−1
∑n

i=1 Yi, and

Mn = {m ∈ {1, . . . , n}, m ≤
√
n}.

The bound of order
√
n for the dimensions considered inMn simply ensures that the variance term

remains bounded. We also denote by

pen1(m) = κ1
m log(2 +m)

n
(1 + 2E[Y1]m)

so E[p̂en1(m)] ≤ 2pen1(m). We can prove the following result for the selected estimator.

Theorem 4.3. Assume that (A1)-(A2)(f) hold and that E[X2
1 ] < +∞. Then there exists a constant

κ′1 such that for any κ1 ≥ κ′1, we have

E[‖f̂m̂ − f‖2] ≤ 6 inf
m∈Mn

{
‖f − fm‖2 + pen1(m)

}
+ C1

log(n)

n
,

where C1 is a positive constant depending on E[Y1] and E[Y 2
1 ].

The proof of Theorem 4.3 contains the proof that the empirical process

νn(t) =
1

n

n∑
i=1

(Yit
′(Yi) + t(Yi)− 〈t, f〉)

associated with this problem satis�es Assumption (2.14) and that pen1(m) and p̂en1(m) satisfy As-
sumptions (2.16)-(2.17) with a = 1. Therefore, the procedure of Section 2.5 can be applied to select

m̃ for f̃ .
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4.3. Survival function estimation. We estimate now the survival function S associated with f .
The key formula here, obtained from (4.5), is

SY (y) = S(y)− yfY (y),

where SY is the survival function of Y . Thus, the coe�cients of this function on the Laguerre basis
are such that

aj(S) = 〈S, ϕj〉 = E[Y ϕj(Y )] + 〈SY , ϕj〉.

As a consequence, we estimate the projection Sm =

m−1∑
j=0

aj(S)ϕj of S on Sm by

Ŝm =

m−1∑
j=0

âjϕj , âj =
1

n

n∑
i=1

[∫
R+

ϕj(x)1Yi≥xdx+ Yiϕj(Yi)

]
. (4.9)

Then, similarly to Brunel et al. (2016) who study the kernel case, we can prove the following result.

Proposition 4.4. If E[X1] < +∞, the estimator Ŝm (4.9) is an unbiased estimator of Sm and it
satis�es

E
[∥∥∥Ŝm − S∥∥∥2

]
≤ ‖Sm − S‖2 + E [X1]

m+ 1

n
.

Then, using the same steps as before, the new estimator S̃m of S de�ned in (2.4) with c = 1, is

such that S̃m(0) = 1, and satis�es Proposition 2.2. Thus we get:

Proposition 4.5. If E[X1] < +∞, the estimator S̃m of S satis�es

E
[∥∥∥S̃m − S∥∥∥2

]
≤ ‖Sm − S‖2 + E [X1]

m+ 1

n
+

1

m

∑
`≥m

a`(S)

2

and Vn,m ≤
4E[Y1]

n
(4.10)

Remark 4.6. The strategy for this multiplicative noise model can be extended to the model proposed

in Comte and Dion (2016) de�ned by Yi = XiU
(a)
i where U

(a)
i ∼ U([1−a, 1+a]) has a uniform density

on a symmetric interval [1− a, 1 + a], 0 < a < 1. In this case, the estimation strategy of the survival
function is set up in two steps. First the function

G(x) =
1

2a

[
(1 + a)S

(
x

1 + a

)
− (1− a)S

(
x

1− a

)]
(4.11)

is estimated by a projection estimator. As S is a survival function (not G), S(0) = 1 and thus
G(0) = 1. Consequently, we can apply our constrained procedure to the unbiased projection estimator
of Gm proposed in the paper. Then, the survival function is estimated by plugging in this estimate in
the formula corresponding to the inversion of (4.11):

SN (x) :=
2a

1 + a

N−1∑
k=0

(
1− a

1 + a

)k
G

((
1 + a

1− a

)k
(1 + a)x

)

for N ≥ log(n)/[3 log((1 + a)/(1 − a))]. We would get ŜN,m and S̃N,m in this context as well. For
simplicity we omit the details.

For the selection procedure we can prove that

m̂ = arg min
m∈Mn

{−‖Ŝm‖2 + p̂en1(m)}, p̂en1(m) = 2κ2Ȳnm/n, Mn = {1, . . . , n},

de�nes an estimate Ŝm̂ which makes a data driven bias variance trade-o�.
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Theorem 4.7. Assume that (A1)-(A2)(S) hold and that E[X4
1 ] < +∞ Then there exists a constant

κ′2 such that for any κ2 ≥ κ′2, we have

E[‖Ŝm̂ − S‖2] ≤ 3 inf
m∈Mn

{
‖S − Sm‖2 + 2pen1(m)

}
+ C

log2(n)

n
,

where pen1(m) = κ2E[Y1]/n and C is a constant depending on E[X4
1 ] and E[X1].

The proof of Theorem 4.7 relies on the study of the empirical process

νn(t) =
1

n

n∑
i=1

∫
t(x)1Yi≥xdx+ Yit(Yi)− E

[∫
t(x)1Yi≥xdx+ Yit(Yi)

]
which satis�es Assumption (2.14) with pen1(m) = 2κ2E[Y1]m/n. We also have that pen1 and p̂en1

satisfy Assumptions (2.16)-(2.17) with a = 2. As a consequence, the procedure of Section 2.5 can be

applied to select m̃ and build the �nal estimator S̃m̃.

5. Convolution model

Now we show that the constrained strategy also applies to the convolution model

Yi = Xi + Vi, i = 1, . . . , n (5.1)

where the (Xi)1≤i≤n and the (Vi)1≤i≤n are two independent sequences of i.i.d. nonnegative random
variables. The Xi's have unknown density denoted by f and unknown survival function denoted by
S, while the Vi's have known density g.

In the additive framework, the key property of the Laguerre basis (see Abramowitz and Stegun
(1966)) is the following:

ϕk ? ϕj(x) =

∫ x

0
ϕk(u)ϕj(x− u)du = 2−1/2 (ϕk+j(x)− ϕk+j+1(x)) , (5.2)

showing that the convolution of two basis functions has a linear simple expression in function of two
other basis functions.

