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Abstract. We consider the model Yi “ XiUi, i “ 1, . . . , n, where the Xi, the Ui and thus the Yi are
all independent and identically distributed. The Xi have density f and are the variables of interest,
the Ui are multiplicative noise with uniform density on r1´ a, 1` as, for some 0 ă a ă 1, and the two
sequences are independent. However, only the Yi are observed. We study nonparametric estimation of
both the density f and the corresponding survival function. In each context, a projection estimator of
an auxiliary function is built, from which estimator of the function of interest is deduced. Risk bounds
in term of integrated squared error are provided, showing that the dimension parameter associated
with the projection step has to perform a compromise. Thus, a model selection strategy is proposed
in both cases of density and survival function estimation. The resulting estimators are proven to
reach the best possible risk bounds. Simulation experiments illustrate the good performances of the
estimators and a real data example is described.
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1. Introduction

We consider the following model

Yi “ XiUi, i “ 1, . . . , n, Ui „ Ur1´a,1`as, 0 ă a ă 1 (1.1)

where pXiqti“1,...,nu and pUiqti“1,...,nu are two independent samples. The Ui’s are independent and
identically distributed (i.i.d.) random variables from uniform density on an interval r1 ´ a, 1 ` as of
R` with 0 ă 1 ´ a ă 1 ` a and a is assumed to be known. The Xi’s are i.i.d. from an unknown
density f on R`. Both sequences are unobserved. Only the Yi’s are observed. The model implies that
they are i.i.d. and we denote by fY their density on R`. Our goal is to estimate nonparametrically
the density f of the Xi’s from the observations Yi, i “ 1, . . . , n.

Equation (1.1) can be obtained as follows. Classical models involving measurement errors are often
additive and state that the variable of interest Xi is not directly observed because an additive noise
hides it: only samples of Xi ` ξi are available, where ξi is an i.i.d. centred sequence. Then, in many
contexts, this noise depends on the level of the signal and the simplest strategy is to consider that
it is proportional to the signal. Thus, the model for the observations becomes Xi ` αXiξi, α P R.
Rewriting this Xip1 ` αξiq, we obtain a multiplicative noise model with noise 1 ` αξi with mean 1.
This corresponds to model (1.1) where we specified the final distribution of the noise as uniform, and
symmetric around one1.

1Extension to general Upra, bsq distribution for the Ui’s is possible.
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2 F. COMTEp1q AND C. DIONp1q,p2q

In any case, Equation (1.1) models an approximate transmission of the information: the recorded
values Yi correspond to the value of interest Xi, up to an error of order of ˘100a%. This represents
rather standard situations, when people have to give their height or the amount of money they devote
to some specific expenses, i.e. quantities they may not know exactly with no intention to change them
(for instance, weight or income may be intentionally biased). However, very few studies of this model
have been conducted in the literature. We mainly found it in Sinha et al. [2011], who study "noise
multiplied magnitude microdata" as a form of data masking in contexts where one needs to protect
the privacy of survey respondents. The authors mainly study quantile estimation.

Nevertheless, multiplicative noise models can be found with other distributions for the noise U . The
case of U following a uniform distribution on r0, 1s (Upr0, 1sq) has been introduced by Vardi [1989]
who called it a “multiplicative censoring" model. This model was studied by Vardi and Zhang [1992],
Asgharian et al. [2012], Abbaszadeh et al. [2013], Brunel et al. [2015], and is mostly applied in survival
analysis, see van Es et al. [2000]. In these papers, nonparametric estimators of the density f or of
the survival function F “ 1 ´ F , F pxq “

şx
0 fpuqdu, of the unobserved random variable X are built

and studied, but in different contexts. For instance, Asgharian et al. [2012] assume that part of the
observations are directly observed and the proposed method is no longer valid if this proportion is null
as in our model. In Brunel et al. [2015], kernel estimators are studied, while Abbaszadeh et al. [2013]
build wavelet estimators of the density and its derivatives. The case of Gaussian U , for variables on
R, has also been considered in financial context and studied from statistical point of view by e.g. van
Es et al. [2005].

