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Abstract. This paper studies hazard rate estimation for right-censored data
by projection estimator methods. We consider projection spaces generated by
trigonometric or piecewise polynomials, splines or wavelet bases. We prove that
the estimator reaches the standard optimal rate associated with the regularity
of the hazard function, provided that the dimension of the projection space is
relevantly chosen. Then we provide an adaptive procedure leading to an auto-
matic choice of this dimension via a penalized minimum contrast estimator and
automatically reaching the optimal rate. Our procedure is based on a random
penalty function and is completely data driven. A small simulation experiment is
provided, that compares our result with some others.
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1. Introduction

In medical trials, reliability and many other fields, the occurrence of the event
of interest called lifetime (or time to failure) forms the modelling basis, although
often these times are not completely observed. The best known example of such
incomplete observation is right-censoring . Not all of a set of lifetimes are observed,
so that for some individual under study, it is only known that his lifetime is larger
than some given value. In these settings, hazard rate estimation for the lifetime
event is a basic tool for processing survival analysis.

Many methods for hazard estimation have been considered in the literature, and
in particular nonparametric ones have kwown an important recent development. Let
us be more precise with this nonparametric setting. Patil (1997) considers a wavelet
estimator for uncensored data but his approach can not be easily extended to cen-
sored data. Dyadic linear wavelets for incomplete data are used by Antoniadis et
al. (1999). They propose a two-step procedure to estimate the density function of
the lifetime and then define the hazard estimator by taking the ratio with some esti-
mator of the survival function. The estimator is proved to achieve the best possible
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convergence rate in the MISE sense; nevertheless their estimator is not adaptive and
the optimal resolution of the wavelet basis depends on the regularity of the function
to be estimated. Most recently, Wu and Wells (2003) consider another wavelet-type
estimator for left-truncated and right-censored data. Their estimator is directly
based on the wavelet transform of the Nelson-Aalen cumulative hazard estimator
rather than a two-step estimator. They provide an asymptotic formula for the MISE
and also study asymptotic normality of the estimator. Their results are not adaptive
with respect to the smoothness of the hazard function to be estimated either. Let
us mention also Kooperberg et al. (1995) who study the L2 convergence rate of an
hazard rate estimator in a context of tensor product splines. An adaptive sieved
maximum-likelihood method is proposed by Döhler and Rüschendorf (2002), who
consider an original Λ-distance (which is equivalent to the L2-norm): the resulting
estimator reaches the optimal rates, up to logarithmic factors only. The consistency
results are derived from Vapnik-Cervonenkis techniques. Moreover, as in Kooper-
berg et al. (1995), their work takes place in a multivariate framework conditionally
to a vector of covariates. A very general study is done by Reynaud-Bouret (2002)
in a general context embedding adaptive hazard rate estimation. Indeed, adaptive
results are obtained for penalized projection estimators of the Aalen multiplicative
intensity for counting processes. However, the only projection basis considered is a
basis of piecewise constant functions. An analogous method was used by Castellan
and Letué (2001) for the Cox model with right censorship.

Our method is related to model selection methods introduced by Barron and
Cover (1991), Birgé and Massart (1997) and Barron et al. (1999). Those technics
aim to an automatic (and data-driven) squared bias/variance compromise via some
relevant penalization of a contrast function. They generally involve the study of
some supremum of an empirical process and an important tool is provided by Ta-
lagrand’s (1996) inequality. Indeed, this inequality gives precisely some bounds for
the deviations of the supremum of some empirical centered process with respect to
its expectation. Another technical key in the present work is the strong representa-
tion of the Kaplan-Meier estimator via the original influence curves decomposition
initiated first by Reid (1981), and further used by Mielniczuk (1985), Delecroix and
Yazourh (1991) and independently, Lo et al. (1989). Once the decomposition is
available for a large variety of projection spaces, all proofs become very simple (con-
trary to Döhler and Rüschendorf’s (2002)). Consequently, our approach provides a
very general method allowing a wide range of models.

The plan of the paper is as follows. After the description in Section 2 of the
notations and assumptions, we present in Section 3 the study of one estimator
which is based on a projection contrast function. We describe the projection spaces
(namely the spaces generated by trigonometric polynomials, piecewise polynomials
or wavelets; the splines are considered apart from the others). We give the key
decomposition and some non asymptotic and asymptotic results, illustrating the
squared-bias-variance decomposition and the minimax rates that can be reached
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by the estimator. Section 4 describes the adaptive procedure and its non asymp-
totic and asymptotic performances. The results of some simulation experiments are
provided in Section 5. Lastly, most proofs are deferred to Section 6.

2. Notations and assumptions

We consider nonnegative i.i.d. random variables X0
i , for i = 1, . . . , n (lifetimes for

the n subjects under study) with common continuous distribution function F 0, and
C1, . . . , Cn i.i.d. nonnegative random variables (“censoring sequence”) with common
distribution function G, both sequences being independent. One classical problem
when processing with lifetime data is the estimation of the hazard rate function or
failure rate function h defined, if F 0 has a density f 0 by

h(x) =
d

dx
H(x) =

f 0(x)

F̄ 0(x)
, for F 0(x) < 1.

where H = − log(F̄ 0) is called the cumulative hazard rate and F̄ 0 = 1 − F 0 is
the survival function. In the setting of survival analysis data with random right
censorship, one observes the bivariate sample (X1, δ1), . . . , (Xn, δn), where

Xi = X0
i ∧ Ci, δi = 1I{X0

i ≤Ci}.

In other words, δi = 1 indicates that the ith subject’s time is uncensored. We de-
note by F the common distribution function of the Xi’s and note that F̄ = 1−F =
(1− F 0)(1−G).

Since h is not square integrable on R+ for standard survival laws (like exponen-
tials), the estimator of h is standardly built on some interval [0, b] (see e.g. Dölher
and Rüschendorf (2002)). As mentioned in Delecroix and Yazourh (1992), this does
not imply any practical restriction since, for estimation purpose, we can choose b
greater than the largest of the uncensored Xi’s. For sake of simplicity and without
loss of generality, we set b = 1 in all the following.

A standard estimate of the survival function F̄ 0 is due to Kaplan and Meier (1958)
and is defined in function of the X(j)’s, where X(j) is the jth order statistic for the
sample (X1, . . . , Xn), by:

KMn(x) =


n∏

i=1,X(i)≤x

(
n− i

n− i+ 1

)δ(i)
if x ≤ X(n)

0 if x > X(n).

Here, δ(i) is the induced order statistic corresponding to X(i). Note that this defi-
nition induces that the largest observation is supposed to be uncensored, whether
or not it is. Now, in order to avoid the possibility that KMn(x) = 0, since our
purpose is to build an empirical estimator of the cumulative hazard rate function,
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the Kaplan-Meier estimator is modified as in Lo et al. (1989). The survival function
F̄ 0 is estimated by F̄ 0

n defined by

(2.1) F̄ 0
n(x) =


n∏

i=1, X(i)≤x

(
n− i+ 1

n− i+ 2

)δ(i)
if x ≤ X(n)

F̄ 0
n(X(n)) if x > X(n).

Useful properties are the following: F̄ 0
n(x) ≥ (n+1)−1 for all x and sup0≤x≤T |KMn(x)−

F̄ 0
n(x)| = O(n−1) a.s. for any 0 < T < inf{t ≥ 0 : F (t) = 1}.

3. Study of one estimator

3.1. Definition of the estimator. We consider the following contrast function

(3.1) γn(t) = ‖t‖2 − 2

∫ 1

0

t(x)dHn(x)

where t is a function of L2([0, 1]), ‖t‖2 =
∫ 1

0
t2(x)dx and Hn = − ln(F̄ 0

n), with F̄ 0
n

defined by (2.1) and therefore∫ 1

0

t(x)dHn(x) = −
∑

i/X(i)<1

δ(i) t(X(i)) ln

(
1− 1

n− i+ 2

)
.

We consider a collection of models (Sm)m∈Mn where each Sm is a finite dimensional
sub-space of L2([0, 1]) with dimensionDm, generated by a basis (ϕλ)λ∈Λm of functions
where card(Λm) = Dm. Let then

ĥm = arg min
t∈Sm

γn(t).

An explicit expression of the estimator follows from this definition if the functions
(ϕλ)λ∈Λm are a collection of orthonormal functions:

(3.2) ĥm =
∑
λ∈Λm

âλϕλ with âλ =

∫ 1

0

ϕλ(x)dHn(x).

Note that one can easily write that

ĥm(x) = −
∑

i/X(i)<1

δ(i)Km(X(i), x) ln

(
1− 1

n− i+ 2

)
with Km(X(i), x) =

∑
λ∈Λm

ϕλ(X(i))ϕλ(x). This expression shows that our estimator
presents some analogy with a generalized kernel estimator by replacing Km( . , x)
with a kernel function.
Let also hm denote the orthogonal projection of h on Sm. We can write
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(3.3) hm =
∑
λ∈Λm

aλϕλ with aλ =

∫ 1

0

ϕλ(x)dH(x).

It follows from (3.2), (3.3) and Pythagoras theorem that

‖h− ĥm‖2 = ‖h− hm‖2 + ‖hm − ĥm‖2

= ‖h− hm‖2 +
∑
λ∈Λm

(aλ − âλ)2

= ‖h− hm‖2 +
∑
λ∈Λm

(∫ 1

0

ϕλ(x)dHn(x)−
∫ 1

0

ϕλ(x)dH(x)

)2

.

Let us define for a general t function and a real number a ∈ [0, 1],

(3.4) C(t, a) =

∫ a

0

t(x)dHn(x)−
∫ a

0

t(x)dH(x).

Then we have

‖h− ĥm‖2 = ‖h− hm‖2 +
∑
λ∈Λm

C2(ϕλ, 1).(3.5)

The main difficulty related to a non-orthogonal basis (like splines that will be
described in the next section) is that the explicit formula given for the coefficients
âλ in formula (3.2) is no longer true. As a consequence, formula (3.5) which can be
seen as a kind of bias-variance decomposition does not hold anymore. In the case
of a non-orthogonal basis, the definition (3.1) of the contrast remains valid and is
used directly

γn(t)− γn(s) = ‖t− h‖2 − ‖s− h‖2 − 2

∫ 1

0

(t− s)d(Hn −H)(x).