5.1. Density estimation. Indeed, it follows from model (5.1) and the independence assumptions
that the density fY of the observations Yi is equal to

fY (x) = f ? g(x) =

∫ x

0
f(u)g(x− u)du.

Comte et al. (2017) noticed that, by using (5.2), this convolution equation can be rewritten:

∞∑
k=0

ak(fY )ϕk(x) =

+∞∑
j=0

+∞∑
k=0

aj(f)ak(g)ϕj ? ϕk(x)

=

∞∑
k=0

ϕk(x)

k∑
`=0

2−1/2 (ak−`(g)− ak−`−1(g))a`(f).

Therefore, for any integer m,
~fY m = Gm

~fm,

with ~fY m = t(a0(fY ), . . . , am−1(fY )) , ~fm = t(a0(f), . . . , am−1(f)) , and Gm = ([Gm]i,j)1≤,i,j≤m,

[Gm]i,j =


2−1/2a0(g) if i = j,

2−1/2 (ai−j(g)− ai−j−1(g)) if j < i,

0 otherwise.

(5.3)

The matrix Gm is known as g is known. An important feature of Gm is to be lower triangular and
Toeplitz. As the diagonal elements a0(g) =

√
2E[e−Y ] > 0, the matrix Gm has nonzero determinant
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and can be inverted. Starting from equality G−1
m
~fY m = ~fm, Mabon (2015) proposes an estimator of

f de�ned by

f̂m(x) =
m−1∑
k=0

âkϕk(x) with ~̂fm = G−1
m
~̂fY m, (5.4)

where ~̂fm = t(â0, . . . , âm−1) and ~̂fY m = t(â0(Y ), . . . , âm−1(Y )), with âj(Y ) =
1

n

n∑
i=1

ϕj(Yi). Here also

f̂m is an unbiased estimator of fm. The following risk bound on f̂m is proved in Mabon (2015):

E[‖f̂m − f‖2] ≤ ‖f − fm‖2 + (2 ∨ ‖fY ‖∞)
‖G−1

m ‖2F
n

,

where ‖A‖2F =
∑

i,j a
2
i,j the Frobenius or trace norm of a matrix A.

If we know that f satis�es f(0) = 0, we can de�ne f̃m according to (2.4), this new estimator satis�es
Proposition 2.2. Note that here we can only prove

Vn,m ≤ ‖fY ‖∞
‖G−1

m ‖2op

n
. (5.5)

This bound is smaller than the variance term ‖G−1
m ‖2F /n, and numerically, this may improve the

constants. However, it does not improve the order w.r.t. m. For instance, in the case where g
corresponds to a γ(p, θ) density, both ‖G−1

m ‖2F and ‖G−1
m ‖2op have the same order O(m2p) (see Comte

et al. (2017)).
Model selection in the additive convolution model is studied in Mabon (2015), and relies on the

study of

νn(t) =
1

n

n∑
i=1

〈
t,

mmax−1∑
j=0

[
G−1
mmax

(~ϕmmax(Yi)− E(~ϕmmax(Yi))
]
j
ϕj

〉
where ~ϕm(x) = t(ϕ0(x), . . . , ϕm−1(x)). Note that, if t ∈ Sm, mmax can be replaced by m thanks to
the triangular feature of Gm. Mabon (2015) proves that condition (2.14) is ful�lled for νn as above
and the penalty de�ned by

pen1(m) =
κ3(‖g‖∞ ∨ 1)

n
(m‖G−1

m ‖2op ∧ log(n)‖G−1
m ‖2F ).

Indeed the study of f̂m̂ with m̂ = arg minm∈Mn(−‖f̂m‖2+pen1(m)), andMn = {m ∈ N,m‖G−1
m ‖2op ≤

n} implies that the not random penalty satis�es the conditions (2.16)-(2.17) with a = 0. Therefore,

the procedure of Section 2.5 can be applied to select m̃ and build the �nal estimator S̃m̃.

5.2. Survival function estimation. For the survival function estimation, Mabon (2015) noticed
that SY (y) = S ? g(y) + SV (y), where SY (y) = P(Y > y), SV (y) = P(V > y). Then

aj(SY ) = 〈SY , ϕj〉 = E[Φj(Y1)] for Φj(y) :=

∫ y

0
ϕj(x)dx,

and the proposed estimator is

Ŝm =
m−1∑
j=0

âj(S)ϕj , with ~̂Sm = G−1
m

(
~̂SY m − ~SV m

)
,

where ~SV m = t(a0(SV ), . . . , am−1(SV )), ~̂Sm = t(â0, . . . , âm−1) and ~̂SY m = t(â0(Y ), . . . , âm−1(Y )),

with âj(Y ) =
1

n

n∑
i=1

Φj(Yi).
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The estimator Ŝm is an unbiased estimator of Sm satisfying the following MISE bound: if S satis�es
(A1)(S) and E[Y1] < +∞, then

E[‖Ŝm − S‖2] ≤ ‖S − Sm‖2 +
E[Y1]

n
‖G−1

m ‖2op

(see Proposition 2.3.3 in Mabon, 2015). Clearly, S̃m = Ŝm−Km
∑m−1

j=0 ϕj with Km = m−1(
∑m−1

`=0 â`−
2−1/2) satis�es the bound in Proposition 2.2. Here we can prove

Vn,m =
1

m
Var

(
m−1∑
`=0

â`

)
≤
‖G−1

m ‖2FE[Y1]

nm
. (5.6)

In the Gamma case mentioned above, i.e. if g ∼ γ(p, θ), then ‖G−1
m ‖2F /m = O(m2p−1) while

‖G−1
m ‖2op = O(m2p) so that the bound (5.6) is such that Vn,m can be negligible with respect to the

variance.
Survival function estimation in the additive convolution model relies on the study of the empirical

process νn(t) = 〈t, Ŝmmax − Smmax〉 with Ŝm̂ de�ned by

p̂en1(m) =
2κ4Z̄n
n
‖G−1

m ‖2op log(n)

and m̂ = arg minm∈Mn(−‖Ŝm‖2 + p̂en1(m)) for Mn = {m, ‖G−1
m ‖2op log(n)/n ≤ 1}. The empirical

process ful�lls (2.14) and the penalties pen1 and p̂en1(m) satisfy conditions (2.16)-(2.17) with a = 0.
Thus, here again the procedure of section 2.5 can be applied to the constrained estimator.