In this paper, we build estimators of the density f and of the survival function F “ 1 ´ F . The
operator linking the density of the observations and the density of interest is given by

fY pyq “
1

2a

ż
y

1´a

y
1`a

fpxq

x
dx, y Ps0,`8r, (1.2)

and the inversion of formula (1.2) is not obvious. This is why our strategy relies on two steps. Let us
give here a sketch of the procedure. First, we approach an auxiliary function g expressed as a function
of f and a. We prove that for an explicit transformation t P L2pR`q ÞÑ ψt and this function g in
L2pR`q, we have

ErψtpY1qs “ xt, gy, (1.3)

where xs, ty “
ş

R` spxqtpxqdx denotes the scalar product of two functions of L2pR`q. The two functions
g and ψt are given in Section 2. Relation (1.3) is used to build projection estimators of g. Indeed,
considering the collection of spaces

Sm “ Vecttϕ0, ϕ1, . . . , ϕm´1u

where pϕjqjě0 is an orthonormal basis of L2pR`q, the orthogonal projection gm of g on Sm is given
by gm “

řm´1
j“0 ajϕj , with aj “ xg, ϕjy. From relation (1.3), we notice that aj “ Erψϕj pY1qs and

replacing the expectation by its empirical counterpart paj , we obtain the estimator pgm “
řm´1
j“0 pajϕj .

With similar ideas, we also define qGm “
řm´1
j“0

qbjϕj where qbj are also computed from the observations
Y1, . . . , Yn. Then we deduce, by inverting the relation between f and g (see Section 2.2) and between
F and G (see Section 2.5), collections of estimators of f and F , for which risk bounds are provided,
in term of mean integrated squared error (MISE) on R`. Model selection criterion are proposed to
automatically select m in both cases, and they are proven to make the adequate tradeoff between
bias (m must be large enough for the projection bias to be small) and variance (estimating too many
coefficients increases the estimation error), see Theorems 2.3 and 2.6.

Finally we illustrate our method on simulated and real data. Our purpose is to propose a new
method of privacy protection by the mean of our multiplicative censoring model. On the data given
in Sinha et al. [2011], knowing the level of noise a, we show how to recover the hidden information
about the original data from the noisy observations.
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The plan of the paper is the following. In Section 2, we describe our estimation method and the
model selection procedure, for the density in Sections 2.2 to 2.4 and for the survival function in Section
2.5. We compute bounds on the integrated quadratic risk associated to the estimators and deduce rates
of convergence. The strategy and the results are detailed for density estimation and then extended to
the case of survival function estimation. In Section 3, we describe a deconvolution strategy based on
the additive model obtained by taking the logarithm of (1.1): we compare our method to this one from
theoretical point of view here and in practice in Section 4. Finally Section 4 illustrates the theoretical
results, on simulated data (Section 4.1) and on real data (Section 4.2). Simulation experiments show
the good performances of our method, and estimation on real data is presented through an example
of application. Lastly, most proofs are gathered in Section 5.

2. Multiplicative denoising of density and survival function

2.1. Notations. The space L2pR`q is the space of square integrable functions on the positive real
line. The associated L2-norm is denoted }t}2 “

ş

R` |tpxq|
2dx. The Fourier transform of t P L1, for

x P R is: t‹pxq “
ş

tpuqeiuxdu. Finally, the supremum norm of a bounded function t is denoted by
}t}8 “ sup

xPR`
|tpxq|. The Laguerre basis is defined by:

ϕ0pxq “
?

2e´x, ϕkpxq “
?

2Lkp2xqe
´x for k ě 1, x ě 0, (2.1)

with Lk the Laguerre polynomials

Lkpxq “
k
ÿ

j“0

p´1qj
ˆ

k

j

˙

xj

j!
. (2.2)

It satisfies the orthonormality property xϕj , ϕky “ δj,k where δj,k is the Kronecker symbol equal to 1
if j “ k and to zero otherwise; and the following relations on the norms (see Abramowitz and Stegun
[1964]):

@j ě 0, }ϕj}8 ď
?

2, and }ϕ1j}8 ď 2
?