Then if hm still denotes the projection of h on Sm, γn(ĥm) ≤ γn(hm) implies

‖ĥm − h‖2 ≤ ‖hm − h‖2 + 2C(ĥm − hm, 1)

≤ ‖hm − h‖2 + 2 ‖ĥm − hm‖ sup
t∈Sm,‖t‖=1

|C(t, 1)|

≤ ‖hm − h‖2 +
1

4
‖ĥm − hm‖2 + 4 sup

t∈Sm,‖t‖=1

|C(t, 1)|2,

and since ‖ĥm − hm‖2 ≤ 2‖hm − h‖2 + 2‖ĥm − h‖2, we have

‖ĥm − h‖2 ≤ 3‖hm − h‖2 + 8

(
sup

t∈Sm,‖t‖=1

|C(t, 1)|2
)
.(3.6)
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It appears that (3.6) can replace (3.5) when non orthogonal bases are considered.

3.2. Description of the spaces of approximation. In this section, we describe
the spaces (Sm)m∈Mn considered in the sequel and we point out the key properties
that they satisfy. They are all considered as subspaces of L2([0, 1]).

3.2.1. Orthonormal basis.

[T] Trigonometric spaces: Sm is generated by { 1,
√

2 cos(2πjx),
√

2 sin(2πjx)
for j = 1, . . . ,m }, Dm = 2m+ 1 and Mn = {1, . . . , [n/2]− 1}.

[P] Regular piecewise polynomial spaces: Sm is generated by m(r+1) polynomi-
als, r+1 polynomials of degree 0, 1, . . . , r on each subinterval [(j−1)/m, j/m],
for j = 1, . . .m, Dm = (r+1)m, m ∈Mn = {1, 2, . . . , [n/(r+1)]}. For exam-
ple, consider the orthogonal collection in L2([−1, 1]) of Legendre polynomials
Qk, where the degree of Qk is equal to k, |Qk(x)| ≤ 1,∀x ∈ [−1, 1], Qk(1) = 1

and
∫ 1

−1
Q2
k(u)du = 2/(2k + 1). Then the orthonormal basis is given by

ϕj,k(x) =
√
m(2k + 1)Qk(2mx−2j+ 1)1I[(j−1)/m,j/m[(x) for j = 1, . . . ,m and

k = 0, . . . , r, with Dm = (r + 1)m. In particular, the histogram basis cor-
responds to r = 0 and is simply defined by ϕj(x) =

√
Dm 1I[(j−1)/Dm,j/Dm](x)

and Dm = m. We call dyadic collection of piecewise polynomials, and denote
by [DP], the collection corresponding to dyadic subdivisions with m = 2q and
Dm = (r + 1) 2q.

[W] Dyadic wavelet generated spaces with regularity r and compact support,
as described e.g. in Donoho and Johnstone (1994): Sm is generated by
{φj0,k , ψj,k ; k ∈ Z , m ≥ j ≥ j0} for any fixed resolution j0 and with

φj0,k(x) =
√

2j0 φ(2j0 x − k) and ψj,k(x) =
√

2j ψ(2j x − k) where φ and ψ
denote respectively the scaling function and the mother wavelet on [0, 1] and
are elements of the Hölder space Cr , r ≥ 0. In this case, the multi-resolution
analysis is said to be r regular. Moreover, the wavelet ψ has vanishing mo-
ments up to order r (see for example Daubechies, (1992)). Since φ and ψ
are compactly supported on [0, 1], for any fixed j the sum over k is finite in
the wavelet serie, more precisely for a function t ∈ Sm,

t(x) =
2j0−1∑
k=0

aj0,k φj0,k(x) +
m∑
j=j0

2j−1∑
k=0

bj,k ψj,k(x).

Therefore, one can see that the generating basis is of cardinality Dm = 2m+1

and m ∈Mn = {1, 2, . . . , [ln(n)/2]− 1}.
Note that all those collections of models satisfy the following properties: in addition
of being finite dimensional linear spaces of dimension Dm, they are such that:

(3.7) ∃Φ0 > 0,∀t ∈ Sm, ‖t‖∞ ≤ Φ0

√
Dm‖t‖
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and

∃Φ0 > 0, ‖
∑
λ∈Λm

ϕ2
λ‖∞ ≤ Φ2

0Dm.

In fact, it follows from Birgé and Massart (1997) that both properties above are
equivalent. For instance Φ0 =

√
2 for collection [T] and Φ0 =

√
2r + 1 for collection

[P].
Our description of the bases enhances their similarity, but they must be distin-

guished in the proofs: collection [T] is different from collections [P] and [W] because
the former is built with functions defined globally on the whole interval [0, 1] whereas
the latter are built with functions localized on small sub-intervals of [0, 1].

3.2.2. B-Splines. The splines projection space leads to the same kind of results,
but we choose to describe it separately because its generating basis is not or-
thonormal, even if it has also some very similar properties as compared to the
bases already described. More specifically, we consider dyadic B-splines on the unit
interval [0, 1]. Let Nr be the B-spline of order r which has knots at the points
0, 1, . . . , r, i.e. Nr(x) = r[0, 1, . . . , r]( . − x)r−1

+ with the usual difference notation
(see de Boor (1978), or DeVore and Lorentz (1993)). Let m be a positive integer
and define, for Dm = 2m + r − 1,

Bm,k(x) = Nr(2
mx− k), B̃m,k =

√
DmBm,k, k ∈ Z.

For approximation on [0, 1], we only consider the B-splines Bm,k which do not vanish
identically on [0, 1]. Let Km denote the set of integers k for which this holds and
let Sm be the linear span of the B-splines (Bm,k) (or B̃m,k) for k ∈ Km. The linear
space Sm is referred to as the space of dyadic splines, its dimension is Dm and any
element of Sm can be represented as

∑
k∈Km am,kB̃m,k for a Dm-dimensional vector

am = (am,k)k∈Km . The following properties of the splines are useful and illustrate
their similarity with the previously described bases:

(S1) ∀x ∈ R, 0 ≤ B̃m,k ≤
√
Dm,

(S2) ∀x ∈ R,
∑

k∈Z B̃m,k(x) =
√
Dm.

(S3) B̃m,k has only non zero values on ]k/2m, (k + r)/2m],

(S4)
∫
B̃m,k =

√
Dm2−m,

(S5) There exists some constant Φ0 such that

Φ−2
0

∑
k∈Km

a2
m,k ≤

∥∥∥∥∥∑
k∈Km

am,kB̃m,k

∥∥∥∥∥
2

≤ Φ2
0

∑
k∈Km

a2
m,k,

(S6) For any t ∈ Sm, ‖t‖∞ ≤ Φ0

√
Dm‖t‖.

Let us denote âm = (âm,k)k∈Km the vector of the coefficients of ĥm in the spline
basis. As already mentioned, the explicit formula given for the coefficients in for-
mula (3.2) is no longer true with spline estimation. Indeed the inversion of a
matrix (which is nevertheless block-diagonal with blocks of size r from (S3)) is
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required to derive the expression of the coefficients âm,k’s. Consider Gm(B) =

(〈B̃m,k, B̃m,`〉)k,`∈Km and ∆m(B) = diag(‖B̃m,k‖2)k∈Km two Dm ×Dm matrices and

Ξn,m(B,H) = (2
∫ 1

0
B̃m,k(x)dHn(x))k∈Km a Dm×1 vector, it is straightforward from

(3.1) that :

(∆m(B) +Gm(B))âm = Ξn,m(B,H).

In the following, we denote by [B] the collection of models associated with the splines
spaces Sm for m ≥ 0.

3.3. Decomposition of the variance term. By using a result of Lo and al. (1989)
and also Reid (1981) and Delecroix and Yazourh (1992), we prove a decomposition
result which is the main technical key of the proofs. This decomposition is described
by the following Lemma:

Lemma 3.1. Consider collections [T], [P], [W] and [B]. Then ∀m ∈ Mn,∀t ∈ Sm,
∀a ∈ [0, 1],

(3.8) C(t, a) =
1

n

n∑
i=1

Zi(t, a) +R∗n(t, a)

where

(3.9) Zi(t, a) =

∫ Xi∧a

0

t(u)
h(u)

1− F (u)
du− 1I{δi=1}∩{Xi≤a}

t(Xi)

1− F (Xi)
,

and

(3.10) E sup
t∈Sm,‖t‖=1

[R∗n(t, a)]2k ≤ κ(k,Φ0, a)
D2k
m ln2k(n)

n2k
for any integer k,

where κ(k,Φ0, a) denotes a constant depending on k, a and Φ0.

Remark 3.1. More generally, Lemma 3.1 holds true for any finite dimensional
space generated by an orthonormal basis satisfying (3.7) and supt∈Sm N(t) ≤ K0Dm

if t is continuous and differentiable on [0, 1] or
∑

λ∈Λm
N2(ϕλ) ≤ K2

0D
2
m if the ϕλ’s

are continuous and differentiable except on the boundary of their support with
N(t) = 2‖t‖∞ +

∫ 1

0
|t′(x)| dx.

Note that it follows from the definition of R∗n(t, a) = C(t, a)−n−1
∑n

i=1 Zi(t, a) that
since t 7→ C(t, a) and t 7→ Zi(t, a) are linear with respect to t, then R∗n(t, a) has the
same linearity property. Then

sup
t∈Sm,‖t‖=1

[R∗n(t, a)]2 ≤ sup∑
a2λ≤1

[
∑
λ∈Λm

aλR
∗
n(ϕλ, a)] ≤

∑
λ∈Λm

R∗2n (ϕλ, a)

and that the supremum is attained for aλ = R∗n(ϕλ, a)/
√∑

λR
∗2
n (ϕλ, a). Therefore

sup
t∈Sm,‖t‖=1

[R∗n(t, a)]2 =
∑
λ∈Λm

R∗2n (ϕλ, a).
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In the sequel, the abbreviated notation Zi(t, 1) = Zi(t) will be used (respectively
R∗n(t) = R∗n(t, 1)).

3.4. Convergence results. The key point is that Lemma 3.1 gives a decomposi-
tion of C(ϕλ, 1) into an empirical mean of i.i.d. centered random variables and a
negligible term. Then we can easily prove:

Proposition 3.1. Consider the model described in section 2 and the estimator ĥm =
arg mint∈Sm γn(t) where γn(t) is defined by (3.1) and Sm is a Dm-dimensional linear
space in collection [T], [P], [W] or [B]. Then

(3.11) E(‖h− ĥm‖2) ≤ C1 ‖h− hm‖2 + C2
2Φ2

0Dm

n

∫ 1

0

h(x)

1− F (x)
dx+ κ

D2
m ln2(n)

n2
,

where κ is a constant depending on the basis, C1 = C2 = 1 for collection [T], [P] or
[W] and C1 = 3, C2 = 8 for collection [B].