6. Numerical study

6.1. Description of the practical procedure. In the following Section we compare the new con-
strained estimator to the simple adaptive projection estimator in di�erent cases. We illustrate the
direct observation case presented in Section 3, the multiplicative noise model described in Section 4
and the additive model described in Section 5.
The size n of the samples is chosen n = 100 or n = 1000. Survival function estimation gives good
results even for rather small samples. The variable of interest X is simulated from two di�erent
distributions:

• X ∼ χ2(10)/
√

20 (denoted X ∼ χ2),
• X ∼ 0.5Γ(2, 0.4) + 0.5Γ(11, 0.5) (denoted X ∼MΓ)

and in the additive model we choose to illustrate

• V ∼ Γ(2, 1/
√

8).

Note that we checked that the choice V ∼ exp(2) gives similar results.
Before the simulation phase, a calibration step is conducted. The universal constants κi appearing

in all the procedures are calibrated with a large choice of setups, di�erent from the ones of the sim-
ulation study. Empirical MISE are computed via Monte-Carlo experiments. We obtain κ0 = 0.2 in
the direct observation case, for the density estimation. In the multiplicative noise model, the constant
for the density estimation is κ1 = 0.05, and for the survival function estimation κ2 = 0.5. For the
additive model, the constants are κ3 = 0.03 and κ4 = 0.001 respectively.

6.2. Results and comments. On Figure 1, we illustrate the estimation of the survival function from
a sample of X distributed according to a mixture of Gamma distribution (the true function S is in
plain black line). The �gure is separated in two graphs, the left one represents the projection estimator

Ŝ and the right one the constrained estimator S̃. We show the collection of estimators in each case

for Dmax = 10 in orange (light grey). The �nal estimators Ŝmmax and S̃mmax are in bold red (black)
and very close to the empirical estimator represented in dotted black line. This �gure �rst shows that
the estimator, chosen with highest dimension, performs at best, as suggested by the theoretical part.
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X ∼ χ2 X ∼MΓ
n 100 1000 100 1000

Ŝdir
mmax

0.433 0.045 1.449 0.118

S̃dir
mmax

0.431 0.044 1.447 0.117

Ŝmult
m̂ 2.421 0.178 3.603 0.438

S̃mult
m̃ 2.409 0.170 3.459 0.429

Ŝadd
m̂ 0.915 0.075 1.539 0.247

S̃add
m̃ 0.955 0.064 1.494 0.244

Table 1. Survival function esti-
mation. MISE ×100 for the esti-
mators Ŝdir

mmax
, S̃dir

mmax
, Ŝmult

m̂ , S̃mult
m̃ ,

Ŝadd
m̃ with 200 repetitions.

X ∼ χ2 X ∼MΓ
n 100 1000 100 1000

f̂dir
m̂ 0.521 0.066 0.859 0.109

f̃dir
m̃ 0.507 0.057 0.716 0.086

f̂mult
m̂ 3.717 0.498 4.540 0.441

f̃mult
m̃ 2.898 0.433 3.035 0.391

f̂add
m̂ 2.290 0.211 2.107 0.261

f̃add
m̃ 2.472 0.207 1.363 0.236

Table 2. Density estimation.
MISE ×100 for the estimators
f̂dir
m̂ , f̃dir

m̃ , f̂mult
m̂ , f̃mult

m̃ , f̂add
m̃ with

200 repetitions.
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Figure 1. Direct observations. Survival function estimation. X ∼ MG, n = 100. In

dotted bold S, in plain orange (light grey) Ŝm on the left and S̃m on the right, in plain

bold red (black) Ŝmmax on the left and S̃mmax on the right.

Then we clearly see (comparing left and right �gures) that S̃mmax is better than Ŝmmax . Besides, we
also draw the empirical survival function which is the best estimation available, and our estimator

S̃mmax is very close from it (right graph).
Figure 2 illustrates the estimation procedure detailed in Section 5 for the additive model. We draw

6 �nal survival function estimators Ŝm̂ in green (light grey) and S̃m̃ in red (black), when X follows
a chi-square distribution. They are all close to the real function S in dotted black. Nevertheless the
constrained new estimator �ts better the curve than the classical projection one.

Figure 3 shows the performance of the constrained density estimator in the multiplicative noise
model, for X an exponential random variable with parameter 2 thus f(x) = 2 exp(−2x) and f(0) = 2.
The procedure can be applied, as explained in Section 2. The improvement of the new strategy (in
red) is visually clear. Let us con�rm this point on empirical risk results.

Tables 1 and 2 give the empirical MISE multiplied by 100, respectively for the survival function
estimators and for the density estimators. We see the expected e�ect of the sample size: the larger
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Figure 2. Additive model. Survival function estimation. X ∼ χ2, n = 200. In dotted

bold f , in plain green (light grey) 6 �nal estimators Ŝm̂, in plain red (black) 6 �nal

estimators S̃m̃.
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Figure 3. Multiplicative model. Density estimation. X ∼ E(2), n = 100. In dotted

bold f , in plain green (light grey) f̂m̂, in plain red (black) f̃m̃.

n, the smaller the MISE. Moreover, density estimation seems more di�cult than survival function
estimation. Nevertheless, we can see that the results of the new procedure, namely the three estimators

S̃ and f̃ have smaller risks than the three simple projection estimators Ŝ, f̂ (except for the density
estimation in the additive model for n = 100 and X ∼ χ2).

This con�rms the theoretical part witch shows comparative rates of convergence for the constrained
and the non-constrained strategy. But this numerical study goes further and claims that the new
estimators performs better and give a better �t of the estimated function than the previous ones.

7. Concluding remarks

In this work, we consider a projection estimator ŝm built as an unbiased estimator of sm, the
projection of a function s on the space spanned by the m �rst functions of the Laguerre basis. We
show that a general modi�cation of ŝm can provide a new estimator s̃m with �xed value in 0. The risk
of the new estimator has slightly increased bias compared to ŝm but smaller variance. In any case,
the order of the risk of the two estimators are the same. Moreover, if a model selection procedure
is available for ŝm, we can deduce a selection procedure for s̃m, leading to a data-driven trade-o�
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between the bias and the variance. Imposing a constraint at another point is possible, but it is not
clear if it may be useful. In the case of survival function estimation with constraint set at 1 in 0,
numerical experiments illustrate the improvement brought by our strategy, in three di�erent contexts
of observation: direct observation, multiplicative model and convolution model. These examples �tting
in our setting are also studied from theoretical point of view.