2pj ` 1q, (2.3)
where ϕ1j is the derivative of ϕj . Any function of L2pR`q can be decomposed on this basis.
Lastly, we state a useful lemma, proven in Section 5, relying on the fact that the density fY is given
by (1.2).

Lemma 2.1. The density fY defined in (1.2) satisfies lim
yÑ0

yfY pyq “ 0 and lim
yÑ`8

yfY pyq “ 0.

Lemma 2.1 is a useful property to justify the construction of the estimator.

2.2. Estimation strategy. Recall that fY is given by (1.2). Now let g be given by

gpxq :“
1

2a

„

f

ˆ

x

1` a

˙

´ f

ˆ

x

1´ a

˙

, (2.4)

and consider a bounded function t, derivable and with derivative function t1 in L2pR`q. Then, an
integration by part and the Lemma 2.1 imply

ErtpY1q ` Y1t
1pY1qs “

1

2a

ż `8

0
tpyq

„

f

ˆ

y

1` a

˙

´ f

ˆ

y

1´ a

˙

dy

“ xt, gy. (2.5)

In other words
ErψtpY1qs “ xt, gy with ψtpyq :“ tpyq ` yt1pyq.

Our strategy is to use equation (2.5) to build a projection estimator of g, and then to look for an
inversion of formula (2.4) to recover f . Precisely, it follows from (2.4) that

f pxq ´ f

ˆˆ

1` a

1´ a

˙

x

˙

“ 2a gpp1` aqxq
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and iterating the relation (by changing x into p1` aqx{p1´ aq, x ą 0), it yields

f pxq ´ f

˜

ˆ

1` a

1´ a

˙N

x

¸

“ 2a
N´1
ÿ

k“0

g

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸

Thus a sequence of approximations of f , for x ą 0, is

fN pxq “ 2a
N´1
ÿ

k“0

g

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸

. (2.6)

Besides, using that fpxq ´ fN pxq “ fppp1 ` aq{p1 ´ aqqNxq, it is easy to check for f P L2pR`q that
}f ´ fN} tends to 0 when N tends to infinity. Now, if f is square-integrable, so is g and therefore we
can write its decomposition on the Laguerre basis:

gpxq “
8
ÿ

j“0

ajpgqϕjpxq, with ajpgq “ xϕj , gy.

Recall that gm :“
řm´1
j“0 ajpgqϕj is the orthogonal projection of g on Sm. According to (2.5), we have

ajpgq “ ErϕjpY1q ` Y1ϕ
1
jpY1qs “ xϕj , gy. Then the projection gm of g on Sm is estimated by

pgm “
m´1
ÿ

j“0

pajϕj , paj “
1

n

n
ÿ

i“1

rYiϕ
1
jpYiq ` ϕjpYiqs “ n´1

n
ÿ

i“1

ψϕj pXiq, (2.7)

with m in a finite collection Mn Ă N that will be given later. Finally, plugging estimator (2.7) into
(2.6), gives the collection of estimators of f , for m PMn,

pfN,mpxq “ 2a
N´1
ÿ

k“0

pgm

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸

. (2.8)

2.3. Risk bound for density estimator. We first state a bound on the mean integrated squared
error (MISE) of pfN,m as an estimator of f .

Proposition 2.2. Assume that f P L2pR`q and ErX2
1 s ă `8.

(i) The estimator pgm of g defined by (2.7) satisfies

Er}pgm ´ g}2s ď }g ´ gm}
2 ` c1

m

n
` c2

m3

n
, c1 “ 4, c2 “ 16ErY 2

1 s. (2.9)

(ii) The estimator pfN,m of f defined by (2.8) satisfies

Er} pfN,m ´ f}2s ď
8a2

p
?

1` a´
?

1´ aq2

ˆ

}g ´ gm}
2 ` c1

m

n
` c2

m3

n

˙

` 2

ˆ

1´ a

1` a

˙N

}f}2. (2.10)

Both risk bounds involve a bias term (proportional to }g ´ gm}
2) which decreases when m in-

creases, and a variance term with main order m3{n, which increases with m. The last term of (2.10)
is clearly exponentially decreasing with N . As the value of N is chosen by the statistician, taking
N ě logpnq{| logpp1´ aq{p1` aqq| makes this term negligible (if a “ 0.5, and n “ 1000, the condition
is N ě 8.)