Proof. Applying (3.8) in decomposition (3.5) for an orthonormal basis leads to

‖h− ĥm‖2 = ‖h− hm‖2 +
∑
λ∈Λm

(
1

n

n∑
i=1

Zi(ϕλ) +R∗n(ϕλ)

)2

≤ ‖h− hm‖2 + 2
∑
λ∈Λm

(
1

n

n∑
i=1

Zi(ϕλ)

)2

+ 2
∑
λ∈Λm

R∗2n (ϕλ).

Then, by using that the variables Zi(ϕλ) are i.i.d. centered with variance∫ 1

0

ϕ2
λ(x)

h(x)

1− F (x)
dx

and the bound (3.10) for [T], [P] and [W], we have

E(‖h− ĥm‖2) ≤ ‖h− hm‖2 +
2

n

∑
λ∈Λm

∫ 1

0

ϕ2
λ(x)

h(x)

1− F (x)
dx

+2E

(
sup

t∈Sm,‖t‖=1

[R2
n(t)]

)

≤ ‖h− hm‖2 +
2Φ2

0Dm

n

∫ 1

0

h(x)

1− F (x)
dx+ 2K(1,Φ0, 1)

D2
m ln2(n)

n2
.

For collection [B], the proof requires specific but straightforward properties of the
spline basis and is deferred to the last section. �

Inequality (3.11) gives the asymptotic rate for one estimator, provided that we
know that for a function h with regularity α, ‖h − hm‖2 ≤ KD−2α

m and provided
that Dm is well chosen in function of n. More precisely, if Dm is of order n1/(2α+1),
the resulting rate is of order n−2α/(2α+1).
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More formally, let us recall that a function f belongs to the Besov space Bα,`,∞([0, 1])
if it satisfies

|f |α,` = sup
y>0

y−αwd(f, y)` < +∞, d = [α] + 1,

where wd(f, y)` denotes the modulus of smoothness. For a precise definition of those
notions we refer to DeVore and Lorentz (1993) Chapter 2, Section 7, where it is also
proved that Bα,p,∞([0, 1]) ⊂ Bα,2,∞([0, 1]) for p ≥ 2. This justifies that we now
restrict our attention to Bα,2,∞([0, 1]).
Then the following (standard) rate is obtained:

Corollary 3.1. Consider the model described in section 2 and the estimator ĥm =
arg mint∈Sm γn(t) where γn(t) is defined by (3.1) and Sm is a Dm-dimensional lin-
ear space in collection [T], [P], [W] or [B]. Assume moreover that h belongs to
Bα,2,∞([0, 1]) with r > α > 0 and choose a model with m = mn such that Dmn =
O(n1/(2α+1)), then

(3.12) E(‖h− ĥmn‖2) = O
(
n−

2α
2α+1

)
.

Remark 3.2. The bound r stands for the regularity of the basis functions for
collections [P], [W] and [B]. For the trigonometric collection [T], no upper bound
for the unknown regularity α is required.

Proof. The result is a straightforward consequence of the results of DeVore and
Lorentz (1993) and of Lemma 12 of Barron, Birgé and Massart (1999), which imply
that ‖h − hm‖ is of order D−αm in the three collections [T], [P] and [W], for any
positive α. In the same way, it follows from Theorem 3.3 in Chapter 12 of DeVore
and Lorentz (1993) that ‖h−hm‖2 = O(D−2α

m ) in collection [B], if h belongs to some
Besov space Bα,2,∞([0, 1]) with |h|α, 2 ≤ L for some fixed L. Thus the minimum
order in (3.11) is reached for a model Smn with Dmn = O([n1/(1+2α)]), which is less
than n for α > 0. Then, if h ∈ Bα,2,∞([0, 1]) for some α > 0, we find the standard
nonparametric rate of convergence n−2α/(1+2α). �

Lastly, let us mention that we can obtain a ponctual central limit theorem, but
for the histogram basis only. This result is analogous to those given for wavelet
bases in Antoniadis et al. (1999) or Wu and Wells (2003) who need to choose some
“dyadic points” in a very particular way for providing their central limit theorem
to hold. The particular feature of the histogram basis avoids this problem. More
precisely we have the following result:

Theorem 3.1. Consider ĥm = arg mint∈Sm γn(t) where γn(t) is defined by (3.1) and
Sm is a Dm-dimensional linear space in collection [P] with r = 0. Assume moreover
that h(1) is bounded, then for Dm = Dmn such that Dmn = o(

√
n) and n/D3

mn = o(1),
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we have √
n

Dmn

(
ĥmn(x)− h(x)

)
L−→n→+∞ N

(
0,

h(x)

1− F (x)

)
.(3.13)

4. The adaptive estimator

4.1. Adaptation with a theoretical penalty. The penalized estimator is defined
in order to ensure an automatic choice of the dimension. Indeed, it follows from
Corollary 3.1 that the optimal dimension depends on the unknown regularity α of
the function to be estimated. Then we define

m̂ = arg min
m∈Mn

[γn(ĥm) + pen(m)]

where the penalty function pen is determined in order to lead to the choice of a
“good” model. First, by applying some Talagrand’s (1996) type inequality to the
empirical process defined by

(4.1) νn(gt) =
1

n

n∑
i=1

Zi(t) :=
1

n

n∑
i=1

gt(Xi)

where

(4.2) gt(x) =

∫ x∧1

0

t(u)
h(u)

1− F (u)
du− 1I{δi=1}∩{x≤1}

t(x)

1− F (x)
,

so that gt(Xi) = Zi(t), we can prove the following lemma:

Lemma 4.1. Let νn(gt) be defined by (4.1) and (4.2), then for ε > 0

(4.3) E

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− p(m,m′)

)
≤ κ1

n

(
e−κ2ε (Dm+Dm′ ) +

e−κ3ε
3/2√n

C(ε)2

)
,

with p(m,m′) = 2(1 + 2ε)C3 (Dm + Dm′)/n, C(ε) = (
√

1 + ε − 1) ∧ 1 and where
Bm,m′(0, 1) = {t ∈ Sm + Sm′ / ‖t‖ ≤ 1}. The constants κi for i = 1, 2, 3 and C3

depend on Φ0, h and F .

Then, by using the decomposition of the contrast given by

(4.4) γn(t)− γn(s) = ‖t− h‖2 − ‖s− h‖2 − 2

n

n∑
i=1

Zi(t− s)− 2R∗n(t− s),

we easily derive the following result:

Theorem 4.1. Consider the model described in section 2 and the estimator ĥm =
arg mint∈Sm γn(t) where γn(t) is defined by (3.1) and Sm is a Dm-dimensional linear
space in collection [T], [DP], [B] or [W], |Mn| ≤ n and Dm ≤

√
n,∀m ∈Mn. Then

the estimator ĥm̂ with m̂ defined by

m̂ = arg min
m∈Mn

[γn(ĥm) + pen(m)]
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and

pen(m) = κΦ2
0

(∫ 1

0

h(x)

1− F (x)
dx

)
Dm

n

where κ is a universal constant satisfies

(4.5) E(‖ĥm̂ − h‖2 ≤ inf
m∈Mn

(
3‖h− hm‖2 + 4pen(m)

)
+
K ln2(n)

n
,

where K is a constant depending on h, F and Φ0.

Therefore, the adaptive estimator automatically makes the squared-bias/variance
compromise and from an asymptotic point of view, reaches the optimal rate, pro-
vided that the constant in the penalty is known. Note that Inequality (4.5) is
nevertheless non-asymptotic.

Remark 4.1. Note that again, the result holds true for any collection of models
(Sm)m∈Mn such that Sm is a linear subspace of L2([0, 1]) with dimension Dm satis-
fying condition (3.7), for which (3.10) holds and |Mn| ≤ n, Dm ≤

√
n, ∀m ∈Mn.

Proof . It follows from the definition of ĥm̂ that: ∀m ∈Mn,

(4.6) γn(ĥm̂) + pen(m̂) ≤ γn(hm) + pen(m).

Then by using decomposition (4.4), it follows from (4.6) and from the definition of
the process νn(gt) given in lemma 4.1 that:

‖ĥm̂ − h‖2 ≤ ‖hm − h‖2 +
2

n

n∑
i=1

Zi(ĥm̂ − hm) + 2R∗n(ĥm̂ − hm)

+pen(m)− pen(m̂)

≤ ‖hm − h‖2 +
1

4
‖ĥm̂ − hm‖2 + 8 sup

t∈Bm,m̂(0,1)

ν2
n(gt) + 8 sup

t∈Bm,m̂(0,1)

R∗2n (t)

+pen(m)− pen(m̂).(4.7)

Note that the norm connection as described by (3.7) still holds for elements t of
Sm +Sm′ as follows ‖t‖∞ ≤ Φ0 sup(Dm, Dm′)‖t‖ since we restricted our attention to
nested collections of models. We denote by D(m′) the dimension of Sm+Sm′ for the
fixed m considered in the following. Note that D(m′) = sup(Dm, Dm′) ≤ Dm+Dm′ .
Let p(m,m′) such that

8p(m,m′) ≤ pen(m) + pen(m′) for all m, m′ in Mn.(4.8)

Then ∀m ∈Mn,
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1

2
‖ĥm̂ − h‖2 ≤ 3

2
‖h− hm‖2 + 2 pen(m) + 8

(
sup

t∈Bm,m̂(0,1)

ν2
n(gt)− p(m, m̂)

)
+8 sup

t∈Bm,m̂(0,1)

R∗2n (t).