The same kind of study may be conducted in other bases. For instance in the trigonometric basis
on an interval, say [0, 1], a constraint at 0 may also be similarly studied, but would imply the same
constraint at 1. This is clearly not relevant for survival function estimation, but may be applied to
density estimation, in the case of direct observation of the Xi's. Note that the speci�c properties of
the Laguerre basis is crucial in the two other examples (multiplicative model and convolution model).

In the speci�c setting of Laguerre basis, other examples may be found by combining the models,
as explained in Comte and Genon-Catalot (2017). Other examples �tting in our setting are given by
considering observations of the form XiUi + Vi or (Xi + Vi)Ui with Ui following a uniform density
on [0, 1] and Vi a nonnegative random variable with known density. Also, if the Vi's have unknown
density, but have been preliminarily observed, then the scalar products 〈fV , ϕj〉 can be estimated:
this context has been considered in Comte and Mabon (2016) and may be studied from our constraint
point of view.

8. Proofs

8.1. Proof of Proposition 2.2. We have the general equality

E
[
‖s̃m − s‖2

]
= ‖E[s̃m]− s‖2 + E

[
‖s̃m − E[s̃m]‖2

]
. (8.1)

We compute successively the bias and the variance terms. For the bias term, we have

E[s̃m] = sm −
1

m

(
m∑
`=0

a`(s)−
c√
2

)
m−1∑
j=0

ϕj

and as c/
√

2 =
∑

`≥0 a`(s), we get E[s̃m] − s =
∑

j≥m aj(s)ϕj −m−1
(∑

`≥m a`(s)
)∑m−1

j=0 ϕj . As a
consequence

‖E[s̃m]− s‖2 =
∑
j≥m

a2
j (s) +

1

m

∑
`≥m

a`(s)

2

. (8.2)

For the variance term, we have s̃m − E[s̃m] =
∑m−1

j=0

[
âj − aj(s)− 1

m

∑m−1
`=0 (â` − a`(s))

]
ϕj and thus

‖s̃m − E[s̃m]‖2 =
m−1∑
j=0

[
âj − aj(s)−

1

m

m−1∑
`=0

(â` − a`(s))

]2

=

m−1∑
j=0

(âj − aj(s))2 − 1

m

(
m−1∑
`=0

â` − a`(s)

)2

.

This yields

E
[
‖s̃m − E[s̃m]‖2

]
=

m−1∑
j=0

Var(âj)−
1

m
Var

(
m−1∑
`=0

â`

)
. (8.3)

Plugging (8.3) and (8.2) into (8.1) gives equality (2.7). �
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8.2. Proof of Theorem 2.5. We consider the estimator ŝm as a minimum contrast estimator as-
sociated with γn de�ned by (2.13). It satis�es γn(ŝm) = −‖ŝm‖2, ŝm = argmin

t∈Sm
γn(t). It yields the

relation for any m,m′ ∈Mn and t ∈ Sm, u ∈ Sm′ ,
γn(t)− γn(u) = ‖t− s‖2 − ‖u− s‖2 + 2〈t− u, s〉 − 2〈t− u, ŝmmax〉

= ‖t− s‖2 − ‖u− s‖2 + 2〈t− u, smmax〉 − 2〈t− u, ŝmmax〉
= ‖t− s‖2 − ‖u− s‖2 − 2νn(t− u) (8.4)

with νn(·) de�ned by (2.15).

According to the relation: s̃m = ŝm −Km
∑m−1

j=0 ϕj our strategy is to show a result on the estimator

ŝm̃ and to deduce one for s̃m̃. Notice that the de�nitions of m̃ and ŝm give that, for all m ∈Mn,

γn(ŝm̃) + p̃en(m̃) ≤ γn(ŝm) + p̃en(m) ≤ γn(sm) + p̃en(m).

Therefore, γn(ŝm̃)− γn(sm) ≤ pen(m)− pen(m̃) and with (8.4) we get

‖ŝm̃ − s‖2 − ‖s− sm‖2 − 2νn(s̃m̃ − sm) ≤ p̃en(m)− p̃en(m̃).

Therefore, denoting:
Bm,m′ = {t ∈ Sm∨m′ , ‖t‖ = 1}, (8.5)

we have

‖ŝm̃ − s‖2 ≤ ‖s− sm‖2 + p̃en(m) + 2νn(ŝm̃ − sm)− p̂en1(m̃)− p̂en2(m̃)

≤ ‖s− sm‖2 + p̃en(m) +
1

4
‖ŝm̃ − sm‖2 + 4 sup

t∈Bm,m̃

ν2
n(t)− p̂en1(m̃)− p̂en2(m̃)

Writing that ‖ŝm̃ − sm‖2 ≤ 2‖ŝm̃ − s‖2 + 2‖s− sm‖2 and gathering the terms implies

1

2
‖ŝm̃ − s‖2 ≤ 3

2
‖s− sm‖2 + p̃en(m) + 4 sup

t∈Bm,m̃

(
ν2
n(t)− 1

4
pen1(m̃ ∨m)

)
+

+pen1(m̃ ∨m)− p̂en1(m̃)− p̂en2(m̃)

≤ 3

2
‖s− sm‖2 + p̃en(m) + 4 sup

t∈Bm,m̃

(
ν2
n(t)− 1

4
pen1(m̃ ∨m)

)
+

+pen1(m̃) + pen1(m)− p̂en1(m̃)− p̂en2(m̃)

as pen1(m̃ ∨ m) ≤ pen1(m̃) + pen1(m). Now taking expectation and using Assumption (2.14) and
E[p̂en1(m)] ≤ 2pen1(m) we get

E[‖ŝm̃ − s‖2] ≤ 3‖s− sm‖2 + 6pen1(m) + 2E[p̂en2(m)] +
8C

n
+ 2E[pen1(m̃)− p̂en1(m̃)]

−2E[p̂en2(m̃)].