Rates of convergence of estimators can be computed more precisely. To evaluate the order of
}g ´ gm}

2, the regularity of the function g has to be specified. Let us assume, in this paragraph, that
g belongs to a Sobolev-Laguerre space (see Bongioanni and Torrea [2009]), defined by

W spR`, Lq :“ tf : R` Ñ R, f P L2pR`q,
ÿ

jě0

jsxf, ϕjy
2 ď L ă `8u, (2.11)
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with s ą 0 (see Comte and Genon-Catalot [2015] for equivalent definitions in case s is an integer).
Then we get the following order for the squared bias term:

}pgm ´ g}
2 “

8
ÿ

j“m

a2
j pgq “

8
ÿ

j“m

a2
j pgqj

sj´s ď Lm´s.

Therefore we look for the choice m “ mopt which minimizes Lm´s ` c2m
3{n. We obtain mopt “

Cn1{ps`3q with C :“ p3c2{psLqq
´1{ps`3q, which implies Er}pgmopt´g}

2s “ Opn´s{ps`3qq. This rate is the
classical one in the multiplicative censoring model, and it is minimax optimal in case U „ Upr0, 1sq,
see Belomestny et al. (2016), Brunel et al. (2015).

2.4. Model selection for density estimation. As the regularity s of g in unknown, the choice
m “ mopt cannot be performed in practice. Therefore, a selection method must be set up to choose
automatically the best m among the discrete collection Mn “ tm P J1, nK, m3 ď nu, realizing the
bias-variance trade-off. We want to choose m minimizing the MISE of pfN,m. Considering bound
(2.10), the theoretical value is

mth :“ argmin
mPMn

"

}g ´ gm}
2 ` c1

m

n
` c2

m3

n

*

“ argmin
mPMn

"

´}gm}
2 ` c1

m

n
` c2

m3

n

*

as }g´ gm}2 “ }g}2´ }gm}2 and }g}2 does not depend on m. But functions gm are unknown, thus we
replace them by estimators. Therefore, we may select m as the minimizer of the sum ´}pgm}

2`penpmq
with

penpmq :“ κ1
m

n
` κ2ErY 2

1 s
m3

n
“: pen1pmq ` pen2pmq. (2.12)

The penalty terms have the order of the variance term in (2.9). Note that the definition of Mn ensures
that it is bounded. As ErY 2

1 s is unknown, we finally propose to replace it by its empirical counterpart
and we get:

pm “ argmin
mPMn

t´}pgm}
2 `ypenpmqu, (2.13)

where

ypenpmq “ 2κ1
m

n
` 2κ2

pC2
m3

n
:“ 2pen1pmq ` 2ypen2pmq, pC2 “

1

n

n
ÿ

k“1

Y 2
k . (2.14)

The constants κ1 and κ2 are numerical constants which are calibrated in the simulations. Note that
}pgm}

2 “
řm´1
j“0 pa2

j with paj given in (2.7) is easy to compute. Our final estimator is

pfN, pmpxq “ 2a
N´1
ÿ

k“0

pg
pm

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸

. (2.15)

We can prove the following result.

Theorem 2.3. Assume that f P L2pR`q, that f is bounded and that ErX8
1 s ă `8. For the final

estimator pfN, pm defined by (2.7), (2.13) and (2.15), there exists κ0 such that for κ1, κ2 ě κ0,

Er} pfN, pm ´ f}2s ď
16a2

p
?

1` a´
?

1´ aq2

ˆ

6 inf
mPM

t}g ´ gm}
2 ` penpmqu `

Ca
n

˙

`

ˆ

1´ a

1` a

˙N

}f}2,

where pen is given by (2.12), and Ca is a positive constant depending on a and }f}8.