Then if we prove

(4.9)

E

(
sup

t∈Bm,m̂(0,1)

ν2
n(gt)− p(m, m̂)

)
≤

∑
m′∈Mn

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− p(m,m′)

)
≤ C

n

and

E

(
sup

t∈Bm,m̂(0,1)

R∗2n (t)

)
≤ C ′

ln2(n)

n
,(4.10)

we have the following result: ∀m ∈Mn,

E(‖ĥm̂ − h‖2) ≤ 3‖h− hm‖2 + 4pen(m) +
K ln2(n)

n
,

and this proves the theorem.
Therefore by using equation (4.8) and the definition of p(m,m′) in Lemma 4.1, we
choose

pen(m) = 16(1 + 2ε)

∫ 1

0

h(x)

1− F (x)
dx
Dm

n

Inequality (4.9) is a straightforward consequence of Lemma 4.1 since∑
m′∈Mn

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− p(m,m′)

)
≤ κ1

(∑
m′∈Mn

e−κ2εDm′

n
+
|Mn|
n

e−κ3ε
3/2√n

)
.

Then by taking ε = 1/2 and assuming that |Mn| ≤ n and since for [T], [DP], [B] and
[W],

∑
m∈Mn

e−aDm ≤
∑n

k=1 e
−ka ≤ Σ(a) < +∞,∀a > 0, this leads to the bound

∑
m′∈Mn

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− p(m,m′)

)
≤ C

n
,

and this ensures (4.9).
Lastly, let us verify that inequality (4.10) holds for all collections of model. For

[T] and [B], we have

sup
t∈Bm,m̂(0,1)

(R∗n(t))2 ≤ sup
t∈Bm,m̂(0,1)

N2(t)R2
n ≤ C(Dm +Dm̂)2R2

n.
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On the other hand, for [DP] and [W], we have already seen (in the proof of Lemma
3.1, see Inequality (6.6)) that

sup
t∈Bm,m̂(0,1)

(R∗n(t))2 =
∑

λ∈Λm,m̂

R∗2n (ϕλ) ≤ C ′(Dm +Dm̂)2R2
n

with the natural notation Λm,m̂ = Λm ∪Λm̂. In addition E(R2
n) ≤ ln2(n)/n2, then it

is enough to conclude that for all collections [T], [B], [DP] and [W]

E

(
sup

t∈Bm,m̂(0,1)

(R∗n(t))2

)
≤ K

ln(n)2

n
as soon as Dm ≤

√
n,∀m ∈Mn.

�

4.2. Random penalization. The penalty given in Theorem 4.1 can not be used
in practice since it depends on the unknown quantity∫ 1

0

h(x)

1− F (x)
dx.

Therefore we replace this quantity by an estimator and prove that the estimator of
h built with this random penalty keeps the adaptation property of the theoretical
estimator.

Theorem 4.2. Consider the model described in section 2 and the estimator ĥm =
arg mint∈Sm γn(t) where γn(t) is defined by (3.1) and Sm is a Dm-dimensional linear
space in collection [T], [DP], [B] or [W], |Mn| ≤ n and Dm ≤

√
n,∀m ∈ Mn.

Consider the estimator ĥm̂ with m̂ defined by

m̂ = arg min
m∈Mn

[γn(ĥm) + p̂en(m)]

and

p̂en(m) = κΦ2
0

(∫ 1

0

ĥn(x)

1− F̂n(x)
dx

)
Dm

n

where κ is a universal constant, ĥn = ĥmn where mn ∈ Mn is one estimator in

the collection and F̂n(x) = 1
n+1

∑n
i=1 1I{Xi≤x} stands for the standard empirical dis-

tribution function of the Xi’s. Then if the orthogonal projection hmn of h on Smn,
satisfies

(4.11) ‖hmn − h‖ ≤
1

16
(1− F (1))

∫ 1

0

h(x)

1− F (x)
dx

then ĥm̂ satisfies
(4.12)

E(‖ĥm̂ − h‖2) ≤ inf
m∈Mn

K0

(
‖h− hm‖2 + Φ2

0

∫ 1

0

h(x)

1− F (x)
dx
Dm

n

)
+
K ln2(n)

n
,

where K0 is a universal constant and K depends on h, F , Φ0.
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We can see that the constraint given in (4.11) is not very strong since as already
mentioned with Corollary 3.1, we know that for collection [T],[P] or [W] and h be-
longing to some Besov space Bα,2,∞([0, 1]), ‖h − hmn‖2 = O(D−2α

mn ) and therefore
‖h − hmn‖2 tends to zero when Dmn tends to infinity. This condition implies that
Dmn is not only bounded by above but also by below and must be great enough, as
it is natural.
Note that another substitution can be done since

∫ 1

0
h(x)/(1− F (x))dx can also be

seen as the second order moment of the independent random variables 1I{δi=1,Xi≤1}/(1−
F (Xi)) and therefore can be estimated by

(4.13) ŝ2 =
1

n

n∑
i=1

1I{Xi≤1}1I{δi=1}

(1− F̂n(Xi))2
, F̂n(x) =

1

n+ 1

n∑
i=1

1I{Xi≤x}.

The following result holds:

Corollary 4.1. Under the assumptions of Theorem 4.2 but witĥ̂pen(m) = κΦ2
0ŝ2

Dm

n

where ŝ2 is defined by (4.13) and κ is a universal constant, the estimator ĥm̂ satisfies
(4.12).

In particular, we can derive quite straightforwardly from results as Theorem 4.2
some adaptation results to unknown smoothness:

Proposition 4.1. Consider the collection of models [T], [P] or [W], with r > α >

1/2. Assume that an estimator h̃ of h satisfies inequality (4.12). Let L > 0. Then

(4.14)

(
sup

h∈Bα,2,∞(L)

E‖h− h̃‖2

) 1
2

≤ C(α,L)n−
α

2α+1

where Bα,2,∞(L) = {t ∈ Bα,2,∞([0, 1]), |t|α,2 ≤ L} where C(α,L) is a constant de-
pending on α,L and also on h, Φ0.

4.3. Adaptive estimation with a general collection of models. It is some-
times useful for estimation purpose to use non regular models, in order to take into
account some variability in the regularity of the function to be estimated. This
extension is possible under some restrictions. For instance Reynaud-Bouret (2003)
proves some adaptation results for non regular histograms provided that knots are
chosen in a set of cardinality less than n/ ln2(n). Our restriction here is stronger
since the largest cardinality we can consider is of order

√
n. On the other hand, we

consider the more general collection of piecewise polynomials, than histograms.

We assume in the following for the sake of simplicity (and without loss of gener-
ality), that

√
n is an integer. We consider the set of knots
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Γ = { `√
n
, ` = 1, . . . ,

√
n− 1}.

A general piecewise polynomial model, non necessarily regular, is then defined by
the maximal degree r of the polynomials and a set of knots

{a0 = 0, a1, . . . , a`, a`+1 = 1}

where {a1, . . . a`} is any subset of Γ : its dimension isDm = (`+1) (r+1). This means

that with non regular collection for any fixed dimension Dm, there is

( √
n− 1
`

)
associated models corresponding to the possible choices of the subset {a1, . . . a`}
with ` = 1, . . . ,

√
n − 1. Therefore, the cardinality of the set Mn of all possible m

is: √
n−1∑
`=1

( √
n− 1
`

)
= 2

√
n−1 − 1 =

1

2
exp(
√
n ln(2))− 1 .

It is exponentially great and in particular greater than the order n obtained in
the regular case, when we consider only one model per dimension. The ϕλ’s for
λ = (aj, aj+1; k) ∈ Λm are given by√

2k + 1

aj − aj−1

Qk

(
2

aj − aj−1

x− aj + aj−1

aj − aj−1

)
1I[aj ,aj−1[(x)

for k = 0, 1, . . . , r and j = 0, . . . , `+ 1, where Qk denotes the kth Legendre polyno-
mial.
The main difficulty is that the connection between the supremum norm ‖.‖∞ and
the L2-norm, ‖.‖ as given by (3.7) and its equivalent formulation is no longer true.
We only have

∀m ∈Mn, ∀t ∈ Sm, ‖t‖∞ ≤
√

(2r + 1)
√
n‖t‖

and this inequality is clearly less powerful than (3.7) since we assumed that ∀m ∈
Mn, Dm ≤

√
n. In particular, the result in Lemma 3.1 must be re-examined in this

light, as well as most bounds. We can prove the following result:

Theorem 4.3. Consider the model described in section 2 and the estimator ĥm =
arg mint∈Sm γn(t) where γn(t) is defined by (3.1) and Sm is a Dm-dimensional linear
space in the general collection of piecewise polynomials described above. Then the
estimator ĥm̂ with m̂ defined by

m̂ = arg min
m∈Mn

[γn(ĥm) + pen(m)]

and

pen(m) = κ(2r + 1) sup
x∈[0,1]

(
h(x)

1− F (x)

)
Dm(1 + ln2(n))

n
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where κ is a universal constant satisfies

(4.15) E(‖ĥm̂ − h‖2 ≤ inf
m∈Mn

(
3‖h− hm‖2 + 4pen(m)

)
+
K ln2(n)

n
,

where K is a constant depending on h, F and r.

Two remarks about the penalty are in order. First, the ln2(n) factor implies a
ln2(n) factor loss in the resulting rates. This is the price to pay for considering
such a huge collection of models. Second, the unknown term in the penalty is
now supx∈[0,1](h(x)/(1 − F (x)) and must be replaced by an estimator as in the

previous subsection. For instance supx∈[0,1][ĥn(x)/(1 − F̂n(x))] where ĥn is a given

estimator of h on a well chosen regular space of piecewise polynomials and F̂n is
the empirical distribution of the data as defined above, would suit (but may lead to
over penalization).

5. Simulations

In this section, we present the results of a short simulation experiment that aims
to compare the performances of our estimator with two other ones that have been
studied in the literature: Antoniadis et al. (1999)’s and Reynaud-Bouret (2003)’s.
More precisely, Antoniadis et al. (1999) study a wavelet estimator with selection of
the coefficients to keep by cross-validation. They present some simulation results in
two cases:

• The first set of simulations is called in the following the “Gamma case”. In
this case, the X0

i ’s are generated from a Gamma distribution with shape
parameter 5 and scale 1 and the independent Ci’s from an exponential dis-
tribution with mean 6.
• The second set is called “the bimodal case”. In this case, the X0

i ’s have a
bimodal density defined by

f 0 = 0.8u+ 0.2v

where u is the density of exp(Z/2) with Z ∼ N (0, 1) and v = 0.17Z + 2.
The C ′is are generated from an exponential distribution with mean 2.5.