As for all m ∈ Mn, ‖s̃m − s‖2 ≤ 2‖ŝm − s‖2 + 2mK2
m, taking m = m̃ with mK2

m/2 = p̂en2(m) leads
to

E[‖s̃m̃ − s‖2] ≤ 2E[‖ŝm̃ − s‖2] + 4E [p̂en2(m̃)]

≤ 6‖s− sm‖2 + 12pen1(m) + 4E[p̂en2(m)] +
16C

n
+ 4E[(pen1(m̃)− p̂en1(m̃))+].

According to Assumption (2.17) the di�erence: E[(pen1(m̃)− p̂en1(m̃))+] is under control. As, from
(2.22), the penalty term p̂en2 satis�es:

E[2p̂en2(m)] ≤ E[‖ŝm − sm‖2] +
1

m

∑
`≥m

a`(s)

2

,
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we get for any m ∈Mn,

E[‖s̃m̃ − s‖2] ≤ 6‖s− sm‖2 + 2E[‖ŝm − sm‖2] + 12pen1(m) +
2

m

∑
`≥m

a`(s)

2

+
C ′′′′ loga(n)

n
.

Finally we have

E[‖s̃m̃ − s‖2] ≤ 2 inf
m∈Mn

3E[‖ŝm − s‖2] +
1

m

∑
`≥m

a`(s)

2

+ 6pen1(m)

+
C ′′′′ loga(n)

n

which the result of Theorem 2.5. �

8.3. Proof of Proposition 3.1. We study here the MISE of the constrained estimator of the density
of direct observations.

Vn,m = Var

(
m−1∑
`=0

â`

)
= Var

(
m−1∑
`=0

1

n

n∑
i=1

ϕ`(Xi)

)
=

∑
0≤k,`≤m−1

cov

(
1

n

n∑
i=1

ϕ`(Xi),
1

n

n∑
i=1

ϕk(Xi)

)

=
1

n

∑
0≤k,`≤m−1

cov (ϕ`(X1), ϕk(X1)) =
1

n
Var

(
m−1∑
`=0

ϕ`(X1)

)

≤ 1

n
E

(m−1∑
`=0

ϕ`(X1)

)2
 ≤ ‖f‖∞

n

∫ (m−1∑
`=0

ϕ`(x)

)2

dx.

As the ϕ` are orthonormal, we get Vn,m ≤ ‖f‖∞m/n, which ends the proof of Proposition 3.1. �

8.4. Proof of Proposition 3.2. We study the projection estimator of the survival function for direct
observations. We only have to look at the term of variance. We have

E
[∥∥∥Ŝm − Sm∥∥∥2

]
=

m−1∑
j=0

Var(âj) ≤
1

n

m−1∑
j=0

E

[(∫
R+

ϕj(x)1X1≥x(x)dx

)2
]

=
1

n
E

m−1∑
j=0

〈ϕj1X1≥·〉2
 ≤ 1

n
E
[
‖1X1≥·‖2

]
=

E[X1]

n
,

which gives Proposition 3.2. �

8.5. Proof of Proposition 4.1. We study here the MISE of the projection estimator of the density in

the multiplicative noise model. Let us look at the variance term: E[‖f̂m−fm‖2]. The Cauchy-Schwarz
inequality and relation (4.2) imply:

E[‖f̂m − fm‖2] =

m−1∑
j=0

Var(âj) ≤
1

n

m−1∑
j=0

E[(Y1ϕ
′
j(Y1) + ϕj(Y1))2] =

1

n

m−1∑
j=0

E[((Y1ϕj(Y1))′)2]

≤ 1

n

m−1∑
j=0

3E

[(
j

2
ϕj−1(Y1)

)2

+

(
1

2
ϕj(Y1)

)2

+

(
j + 1

2
ϕj+1(Y1)

)2
]
.

Here we use that

E

[(
j

2
ϕj−1(Y )

)2
]

=

∫ (
j

2
ϕj−1(y)

)2

fY (y)dy ≤ ‖ϕ1‖2∞
(
j

2

)2 ∫
fY (y)dy ≤ 1

2
j2,
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and it yields:

E[‖f̂m − fm‖2] ≤ 3

n

m−1∑
j=0

(
j2

2
+

1

2
+

(j + 1)2

2

)
≤ 2m3

n
+

3m

2n
,

and thus we obtain Equation (4.7).

Let us now prove Equation (4.8). We have ‖f̂m − f‖2 = ‖f − fm‖2 + ‖f̂m − fm‖2 by Pythagoras

Theorem and as ‖f̂m − fm‖2 =
∑m−1

j=0 (âj − aj)2 where aj = E[âj ] = 〈f, ϕj〉, we get

E[‖f̂m − fm‖2] =
m−1∑
j=0

Var(âj) =
1

n

m−1∑
j=0

Var[Y1ϕ
′
j(Y1) + ϕj(Y1)]

≤ 1

n

m−1∑
j=0

E
[
(Y1ϕ

′
j(Y1) + ϕj(Y1))2

]
=

1

n

m−1∑
j=0

{
E
[
(Y1ϕ

′
j(Y1))2

]
+ E

[
2Y1ϕ

′
j(Y1)ϕj(Y1) + ϕj(Y1)2

]}
Now we note that by Formula (4.3) applied to t = ϕ2

j , we have

E
[
2Y1ϕ

′
j(Y1)ϕj(Y1) + ϕj(Y1))2

]
= E[ϕ2

j (X1)] ≤ 2

and, as by Formula (4.2), we have ‖ϕ′j‖2 = 1 + 4j, it follows from Equation (4.4), that

E
[
(Y1ϕ

′
j(Y1))2

]
≤ E[X1]‖ϕ′j‖2 = (1 + 4j)E[X1].

Consequently

E[‖f̂m − fm‖2] ≤ 1

n

m−1∑
j=0

((4j + 1)E[X] + 2) ≤ 4
m2

n
E[Y1] + 2

m

n
,

using that E[X1] = 2E[Y1]. Adding this to the squared bias term ‖f − fm‖2 gives Equation (4.8) and
thus Proposition 4.1 is proved. �

8.6. Proof of Proposition 4.2. We study here the MISE of the constrained estimator of the density
in the multiplicative noise model . We have

Var

m−1∑
j=0

âj

 =
1

n
Var

m−1∑
j=0

(yϕj(y))′(Y1)

 .

Now using relation (4.2), we have

m−1∑
j=0

(yϕj(y))′ =
m−1∑
j=0

(
− j

2
ϕj−1(y) +

1

2
ϕj(y) +

j + 1

2
ϕj+1(y)

)

= −1

2

m−2∑
j=0

(j + 1)ϕj(y) +
1

2

m−1∑
j=0

ϕj(y) +
1

2

m∑
j=1

jϕj(y)

= −1

2
ϕ0(y) +

1

2
ϕ0(y) +

1

2

m−2∑
j=1

[−(j + 1)ϕj(y) + ϕj(y) + jϕj(y)]

+
1

2
ϕm−1(y) +

1

2
(m− 1)ϕm−1(y) +

1

2
mϕm(y)

=
m

2
(ϕm−1(y) + ϕm(y))
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This implies that

Var

m−1∑
j=0

âj

 ≤ 1

n
E

m−1∑
j=0

(yϕj(y))′(Y1)

2 =
m2

4n
E
[
(ϕm−1(Y1) + ϕm(Y1))2

]
≤ m2‖fY ‖∞

2n
.

This, together with Equation (2.7) gives the result of Proposition 4.2. �

8.7. Proof of Theorem 4.3. We de�ne the contrast

γn(t) = ‖t‖2 − 2

n

n∑
i=1

(t(Yi) + Yit
′(Yi)). (8.6)

It is easy to check that f̂m = argmin
t∈Sm

γn(t) and to compute that γn(f̂m) = −‖f̂m‖2. We notice that

γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2νn(t− s) (8.7)

with

νn(t) =
1

n

n∑
i=1

t(Yi) + Yit
′(Yi)− 〈t, f〉 =

1

n

n∑
i=1

t(Yi) + Yit
′(Yi)− E[t(Yi) + Yit

′(Yi)].

By de�nition of f̂m̂, for all m ∈ Mn, we have γn(f̂m̂) + p̂en1(m̂) ≤ γn(fm) + p̂en1(m). Denoting
m ∨m′ = m∗, and Bm,m′ de�ned in (8.5), using (8.7) we get

‖f̂m̂ − f‖2 ≤ ‖f − fm‖2 + p̂en1(m) + 2νn(f̂m̂ − fm)− p̂en1(m̂)

≤ ‖f − fm‖2 +
1

4
‖f̂m̂ − fm‖2 + 4 sup

t∈Bm,m̂

ν2
n(t) + p̂en1(m)− p̂en1(m̂)

≤ ‖f − fm‖2 +
1

2
‖f̂m̂ − f‖2 +

1

2
‖fm − f‖2 + 4 sup

t∈Bm,m̂

ν2
n(t) + p̂en1(m)− p̂en1(m̂)

Therefore we get

‖f̂m̂ − f‖2 ≤ 3‖f − fm‖2 + 8 sup
t∈Bm,m̂

ν2
n(t) + 2p̂en1(m)− 2p̂en1(m̂)

≤ 3‖f − fm‖2 + 2p̂en1(m) + 8

(
sup

t∈Bm,m̂

ν2
n(t)− p(m, m̂)

)
(8.8)

+ 8p(m, m̂)− 2p̂en1(m̂)

with

p(m,m′) := 4
(1 + 48 log(2 +m∗))m∗(1 + 2E[Y1]m∗)

n

satisfying 4p(m,m′) ≤ pen1(m) + pen1(m′) for κ ≥ κ0 = 400 with

pen1(m) = κ
log(2 +m)m(1 + 2E[Y1]m)

n
, p̂en1(m) = κ

log(2 +m)m(1 + 4Ȳnm)

n
.

Let us state an intermediate result.

Lemma 8.1. Under the assumption of Theorem 4.3,

E

[(
sup

t∈Bm,m̂

ν2
n(t)− p(m, m̂)

)
+

]
≤ K1

n
.
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Taking expectation of (8.8), and plugging the results of Lemmas 8.1 implies

E[‖f̂m̂ − f‖2] ≤ 3‖f − fm‖2 + 6pen1(m) +
8K1

n
+ 2E (pen1(m̂)− p̂en1(m̂))+ .

Let Ωn := {E[Y1]− Ȳn| ≤ E[Y1]/2}. Then according to this de�nition we have

E
[
(pen1(m̂)− p̂en1(m̂))+

]
≤ E

[
2κ

n
log(2 + m̂)m̂2

(
E[Y1]

2
− Ȳn

)
+

1Ωc
n

]
.

Moreover, Bienaymé-Tchebychev's inequality leads to

P(Ωc
n) ≤ 4

(E[Y1])2

Var(Y1)

n
,

and Cauchy-Swharz's inequality implies,

E
[
|E[Y1]− Ȳn|1Ωc

n

]
≤ E

[(
E[Y1]− Ȳn

)2]1/2
P(Ωc

n)1/2

≤
√

Var(Y1)√
n

2
√

Var(Y1)

E[Y1]
√
n
≤ 2Var(Y1)

nE[Y1]
.

Finally, using that m ≤
√
n inMn, we get for n > 1,

E
[
(pen1(m̂)− p̂en1(m̂))+

]
≤ 4κ log(2 +

√
n)

Var(Y1)

E[Y1]

1

n

≤ 4κ
Var(Y1)

E[Y1]

log(n)

n
= C

log(n)

n

This completes the proof of Theorem 4.3. �

8.8. Proof of Lemma 8.1. First notice that,

E

[(
sup

t∈Bm,m̂

ν2
n(t)− p(m, m̂)

)
+

]
≤

∑
m′∈Mn

(
sup

t∈Bm,m′
ν2
n(t)− p(m,m′)

)
+

.

In the following we apply Talagrand's inequality to the above term. For that purpose, we compute
the terms denoted by H2, v and M in Theorem A.1.

We bound E

[
sup

t∈Bm,m′
ν2
n(t)

]
. For t ∈ Bm,m′ , using that t 7→ νn(t) is linear and t =

∑m∗−1
j=0 〈t, ϕj〉ϕj

with ‖t‖2 =
∑m∗−1

j=0 〈t, ϕj〉2 = 1, we get

ν2
n(t) =

νn
m∗−1∑

j=0

〈t, ϕj〉ϕj

2

=

m∗−1∑
j=0

〈t, ϕj〉νn(ϕj)

2

≤
m∗−1∑
j=0

ν2
n(ϕj).