The authors give the mean squared errors of their estimator computed over T = 200
replications of samples of size n = 200 and n = 500. The error is computed over
K regularly spaced points tk, k = 1, . . . , K, of the interval in which the Xi’s fall
([0,maxXi]), in the following standard way: the mean over the replications t of

MSEt =
1

K

K∑
k=1

(h(tk)− ĥt(tk))2

where ĥt is the estimate of h for the sample number t, t = 1, . . . , T .
In order to take into account the sparsity of the observations at the end of the in-
terval, (P(X0 > 6) = 0.25 in the Gamma case and P(X0 > 2) = 0.16 in the bimodal
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case), they also compute an error MSE2 defined by the same kind of mean squared
error but only for the tk’s less than 6 in the Gamma case and 2 in the bimodal case.
For K = 64, they obtain the following result:

Distribution Gamma Bimodal
200 500 200 500

MSE 0.112 0.0995 2.080 1.970
MSE2 0.0025 0.0016 0.048 0.032

Table 1. Results of Antoniadis et al. (1999, Table 2), T = 200 replications.

Reynaud-Bouret (2003) studies an histogram adaptive estimator based on a con-
trast different from ours and for the same kind of data, when using what she calls a
“regular histogram strategy”. She finds the results recalled in Table 2.

Distribution Gamma Bimodal
200 500 200 500

MSE 0.0333 0.0376 0.894 0.789
MSE2 0.0086 0.0048 0.255 0.321

Table 2. Results of Reynaud-Bouret (2003, Table 10), T = 200 replications.

Note that Reynaud-Bouret (2003) studies also some other strategies that may
be studied in our case also, but this is beyond the scope of the present paper.
Analogously, some more ambitious simulation study may lead to a better and more
complicated choice of the penalty function (see Comte and Rozenholc (2001) for a
study of this type for penalized regression and volatility functions estimation). Here
we considered a penalized estimator with penalty

̂̂pen(m) = ̂̂pen(D, r) = κŝ2
D(r + 1)

n
,

and κ = 1, 1.5, 2, 2.5, 3. A dimension D̂ is selected by contrast penalization among
the dyadic set of values 20, 21, 22, 23, 24 and we compare the results for r = 0, 1, 2.
Here again a more ambitious simulation study may select empirically the best degree
(see some strategies in order to do so in Comte and Rozenholc (2001)).
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Distribution Gamma
n = 200 n = 500

degrees r = 0 r = 1 r = 2 r = 0 r = 1 r = 2

MSE 0.1184 0.1012 0.0986 0.0487 0.0150 0.0151
MSE2 0.0099 0.0068 0.0045 0.0180 0.0032 0.0006

Distribution Bimodal
n = 200 n = 500

degrees r = 0 r = 1 r = 2 r = 0 r = 1 r = 2

MSE 1.3397 1.0906 1.0429 1.0687 0.8712 0.9990
MSE2 0.2881 0.1826 0.1907 0.4513 0.1165 0.1112

Table 3. Results of our penalized estimator, T = 200 replications, κ = 2.5.

We can see that in both cases the best choice seems to be r = 2. Globally, our
results are of the same order as the one obtained with the other methods, and it is
most likely that a precise calibration of the penalty function may lead to globally
better results.

Distribution Gamma Bimodal
200 500 200 500

MSE 0.0172 0.0029 0.8131 0.7761
(r = 1, κ = 3) (r = 2, κ = 3) (r = 2, κ = 2) (r = 1, κ = 3)

MSE2 0.0011 0.0006 0.0625 0.0782
(r = 1, κ = 1) (r = 2, κ = 2.5) (r = 2, κ = 2) (r = 1, κ = 3)

Table 4. Best results when selecting the degree (among r = 0, 1, 2) and the
constant κ in the penalty (among κ = 1, 1.5, 2, 2.5, 3), T = 200 replications.

This is suggested by the results gathered in Table 4 that gives the best performance
that is obtained when we select a posteriori both the degree and the constant in the
penalty, for each set of simulations. The first line gives the error and the second in
parenthesis the corresponding degree and value of κ. Under such unfair conditions,
we obtain results that are almost always (except for the MSE2 corresponding to the
bimodal sample) better results than our competitors.

6. Proofs

6.1. Proof of Lemma 3.1. In all the sequel, we consider that 0 ≤ a ≤ 1. For t ≡ 1,
the decomposition (3.8) above follows from the decomposition of Hn(x)−H(x) given
in Lemma A.1. of Lo et al. (1989). It can be written

Hn(x)−H(x) = n−1

n∑
i=1

ζi(x) + rn(x)
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where

ζi(x) =

∫ Xi∧x

0

h(u)

1− F (u)
du− 1I{δi=1}∩{Xi≤x}

1

1− F (Xi)
(= Zi(1, x))

and

P
(

sup
0≤x≤1

|rn(x)| > θ ln(n)/n

)
= O(n−β)

for any β > 0 and some constant θ depending on β. Note that the ζi’s are uniformly
bounded on [0, T ], and as we have already mentioned (n+ 1)−1 ≤ F̄ 0

n(x) ≤ 1 for all
x in [0, 1], it follows that sup0≤x≤1 |rn(x)| = O(ln(n)). From this, we easily deduce
that, for any β ≥ 1,

E( sup
0≤x≤1

|rn(x)|β) = E
(

sup
0≤x≤1

|rn(x)|β1I{sup0≤x≤1 |rn(x)|>θ ln(n)/n}

)
+ E

(
sup

0≤x≤1
|rn(x)|β1I{sup0≤x≤1 |rn(x)|≤θ ln(n)/n}

)
≤ κ lnβ(n)P

(
sup

0≤x≤1
|rn(x)| > θ ln(n)/n

)
+

(
θ ln(n)

n

)β
≤ κ lnβ(n)

nβ
+

(
θ ln(n)

n

)β
so that, since θ = θ(β),

(6.1) E( sup
0≤x≤1

|rn(x)|β) ≤ Cβ lnβ(n)

nβ
for any β ≥ 1.

Next the global decomposition (3.8) follows by integration by part, if the function
is continuous and differentiable on the considered interval. Indeed in that case,
it is shown in Delecroix and Yazourh (1992) that for a function t continuous and
differentiable on [0, a], then∫ a

0

t(x)d(Hn −H)(x) = t(a)(Hn −H)(a) +

∫ a

0

t′(x)(Hn −H)(x)dx.

The above decomposition of Hn −H implies then∫ a

0

t(x)d(Hn −H)(x) = t(a)
1

n

n∑
i=1

ζi(a)−
∫ a

0

t′(x)
1

n

n∑
i=1

ζi(x)dx

+t(a)rn(a)−
∫ a

0

t′(x) rn(x)dx.(6.2)

From Delecroix and Yazourh (1992), we know that

(6.3) t(a)
1

n

n∑
i=1

ζi(a)−
∫ a

0

t′(x)
1

n

n∑
i=1

ζi(x)dx =
1

n

n∑
i=1

Zi(t, a).
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Next setting R∗n(t, a) = t(a)rn(a)−
∫ a

0
rn(x)t′(x)dx gives, for

(6.4) Rn = sup
0≤x≤1

|rn(x)|

the bound:

(6.5) |R∗n(t, a)| ≤ Rn

(
|t(a)|+

∫ a

0

|t′(x)|dx
)
.

Among the collections we described, the functions in [T] are continuous and differen-
tiable functions. Then consider t(x) = a0+

∑m
j=1 aj

√
2 cos(2πjx)+

∑m
j=1 bj

√
2 sin(2πjx),

‖t‖2 =
∫ 1

0
t2(x)dx = a2

0 +
∑m

j=1 a
2
j +

∑m
j=1 b

2
j , Dm = 2m + 1, ‖t‖∞ ≤ Φ0

√
Dm for

‖t‖ = 1 and Φ0 =
√

2, and∫ a

0

|t′(x)|dx ≤
√
a‖t′‖ =

√
a

(
m∑
j=1

[(2πj)2(a2
j + b2

j)]

)1/2

≤
√
a[(2πDm)]‖t‖ = 2π

√
aDm‖t‖.

It follows that Inequality (3.10) is fulfilled for the trigonometric basis with κ(k,Φ0, a) =
C2k 22k−1(Φ2k

0 + (2π
√
a)2k).

Analogously, the collection [B] for r ≥ 1 allows to use the bound (6.4)-(6.5). Next
|t(a)| ≤ Φ0

√
Dm for ‖t‖ = 1 with (S1). On the other hand, for t =

∑
k∈Km am,kB̃m,k,∫ a

0

|t′(x)|dx ≤
∑
k∈Km

|am,k|
√
Dm

∫ (k+r)/2m

k/2m
2m|N ′r(2mx− k)|dx, with (S3)

=
∑
k∈Km

|am,k|
√
Dm

∫ r

0

|N ′r(u)|du

≤ CrDm

√∑
k∈Km

a2
m,k ≤ CrΦ0Dm with (S5),

where we set Cr =
∫ r

0
|N ′r(u)|du. Inequality (3.10) is therefore fulfilled for the dyadic

splines with κ(k,Φ0, a) = 22kΦ2k
0 C

2k
r .

Now we must consider the case where t is only piecewise continuous and differ-
entiable on the interval [0, 1] with knots at the points j/m, j = 1, . . . ,m as are the
functions in collection [P], and denote by t̃j a continuous and differentiable extension
of t1I[(j−1)/m,j/m[ to the whole interval [0, 1]. Then∫ j/m

(j−1)/m

t(x)d(Hn−H)(x) =

∫ j/m

0

t̃j(x)d(Hn−H)(x)−
∫ (j−1)/m

0

t̃j(x)d(Hn−H)(x).
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Applying the decomposition resulting from (6.2) and (6.3) above to both terms gives∫ j/m

(j−1)/m

t(x)d(Hn −H)(x) =
1

n

n∑
i=1

[Zi(t, j/m)− Zi(t, (j − 1)/m)]

+t((
j

m
)−)rn(

j

m
)− t([j − 1

m
]+)rn(

j − 1

m
)

+

∫ j/m

(j−1)/m

rn(u)t′(u)du.

Therefore, by taking a = j0/m (j0 ≤ m), for simplicity, gives∫ a

0

t(x)d(Hn −H)(x) =

j0∑
j=1

∫ j/m

(j−1)/m

t(x)d(Hn −H)(x)

=
1

n

n∑
i=1

Zi(t, a) +

∫ a

0

rn(u)t′(u)du

+

j0∑
j=1

[
t
(

[j/m]−
)
rn

( j
m

)
− t
(

[(j − 1)/m]+
)
rn

(j − 1

m

)]
.

Therefore the first part of the previous decomposition remains valid but the rest is
now

R∗n(t, a) =

j0∑
j=1

[
t
(

[j/m]−
)
rn

( j
m

)
− t
(

[(j − 1)/m]+
)
rn

(j − 1

m

)]
+

∫ a

0

rn(u)t′(u)du.

Then a bound is valid for functions t chosen as a basis function with support in
[(j − 1)/m, j/m[, that is if t = ϕλ when considering collection [P]:

|R∗n(ϕλ, a)| ≤ Rn(2‖ϕλ‖∞ +

∫ 1

0

|ϕ′λ(x)|dx) := RnN(ϕλ),

with Rn defined by (6.4).

Let us be now more precise on the piecewise Legendre polynomial basis. Since
ϕj,k(x) =

√
m(2k + 1)Qk(2mx − 2j + 1)1I[(j−1)/m,j/m[(x) for j = 1, . . . ,m and k =

0, . . . , r, with Dm = (r + 1)m, we have ‖ϕj,k‖∞ =
√
m(2k + 1) ≤

√
2m(r + 1) ≤√

2Dm. Moreover,∫ 1

0

|ϕ′j,k(x)|dx =
√
m(2k + 1)

∫ j/m

(j−1)/m

2m|Q′k(2mx− 2j + 1)|dx

=
√
m(2k + 1)

∫ 1

−1

|Q′k(u)|du ≤ Cr
√

2Dm
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where Cr = maxk=0,...,r

∫ 1

−1
|Q′k(u)|du. It follows that

N(ϕj,k) ≤ (1 + Cr)
√

2Dm.

The same type of proof obviously holds for wavelets with ϕj,k = φj,k, it is clear that

‖ϕj,k‖∞ ≤ 2j/2 ‖φ‖∞ ≤ ‖φ‖∞
√
Dm/2 and∫ 1

0

|ϕ′j,k(x)| dx =
√

2j
∫ (k+1)/2j

k/2j
2j|φ′(2jx− k)| dx

=

√
Dm

2

∫ 1

0

|φ′(u)| du.

The same holds with φ replaced by ψ and it follows that

N(ϕj,k) ≤ C(φ, ψ)

√
Dm

2
.

with C(φ, ψ) =
(

max(‖φ‖∞; ‖ψ‖∞) + max(
∫ 1

0
|φ′(u)| du;

∫ 1

0
|ψ′(u)| du)

)
.

As a consequence, for collections [P] and [W], we find

(6.6) sup
t∈Sm,‖t‖=1

[R∗n(t, a)]2 =
∑
λ∈Λm

[R∗n(ϕλ)]
2 ≤ R2

n

∑
λ∈Λm

[N(ϕλ)]
2 ≤ CR2

nD
2
m.

And more generally, we have

sup
t∈Sm,‖t‖=1

[R∗n(t, a)]2k ≤

(
sup

t∈Sm,‖t‖=1

[R∗n(t, a)]2

)k

≤ CkR2k
n D

2k
m .

By using (6.1) for β = 2k, this implies (3.10). �

6.2. Proof of Proposition 3.1. It remains to prove the result for the spline basis.
By starting from (3.6), we find that

E(‖ĥm − h‖2) ≤ 3‖hm − h‖2 + 8E

(
sup

t∈Sm,‖t‖=1

|C(t, 1)|2
)
.

By using the standard decomposition, we find

E

(
sup

t∈Sm,‖t‖=1

C2(t, 1)

)
≤ 2E

 sup
t∈Sm,‖t‖=1

(
1

n

n∑
i=1

Zi(t, 1)

)2
+2E

(
sup

t∈Sm,‖t‖=1

R∗2n (t, 1)

)
.

Obviously from Lemma (3.1),

E

(
sup

t∈Sm,‖t‖=1

R∗2n (t, 1)

)
≤ Φ2

0

D2
m ln2(n)

n2
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and

E

 sup
t∈Sm,‖t‖=1

(
1

n

n∑
i=1

Zi(t, 1)

)2


≤ E

 sup
t=

∑
k∈Km am,kB̃m,k,‖t‖=1

[∑
k∈Km

am,k

(
1

n

n∑
i=1

Zi(B̃m,k, 1)

)]2


≤ E

 sup
t=

∑
k∈Km am,kB̃m,k,‖t‖=1

[∑
k∈Km

a2
m,k

]∑
k∈Km

(
1

n

n∑
i=1

Zi(B̃m,k, 1)

)2


E

 sup
t∈Sm,‖t‖=1

(
1

n

n∑
i=1

Zi(t, 1)

)2
 ≤ Φ2

0E

∑
k∈Km

(
1

n

n∑
i=1

Zi(B̃m,k, 1)

)2
 with (S5)

≤ Φ2
0

n

∑
k∈Km

Var(Z1(B̃m,k, 1)) =
Φ2

0

n

∑
k∈Km

∫ 1

0

B̃2
m,k(x)h(x)

1− F (x)
dx

≤ Φ2
0

n

√
Dm

∫ 1

0

∑
k∈Km

Bm,k(x)
h(x)

1− F (x)
dx with (S1),

≤ Φ2
0

n

√
Dm

∫ 1

0

∑
k∈Z

Bm,k(x)
h(x)

1− F (x)
dx

≤ Φ2
0Dm

n

∫ 1

0

h(x)

1− F (x)
dx with (S2).

�

6.3. Proof of Theorem 3.1. We have to prove the two following results

hm(x)− h(x) = o

(√
Dm

n

)
(6.7)

and that √
n

Dm

(
ĥm(x)− hm(x)

)
−→ N (0, h(x)/(1− F (x))).(6.8)

To prove (6.7), we prove that hm(x)− h(x) = O(1/Dm) and the result follows from
the assumption n/D3

m → 0 as n → ∞. Since histograms are particular piecewise
polynomials, we can see that Dm = (r + 1)m = m with r = 0. Let x ∈ [0, 1[, then
for any fixed n and associated Dm = mn, there exists some integer jn such that
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x ∈ [(jn − 1)/Dm, jn/Dm[. Therefore

h(x)− hm(x) = h(x)−Dm

(∫ jn/Dm

(jn−1)/Dm

h(u)du

)
1I[(jn−1)/Dm,jn/Dm](x).

Then, by writing that h(u) = h(x) + (x− u)h(1)(ux) for some ux ∈ [u, x], we find

h(x)− hm(x) = Dm

(∫ jn/Dm

(jn−1)/Dm

(x− u)h(1)(ux)du

)
1I[(jn−1)/Dm,jn/Dm](x)

and consequently,

|h(x)− hm(x)| ≤ Dm‖h(1)‖∞

(∫ jn/Dm

(jn−1)/Dm

|x− u|du

)
≤ ‖h

(1)‖∞
Dm

= o(
√
Dm/n).

Let us turn to (6.8). First ĥm − hm =
∑

λ(âλ − aλ)ϕλ =
∑

λC(ϕλ, 1)ϕλ, and
following decomposition (3.8) in Lemma 3.1, we get

ĥm(x)− hm(x) =
1

n

n∑
i=1

(∑
λ

ϕλ(x)Zi(ϕλ, 1)

)
+
∑
λ

R∗n(ϕλ, 1)ϕλ(x)

Now, if the remainder term
∑

λR
∗
n(ϕλ, 1)ϕλ(x) = oP

(√
n
Dm

)
, it suffices to prove

that √
n

Dm

1

n

n∑
i=1

(∑
λ

ϕλ(x)Zi(ϕλ, 1)

)
−→ N (0, η2(x))

Since the Yi,n(x) =
∑

λ ϕλ(x)Zi(ϕλ, 1) are centered i.i.d. variables, a Lyapounov
central limit theorem applies.

So, let us compute the asymptotic variance of
1√
nDm

n∑
i=1

Yi,n(x). Now remember

that E(Z1(ϕλ, 1))2 =
∫ 1

0
ϕ2
λ(x)h(x)/(1 − F (x))dx. Let jn and Dm be defined as

previously and let h̃(u) = h(u)/(1− F (u)).

1

Dm

E(Y 2
1,n(x)) =

1

Dm

E

(∑
λ

ϕλ(x)Z1(ϕλ, 1)

)2

=
1

Dm

∫ 1

0

(
Dm

Dm∑
j=1

1I[(jn−1)/Dm,jn/Dm](x)1I[(jn−1)/Dm,jn/Dm](u)

)2

h̃(u) du

= Dm

∫ jn/Dm

(jn−1)/Dm

h̃(u)du.
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By applying a Taylor expansion, we find

h̃(u) = h̃(x) + (x− u)h̃(1)(u′x), u′x ∈ [
jn − 1

Dm

,
jn
Dm

[

which implies

1

Dm

E(Y 2
1,n(x)) = h̃(x) +Dm

∫ jn/Dm

(jn−1)/Dm

h̃(1)(u′x)(x− u)du.

Since as previously

Dm

∣∣∣∣∣
∫ jn/Dm

(jn−1)/Dm

h̃(1)(u′x)(x− u)du

∣∣∣∣∣ ≤ ‖h̃(1)‖∞
Dm

,

we get

lim
n→+∞

1

Dm

E(Y 2
1,n(x)) = h̃(x).

Then Lyapounov’s Theorem applies if in addition

1

(
√
nDm)4

n∑
i=1

E(Y 4
i,n(x))→ 0.

This follows from the following obvious bound, provided that Dm = o(
√
n):

1

(
√
nDm)4

n∑
i=1

E(Y 4
i,n(x)) =

1

n
E(Z4

1(ϕjn , 1)) ≤ D2
m

n
(

∫ 1

0

h̃(u)du+ sup
x∈[0,1]

(1−F (x))−1)4.

Lastly, to make the proof complete, we have to prove that the remainder term∑
λR
∗
n(ϕλ, 1)ϕλ(x) is oP

(√
n/Dm

)
.

E

(∑
λ

R∗n(ϕλ)ϕλ(x)

)2

≤ Dm E

(∑
λ

R∗n(ϕλ)
2

)

≤ Dm E

(
sup

t∈Sm,‖t‖=1

[R∗n(t, 1)]2

)

≤ D3
m ln2(n)

n2
by applying Lemma 3.1.