Thus it follows from Proposition 4.1 (see the bound (4.8)),

E

[
sup

t∈Bm,m′
ν2
n(t)

]
≤

m∗−1∑
j=0

E[νn(ϕj)
2] =

m∗−1∑
j=0

1

n
Var((Y1ϕ

′
j(Y1) + ϕj(Y1)) ≤ 2m∗

n
(1 + 2m∗E[Y1]) =: H2.

Then,
Var(Y1t

′(Y1) + t(Y1)) ≤ E[(Y1t
′(Y1) + t(Y1))2] ≤ nH2 =: v.

Finally, using Formula (4.2) and the fact that the basis function ϕj 's are bounded by
√

2, we get

sup
t∈Bm,m′

sup
y
|(yt(y))′| ≤

m∗−1∑
j=0

(sup
y

(yϕj(y))′)2

1/2

≤

m∗−1∑
j=0

(
√

2(j + 1))2

1/2√
2/3(m∗)3/2 =: M.
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We obtain with α = α(m∗) = 24 log(m∗ + 2) in Theorem A.1:

E

[(
sup

t∈Bm,m′
ν2
n(t)− 2(1 + 2α(m∗))

2m∗

n
(1 + 2m∗E[Y1])

)
+

]

≤ C

n

(
2m∗(1 + 2m∗E[Y1])

(m∗ + 2)4
+

(m∗)3

n
e−C2

√
E[Y1]n1/4

)
,

using that any m ∈Mn satis�es m ≤
√
n.

Consequently,

∑
m′∈Mn

E

[(
sup

t∈Bm,m′
ν2
n(t)− 2(1 + 2α(m∗))

2m∗

n
(1 + 2m∗E[Y1])

)
+

]
≤ K1

n

where K1 is a constant, which is the result announced in Lemma 8.1. �

8.9. Proof of Proposition 4.4. We study here the risk of the projection estimator of the survival

function in the multiplicative model. We have E[‖Ŝm − S]‖2] = ‖Sm − S‖2 +E[‖Ŝm − Sm]‖2], and we

want to upper bound the term: E[‖Ŝm − Sm]‖2].

E
[∥∥∥Ŝm − Sm∥∥∥2

]
=

m−1∑
j=0

Var(âj) =
1

n

m−1∑
j=0

Var

(∫
R+

ϕj(x)1Y1≥xdx+ Y1ϕj(Y1)

)

≤ 2

n

m−1∑
j=0

E
[
(Φj(Y1) + Y1ϕj(Y1))2

]
where Φj(x) =

∫ x
0 ϕj(u)du. Now write that

E
[
(Φj(Y1) + Y1ϕj(Y1))2

]
= E[Φ2

j (Y1) + 2Y1Φj(Y1)ϕj(Y1)] + E[Y 2
1 ϕ

2
j (Y1)].

Now we note that by Formula (4.3) applied to t = Φ2
j , we have

E[Φ2
j (Y1) + 2Y1Φj(Y1)ϕj(Y1)] = E[Φ2

j (X1)].

Moreover, it follows from (4.4) that

E
[
(Y1ϕj(Y1))2

]
≤ E[X1]‖ϕj‖2 = E[X1].

Therefore,

E
[∥∥∥Ŝm − Sm∥∥∥2

]
≤ 1

n

m−1∑
j=0

E

[(∫
R+

ϕj(x)1X1≥x(x)dx

)2
]

+
1

n

m−1∑
j=0

E(Y 2
1 ϕ

2
j (Y1))

≤ 1

n
E

m−1∑
j=0

〈ϕj ,1X1≥·〉2
+

1

n

m−1∑
j=0

E[X1]

≤ 1

n
E
[
‖1X1≥·‖2

]
+ E[X1]

m

n
= E[X1]

m+ 1

n
.

This is the result of Proposition 4.4. �
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8.10. Proof of Proposition 4.5. We study here the additional variance term of the constrained
estimator of the survival function in the multiplicative model. As previously, we apply Formula (4.3)

applied to t = (
∑m−1

j=0 Φj)
2 (recall that Φj(x) =

∫ x
0 ϕj(u)du), and we �nd

Var

m−1∑
j=0

âj

 =
1

n
Var

(
m−1∑
`=0

∫
R+

ϕ`(u)1Y1≥udu+ Y1ϕ`(Y1)

)

≤ 1

n
E

(m−1∑
`=0

∫
R+

ϕ`(u)1X1≥udu

)2
+

1

n
E

(m−1∑
`=0

Y1ϕ`(Y1)

)2
 .

Now, we write by using Cauchy Schwarz and ‖
∑m−1

`=0 ϕ`‖2 = m,(
m−1∑
`=0

∫
R+

ϕ`(u)1x≥udu

)2

≤
∫
R+

(
m−1∑
`=0

ϕ`(u)

)2

du

∫
R+

1x≥udu = mx,

and we obtain

1

n
E

(m−1∑
`=0

∫
R+

ϕ`(u)1X1≥udu

)2
 ≤ E[X1]

m

n

Besides, we use the property (4.4). It comes,

1

n
E

(Y1

m−1∑
`=0

ϕ`(Y1)

)2
 ≤ E[X1]

n

∥∥∥∥∥
m−1∑
`=0

ϕ`

∥∥∥∥∥
2

= E[X1]
m

n
.

We obtain �nally:

Var

m−1∑
j=0

âj

 ≤ 2E[X1]
m

n
= 4E[Y1]

m

n
.