This last inequality gives

P

(√
Dm

n

∑
λ

R∗n(ϕλ, 1)ϕλ(x) > ε

)
≤ D4

m ln2(n)

n3ε2

which tends to 0 since Dm ≤
√
n. �
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6.4. Proof of Lemma 4.1. In order to control

E

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− p(m,m′)

)
,

we use the following version of Talagrand’s Inequality (see Talagrand (1996)):

Lemma 6.1. Let X1, . . . , Xn be i.i.d. random variables and νn(g) be defined by
νn(g) = (1/n)

∑n
i=1[g(Xi) − E(g(Xi))] for f belonging to a countable class G of

uniformly bounded measurable functions. Then for ε > 0
(6.9)

E
[
sup
g∈G
|νn(g)|2 − 2(1 + 2ε)H2

]
+

≤ 6

K1

(
v

n
e−K1ε

nH2

v +
8M2

1

K1n2C2(ε)
e
−K1C(ε)

√
ε√

2
nH
M1

)
,

with C(ε) = (
√

1 + ε− 1) ∧ 1, K1 is a universal constant, and where

sup
g∈G
‖g‖∞ ≤M1, E

(
sup
g∈G
|νn(g)|

)
≤ H, sup

g∈G
Var(g(X1)) ≤ v.

We apply Talagrand’s inequality by taking

g(x) = gt(x) =

∫ x∧1

0

t(u)
h(u)

1− F (u)
du− 1I{δi=1}∩{x≤1}

t(x)

1− F (x)
.

Usual density arguments show that this result can be applied to the class of functions
G = {gt, t ∈ Bm,m′(0, 1)}. Then we find for the present empirical process the
following bounds:

sup
g∈G
‖g‖∞ = sup

t∈Bm,m′ (0,1)

‖gt‖∞ ≤ Φ0C1

√
D(m′) := M1

with D(m′) denoting the dimension of Sm + Sm′ and

(6.10) C1 =

∫ 1

0

h(u)

1− F (u)
du+ sup

0≤x≤1
(1− F (x))−1.

Then

sup
g∈G

Var(g(X1)) = sup
t∈Bm,m′ (0,1)

Var(gt(X1)) ≤ sup
x∈[0,1]

(
h(x)

1− F (x)

)
= C2 := v.
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Lastly,

E
(

sup
g∈G

ν2
n(g)

)
= E

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)

)
≤

∑
λ∈Λm,m′

1

n
Var(Z1(ϕλ))

≤ Φ2
0D(m′)

n

∫ 1

0

h(x)

1− F (x)
dx = C3

D(m′)

n
:= H2.

Then it follows from (6.9) that

E

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− p(m,m′)

)
≤ κ1

(
1

n
e−κ2εD(m′) +

1

nC2(ε)
e−κ3ε

3/2√n
)
,

where κi for i = 1, 2, 3 are constant depending on K1, C1, C2 and C3 and p(m,m′) =
2(1 + 2ε)C3(Dm +Dm′)/n. �

6.5. Proof of Theorem 4.2. Let

Ωb =

{∣∣∣∣∣
(∫ 1

0

ĥn(x)

1− F̂n(x)
dx

)
/

(∫ 1

0

h(x)

1− F (x)
dx

)
− 1

∣∣∣∣∣ < b

}
, 0 < b < 1.

Then on Ωb, the proof is quite similar to the proof of theorem 4.1. The following
inequalities hold∫ 1

0

ĥn(x)

1− F̂n(x)
dx < (b+1)

∫ 1

0

h(x)

1− F (x)
dx,

∫ 1

0

h(x)

1− F (x)
dx <

1

1− b

∫ 1

0

ĥn(x)

1− F̂n(x)
dx .

Then we can mimick the proof of (4.7) with pen(m) replaced now by p̂en(m) =

κΦ2
0(
∫ 1

0
ĥn(x)/(1− F̂n(x))dx)(Dm/n) and by defining

p(m,m′) = Φ2
0

(∫ 1

0

h(x)

1− F (x)
dx

)
Dm +Dm′

n
,

we have

1

2
‖ĥm̂ − h‖2 ≤ 3

2
‖hm − h‖2 + 8 sup

t∈Bm,m̂(0,1)

(
ν2
n(gt)− p(m, m̂)

)
+ 8 sup

t∈Bm,m̂(0,1)

R∗2n (t)

+8 p(m, m̂) + p̂en(m)− p̂en(m̂).

By taking κ = 8Φ2
0/(1− b), we find that on Ωb,
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8 p(m, m̂)− p̂en(m̂) + p̂en(m) ≤ 8Φ2
0

(∫ 1

0

h(x)

1− F (x)
dx

)
Dm

n

+
8Φ2

0

1− b

(∫ 1

0

ĥn(x)

1− F̂n(x)
dx

)
Dm

n

≤ 16Φ2
0

1− b

(∫ 1

0

h(x)

1− F (x)
dx

)
Dm

n
.

It follows that ∀m ∈Mn,

E
(
‖ĥm̂ − h‖21IΩb

)
≤ 3 ‖hm − h‖2 + 16

∑
m′∈Mn

(
sup

t∈Bm,m′ (0,1)

(
ν2
n(gt)− p(m,m′)

))

+ 16E

(
sup

t∈Bm,m̂(0,1)

R∗2n (t)

)
+

32 Φ2
0

1− b

(∫ 1

0

h(x)

1− F (x)
dx

)
Dm

n

≤ 3 ‖hm − h‖2 +
32 Φ2

0

1− b

(∫ 1

0

h(x)

1− F (x)
dx

)
Dm

n
+
K

n
.

Next we need to prove that

(6.11) E
(
‖ĥm̂ − h‖21IΩcb

)
≤ K ′

n
.

It follows from (3.5) and (3.6) that

‖ĥm̂ − h‖2 ≤ C1‖h− hm̂‖2 + 2C2 sup
t∈Sm̂,‖t‖=1

ν2
n(gt) + 2C2 sup

t∈Sm̂,‖t‖=1

[R∗n(t)]2

≤ C1‖h‖2 + 2C2 sup
t∈Sm̂,‖t‖=1

ν2
n(gt) + 2C2 sup

t∈Sm̂,‖t‖=1

[R∗n(t)]2(6.12)

with (C1, C2) = (1, 1) for [T], [P] and [W] and (C1, C2) = (3, 8) for [B]. Then

sup
t∈Sm̂,‖t‖=1

ν2
n(gt) =

(
sup

t∈Sm̂,‖t‖=1

ν2
n(gt)− pen(m̂)

)
+ pen(m̂)

≤
∑
m∈Mn

(
sup

t∈Sm,‖t‖=1

ν2
n(gt)− pen(m)

)
+

+ pen(m̂).
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Then we know by Lemma 4.1 that, for some well-known κ in pen(m),

E

( ∑
m∈Mn

(
sup

t∈Sm,‖t‖=1

(ν2
n(gt)− pen(m))1IΩcb

)
+

)

≤ E

( ∑
m∈Mn

(
sup

t∈Sm,‖t‖=1

(ν2
n(t)− pen(m))

)
+

)
≤ K

n
.

On the other hand, ∀m ∈Mn, pen(m) ≤ K ′, with K ′ = κΦ2
0

∫ 1

0
h(x)/(1−F (x)) dx,

so that
E
(
pen(m̂)1IΩcb

)
≤ K ′ P(Ωc

b).

Therefore

(6.13) E

(
sup

t∈Sm̂,‖t‖=1

νn(gt)
21IΩcb

)
≤ K

n
+K ′P(Ωc

b).

In all cases of basis [T], [P], [W], [B] we have as soon as Dm ≤
√
n ∀m ∈Mn,

sup
t∈Sm̂,‖t‖=1

[R∗n(t)]2 ≤ KD2
m̂R

2
n ≤ KnR2

n,

so that we find,

(6.14) E

(
sup

t∈Sm̂,‖t‖=1

[R∗n(t)]21IΩcb

)
≤ K nE1/2(R4

n)P1/2(Ωc
b) ≤ K

ln2(n)

n
P1/2(Ωc

b),

so that, by gathering (6.12), (6.13) and (6.14), the result (6.11) holds provided that

(6.15) P(Ωc
b) ≤

1

n
.

We recall first that ĥn = ĥmn is one particular estimator of our collection of models.

Let B = b
∫ 1

0
h(x)/(1− F (x))dx.∣∣∣∣∣
∫ 1

0

ĥmn(x)

1− F̂n(x)
dx−

∫ 1

0

h(x)

1− F (x)
dx

∣∣∣∣∣
≤

∫ 1

0

|ĥmn(x)− h(x)|
1− F̂n(x)

dx+

∫ 1

0

h(x)

∣∣∣∣∣ 1

1− F̂n(x)
− 1

1− F (x)

∣∣∣∣∣ dx
≤

∫ 1

0
|ĥmn(x)− h(x)|dx

1− F̂n(1)
+

∫ 1

0
h(x)|F̂n(x)− F (x)|dx

(1− F̂n(1))(1− F (1))

and since |F̂n(1)− F (1)| < (1− F (1))/2 is equivalent to

0 <
2

3(1− F (1))
<

1

1− F̂n(1)
<

2

1− F (1)

it follows that
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P(Ωc
b) ≤ P

(∫ 1

0

∫ 1

0
|ĥmn(x)− h(x)|dx

1− F̂n(1)
> B/2

)

+ P

(
1

(1− F̂n(1))(1− F (1))

∫ 1

0

h(x)|F̂n(x)− F (x)|dx > B/2

)

≤ P
(

2

1− F (1)

∫ 1

0

|ĥmn(x)− h(x)|dx > B/2

)
+ P

(
2

(1− F (1))2

∫ 1

0

h(x)|F̂n(x)− F (x)|dx > B/2

)
+ 2P(|F̂n(1)− F (1)| > (1− F (1))/2).

We bound successively the three above terms. First,

P(|F̂n(1)− F (1)| > (1− F (1))/2 ) ≤ 4

(1− F (1))2
E(F̂n(1)− F (1))2

=
4

(1− F (1))2

[
F (1)(1− F (1))

n+ 1
+

(
F (1)

n+ 1

)2
]

≤ 4F (1)/(1− F (1))2

n+ 1
.

Secondly,

P
(∫ 1

0

h(x)|F̂n(x)− F (x)|dx > B(1− F (1))2

4

)
≤

(
4

B(1− F (1))2

)2

E
(∫ 1

0

h2(x)(F̂n(x)− F (x))2dx

)
≤

(
4

B(1− F (1))2

)2 ∫ 1

0

h2(x)

[
F (x)(1− F (x))

n+ 1
+

(
F (x)

n+ 1

)2
]
dx

≤
24
∫ 1

0
h2(x)dx/ (B2(1− F (1)))

4

n
.

Lastly as∫ 1

0

|ĥmn(x)− h(x)|dx ≤ ‖ĥmn − h‖ ≤ ‖ĥmn − hmn‖+ ‖hmn − h‖

≤ ‖ĥmn − hmn‖+B(1− F (1))/8
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under condition (4.11),

P
(∫ 1

0

|ĥmn(x)− h(x)|dx > B(1− F (1))/4

)
≤ P

(
‖ĥmn − hmn‖ > B(1− F (1))/8

)
≤

(
8

B(1− F (1))

)4

E(‖ĥmn − hmn‖4).

Then we need to study the condition on Dmn that ensures E(‖ĥmn − hmn‖4) ≤ 1/n.

E
[(
‖ĥmn − hmn‖2

)2
]

≤ 4E


 ∑
λ∈Λmn

(
1

n

n∑
i=1

Zi(ϕλ)

)2
2+ 4

 ∑
λ∈Λmn

R∗2n (ϕλ)

2
≤ 4Dmn

∑
λ∈Λmn

E

( 1

n

n∑
i=1

Zi(ϕλ)

)4
+ 4E

(
sup

t∈Smn ,‖t‖=1

|R∗n(t)|4
)
.(6.16)

For the last term, the bound in (3.10) gives

E

(
sup

t∈Smn ,‖t‖=1

|R∗n(t)|4
)
≤ K(2,Φ0, 1)

D4
mn ln4(n)

n4
≤ K(2,Φ0, 1)

ln4(n)

n2
.

For the first term, we apply Rosenthal’s Inequality (see Petrov (1995)). Let U1, . . . , Un
be independent centered random variables with values in R. For any p ≥ 2, we have

E

[∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
p]
≤ C(p)

 n∑
i=1

E[|Ui|p] +

(
n∑
i=1

E[U2
i ]

)p/2
 .

This yields

E

( 1

n

n∑
i=1

Zi(ϕλ)

)4
 ≤ C(4)

n4

(
nE(Z4

1(ϕλ)) + n2[E(Z2
1(ϕλ))]

2
)
.

Since
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∑
λ∈Λmn

[E(Z2
1(ϕλ))]

2 =
∑

λ∈Λmn

(∫ 1

0

ϕ2
λ(x)

h(x)

(1− F (x))
dx

)2

≤
∑

λ∈Λmn

∫ 1

0

ϕ2
λ(x) dx×

∫ 1

0

ϕ2
λ(x)

h2(x)

(1− F (x))2
dx

≤ ||
∑

λ∈Λmn

ϕ2
λ||∞

∫ 1

0

h2(x)

(1− F (x))2
dx

≤ Φ2
0Dmn

∫ 1

0

h2(x)

(1− F (x))2
dx

On the other hand

∑
λ∈Λmn

E(Z4
1(ϕλ)) ≤

∑
λ∈Λmn

∫ 1

0

ϕ4
λ(x)

(
1 +

h3(x)

1− F (x)

)
h(x)

(1− F (x))3
dx

we find, by using that
∑

λ∈Λmn

ϕ4
λ(x) ≤ ‖ϕλ‖2

∞‖
∑

λ∈Λmn

ϕ2
λ‖∞ ≤ Φ4

0D
2
mn , and from (6.16)

E
[(
‖ĥmn − hmn‖2

)2
]
≤ K”

(
D3
mn

n3
+
D2
mn

n2

)
≤ K ′′

n

which gives the announced order 1/n as soon as Dmn ≤
√
n. �

6.6. Proof of Corollary 4.1. The first part of the proof is the same as the proof
of theorem 4.2 with now

Ω̃b =

{∣∣∣∣∣
(

1

n

n∑
i=1

1I(Xi≤1)1I(δi=1)

(1− F̂n(Xi))2

)
/

(∫ 1

0

h(x)

1− F (x)
dx

)
− 1

∣∣∣∣∣ > b

}
.

The result holds if we can prove that P(Ω̃c
b) ≤ 1/n. Let B = b

∫ 1

0
h(x)/(1−F (x))dx,

then by writing that
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∣∣∣∣∣ 1n
n∑
i=1

1I(Xi≤1)1I(δi=1)

(1− F̂n(Xi))2
−
∫ 1

0

h(x)

1− F (x)
dx

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

1I(Xi≤1)1I(δi=1)

(
1

(1− F̂n(Xi))2
− 1

(1− F (Xi))2

)∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(
1I(Xi≤1)1I(δi=1)

(1− F (Xi))2
−
∫ 1

0

h(x)

1− F (x)
dx

)∣∣∣∣∣
≤ 2

(1− F̂n(1))2(1− F (1))2

(
1

n

n∑
i=1

1I(Xi≤1)1I(δi=1)|F̂n(Xi)− F (Xi)|

)

+

∣∣∣∣∣ 1n
n∑
i=1

(
1I(Xi≤1)1I(δi=1)

(1− F (Xi))2
−
∫ 1

0

h(x)

1− F (x)
dx

)∣∣∣∣∣ ,
we find

P(Ω̃c
b) ≤ P

(
|F̂n(1)− F (1)| > 1− F (1)

2

)
+P

(
4

(1− F (1))4

(
1

n

n∑
i=1

1I(Xi≤1)1I(δi=1)|F̂n(Xi)− F (Xi)|

)
> B/2

)

+P

(∣∣∣∣∣ 1n
n∑
i=1

(
1I(Xi≤1)1I(δi=1)

(1− F (Xi))2
−
∫ 1

0

h(x)

1− F (x)
dx

)∣∣∣∣∣ > B/2

)

≤ 4

(1− F (1))2

[
F (1)(1− F (1))

n+ 1
+

(
F (1)

n+ 1

)2
]

+K1E

(
1

n

n∑
i=1

1I(Xi≤1)1I(δi=1)|F̂n(Xi)− F (Xi)|

)2

+K2E

(
1

n

n∑
i=1

(
1I(Xi≤1)1I(δi=1)

(1− F (Xi))2
−
∫ 1

0

h(x)

1− F (x)
dx

))2

≤ 6

n(1− F (1))2
+K1E( sup

0≤x≤1
|F̂n(x)− F (x)|2) +K2

Var

(
1I(X1≤1)1I(δ1=1)

(1−F (X1))2

)
n

,

where K1 = 64(1 − F (1))4/B2 and K2 = 4/B2. Therefore, since it follows from

Massart (1990) that ∀λ > 0,P(
√
n supt∈R |Fn(t) − F (t)| ≥ λ) ≤ 2e−2λ2 , where
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Fn(x) = (1/n)
∑n

i=1 1I(Xi≤x) we have

E[ sup
0≤x≤1

(F̂n(x)− F (x))2] ≤ 2E[ sup
0≤x≤1

(F̂n(x)− Fn(x))2] + 2E[ sup
0≤x≤1

(Fn(x)− F (x))2]

≤ 2

(n+ 1)2
+

4

n
≤ 5

n
.

and finally

P(Ω̃c
b) ≤ K ′/n

�

6.7. Proof of Theorem 4.3. Lemma 3.1 still holds but with since now N(ϕλ) ≤√
(2r + 1)

√
n and ∑

λ∈Λm

N2(ϕλ) ≤ (2r + 1)Dm

√
n ≤ (2r + 1)n

so that we simply replace Φ2
0Dm by

√
(2r + 1)n. Therefore Inequality (4.7) still

holds with

E

(
sup

t∈Bm,m̂(0,1)

R∗2n (t)

)
≤ (2r + 1) ln2(n)

n
.

Moreover, we keep applying Lemma 6.1 but now

sup
t∈Bm,m′ (0,1)

‖gt‖∞ ≤ C1 sup
t∈Bm,m′ (0,1)

‖t‖∞ ≤ C1

√
(2r + 1)n1/4 := M1

where C1 is given by (6.10). The bound giving v = C2 is unchanged. Lastly

E

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)

)
≤ 1

n

∑
λ∈Λm,m′

∫
ϕ2
λ(x)

h(x)

1− F (x)
dx

≤ 1

n
sup
x∈[0,1]

h(x)

1− F (x)

∑
λ∈Λm,m′

∫
ϕ2
λ(x)dx

≤ Dm +Dm′

n
sup
x∈[0,1]

h(x)

1− F (x)
:= H2.

We denote by

C3 = sup
x∈[0,1]

h(x)

1− F (x)
.

Then it follows from (6.9) that

E

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− p(m,m′)

)
≤ κ1

(
1

n
e−κ2εD(m′) +

1

n
e−κ3

√
εn1/4
√
D(m′)

)
,
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where κi for i = 1, 2, 3 are constant depending on K1, C1, C2 and C3 and p(m,m′) =

2(1 + 2ε)C3
Dm+Dm′

n
with ε > 1 since we need ε = α ln2(n). Therefore we choose

pen(m) = 16(1 + 2α ln2(n)) sup
x∈[0,1]

h(x)

1− F (x)

Dm

n

and we find

∑
m′∈Mn

(
sup

t∈Bm,m′ (0,1)

ν2
n(gt)− p(m,m′)

)
≤ κ1

n

∑
m′∈Mn

(
e−κ2α ln(n)Dm′ + e−κ3

√
α ln(n)n1/4

√
Dm′
)

≤ κ1

n

∑
m′∈Mn

(
e−κ2α ln(n)Dm′ + e−κ3

√
α ln(n)Dm′

)
by using that

√
Dm′ ≤ n1/4 and ln2(n) ≥ ln(n), for n ≥ 3. Now we note that

∑
m′∈Mn

e−β ln(n)Dm′ =

√
n−1∑
`=1

( √
n− 1
`

)
e−β ln(n)` = (1 + n−β)

√
n−1 − 1

by using that there are

( √
n− 1
`

)
models of dimension `. The resulting term

is bounded as soon as β ≥ 1/2 since it has the order of exp(
√
n ln(1 + n−β)) ∼

exp(
√
nn−β). The choice α = 1/(2κ2

3) + 1/(2κ2) suits. �
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