This concludes the proof of Proposition 4.5. �

8.11. Proof of Theorem 4.7. Let us now prove the oracle-type inequality for the survival function
estimator in the multiplicative noise context. We prove that Assumptions (2.14)-(2.16)-(2.17) are
ful�lled. Assumptions (2.16)-(2.17) follow from the density case, so we check (2.14). We set p(m,m′) =
pen(m ∨m′) and we write

E

[
sup

t∈Bm,m̂

ν2
n(t)− p(m, m̂)

]
+

≤ 3E

[
sup

t∈Bm,m̂

ν2
n,1(t)− p(m, m̂)

]
+

+ 3E

[
sup

t∈Bm,m̂

ν2
n,2(t)

]

+3E

 ∑
t∈Bm,m̂

R2
n(t)


+

where

νn,1(t) =
1

n

n∑
i=1

(Yit(Yi)1Yi≤cn − E[Yit(Yi)1Yi≤cn ]) , νn,2(t) =
1

n

n∑
i=1

(Yit(Yi)1Yi>cn − E[Yit(Yi)1Yi>cn ])

and

Rn(t) =
1

n

n∑
i=1

(∫
t(x)1Yi≥xdx− E[

∫
t(x)1Yi≥xdx]

)
.
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First for m∗ = m ∨ m̂,

E

[(
sup

t∈Bm,m̂

R2
n(t)

)
+

]
≤ E

m∗−1∑
j=1

(∫
ϕj(x)

1

n

n∑
i=1

(1Yi≥x − SY (x))dx

)2


≤ E

mmax−1∑
j=1

(∫
ϕj(x)

1

n

n∑
i=1

(1Yi≥x − SY (x))dx

)2


≤ 1

n

mmax−1∑
j=1

E

(∫ ϕj(x)

(
1

n

n∑
i=1

1Yi≥x

)
dx

)2


≤ 1

n
E[‖1Y1≥.‖2] =

E[Y1]

n
. (8.9)

Next we apply Talagrand's inequality (Theorem A.1) to νn,1 and to that aim, we compute H2, v and
M . Clearly, denoting m∗ = m ∨m′,

E

[
sup

t∈Bm,m′
ν2
n,1(t)

]
≤ E[X1]m∗

n
= 2

E[Y1]m∗

n
:= H2

Next using (4.4), we get

sup
‖t‖=1

Var(Y1t(Y1)1Y1≤cn) ≤ sup
‖t‖=1

E[Y 2
1 t

2(Y1)] ≤ sup
‖t‖=1

E[X1]‖t‖2 = 2E[Y1] := v.

Lastly, sup‖t‖=1 supy∈R+ |yt(y)1y≤cn | ≤ cn
√

2m∗ = M. Then we obtain, by taking α = 1/4 in Theorem

A.1, that, for p(m,m′) = 3E[Y1]m∗/n

E

[(
sup

t∈Bm,m̂

ν2
n,1(t)− p(m, m̂)

)
+

]
≤

∑
m′∈Mn

E

[(
sup

t∈Bm,m′
ν2
n,1(t)− p(m,m)

)
+

]

≤ C

n

∑
m′∈Mn

(
E[Y1]e−bm

∗/4 + c2
n

m∗

n
e−c

′
√

E[Y1]
√
n/cn

)
where C and c′ are two numerical constants. Therefore, choosing

cn =
c′√
2

√
E[Y1]n/ log(n)

and using that card(Mn) ≤ n and m∗ ≤ n, yields

E

[(
sup

t∈Bm,m̂

ν2
n,1(t)− p(m, m̂)

)
+

]
≤ K2

n
. (8.10)

Now,

E

[
sup

t∈Bm,m̂

ν2
n,2(t)

]
≤ E

m∨m̂∑
j=1

ν2
n,2(ϕj)

 ≤ E

mmax∑
j=1

ν2
n,2(ϕj)

 ≤ 1

n

mmax∑
j=1

Var (Y1ϕj(Y1)1Y1>cn)

≤ 2E[Y 2
1 1Y1>cn ] ≤ 2

E[Y 4
1 ]

c2
n

=
E[Y 4

1 ]

E[Y1]

log2(n)

n
. (8.11)

Finally gathering (8.9), (8.10), (8.11) leads to the result of Theorem 4.7. �
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8.12. Proof of Inequality (5.5). Let ~ϕm(Y1) =t (ϕ0(Y1), . . . , ϕm−1(Y1)). We have

nVar

(
m−1∑
`=0

â`

)
= Var

(
m−1∑
`=0

[
G−1
m ~ϕm(Y1)

]
`

)
≤ E

(m−1∑
`=0

[
G−1
m ~ϕm(Y1)

]
`

)2


≤ E

m−1∑
`=0

m−1∑
j=0

[G−1
m ]`,jϕj(Y1)

2 = E

m−1∑
j=0

(
m−1∑
`=0

[G−1
m ]`,j

)
ϕj(Y1)

2
≤ ‖fY ‖∞

m−1∑
j=0

(
m−1∑
`=0

[G−1
m ]`,j

)2

= ‖fY ‖∞‖G−1
m
~1m‖2

≤ ‖fY ‖∞‖G−1
m ‖2op‖~1m‖2 = ‖fY ‖∞m‖G−1

m ‖2op.

Consequently we get m−1Var
(∑m−1

`=0 â`

)
≤ ‖fY ‖∞‖G−1

m ‖2op/n, which is (5.5). �

8.13. Proof of Inequality (5.6).

nVar

(
m−1∑
`=0

â`

)
= Var

(
m−1∑
`=0

[
G−1
m
~Φm(Y1)

]
`

)
≤ E

(m−1∑
`=0

[
G−1
m
~Φm(Y1)

]
`

)2


≤ E

m−1∑
`=0

m−1∑
j=0

[G−1
m ]2`,j

m−1∑
`=0

Φ2
` (Y1)

 ≤ ‖G−1
m ‖2FE

[
m−1∑
`=0

Φ2
` (Y1)

]
≤ ‖G−1

m ‖2FE[Y1].

Therefore, we get (5.6). �

Appendix A. Talagrand's inequality

The following result follows from the Talagrand concentration inequality.

Theorem A.1. Consider n ∈ N∗, F a class at most countable of measurable functions, and (Xi)i∈{1,...,n}
a family of real independent random variables. De�ne, for f ∈ F , νn(f) = (1/n)

∑n
i=1(f(Xi) −

E[f(Xi)]), and assume that there are three positive constants M , H and v such that sup
f∈F
‖f‖∞ ≤M ,

E[sup
f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v. Then for all α > 0,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
exp

(
−bαnH

2

v

)

+
49M2

bC2(α)n2
exp

(
−
√

2bC(α)
√
α

7

nH

M

))
with C(α) = (

√
1 + α− 1) ∧ 1, and b = 1

6 .
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