The theoretical study gives the bounds: κ1 ě 32 and κ2 ě 288. But it is well known that these
theoretical constants are too large in practice: this is why the calibration step for choosing the values
of the constants is done through simulations. Theorem 2.3 is a non-asymptotic bound for the MISE of
the adaptive estimator pfN, pm. It shows that the selection method leads to an estimator with smallest
possible risk among all the estimators in the collection. Note that as previously, the choice N “

logpnq{| logpp1´ aq{p1` aqq| is suitable for the last term to be negligible.
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2.5. Survival function estimation. In this section, we extend the previous procedure to provide
an estimator of the survival function of X, defined on R` by

F pxq “ 1´ F pxq “

ż `8

x
fpuqdu. (2.16)

We denote by F Y the survival function of Y , defined accordingly. We also define a similar function G
associated with g (which is not a density). We can prove the following Lemma.

Lemma 2.4. For all x in R`,

Gpxq :“

ż 8

x
gpuqdu “

1

2a

„

p1` aqF

ˆ

x

1` a

˙

´ p1´ aqF

ˆ

x

1´ a

˙

“ xfY pxq ` F Y pxq. (2.17)

By integrating relation (2.6), we also get a relation between F and G: for x ą 0, let

FN pxq :“
2a

1` a

N´1
ÿ

k“0

ˆ

1´ a

1` a

˙k

G

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸

, (2.18)

then

F pxq ´ FN pxq “

ˆ

1´ a

1` a

˙N

F

˜

ˆ

1` a

1´ a

˙N

x

¸

.

Note that Gp0q “ 1 and thus limNÑ8 FN p0q “ 1, which is coherent with F p0q “ 1. Moreover, if
ErX1s ă `8 the function F , and thus G, is square integrable on R`. Denoting by Gm the orthogonal
projection of G on Sm, we have

Gm “
m´1
ÿ

j“0

bjpGqϕj , with bjpGq :“ă G,ϕj ą .

According to relation (2.17), the coefficients bjpGq can also be written as follows:bjpGq “ ErY ϕjpY qs` ă
F Y , ϕj ą. Thus we estimate the projection Gm of G on Sm by

qGm “
m´1
ÿ

j“0

qbjϕj , qbj “
1

n

n
ÿ

i“1

„
ż

R`
ϕjpxq1Yiěxdx` YiϕjpYiq



. (2.19)

Finally, plugging (2.19) into (2.18), an estimator of F is given by

qFN,m “
2a

1` a

N´1
ÿ

k“0

ˆ

1´ a

1` a

˙k
qGm

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸

. (2.20)

We can prove the following bound.

Proposition 2.5. Assume that ErX2
1 s ă `8. Then, F is square integrable and the estimator qFN,m

of F given by (2.20) satisfies

Er}qFN,m ´ F }2s ď Cpaq

ˆ

}G´Gm}
2 ` 4ErY 2

1 s
m

n
`

2ErY1s

n

˙

`

ˆ

1´ a

1` a

˙3N

}F }2, (2.21)

where Cpaq “ 8a2{pp1` aq3{2 ´ p1´ aq3{2q2.

Inequality (2.21) provides a squared-bias/variance decomposition with bias proportional to }G ´
Gm}

2 and variance proportional to ErY 2
1 sm{n. The term of order ErY1s{n is negligible, as well as

the last one, for N ě logpnq{r3 logpp1 ` aq{p1 ´ aqqs (if a “ 0.5, and n “ 1000, the condition is
N ě 3). If G belongs to W spR`, Lq defined by (2.11), then choosing m‹opt proportional to n1{ps`1q

yields Er}qFN,m‹opt´F }
2s “ Opns{ps`1qq. The rate is better than the one obtained for density estimation.
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However, it remains a nonparametric rate while cumulative distribution functions are estimated with
parametric rates in direct problems.
Then we proceed as in the density case for selecting m and set:

qm “ argmin
mPMn

t´} qGm}
2 `}penpmqu, }penpmq “ 2qκ pC2

m

n
(2.22)

where pC2 is given by (2.14). The constant qκ is calibrated in the simulation part. We can prove the
following oracle-type inequality of the final estimator qFN, qm.

Theorem 2.6. If F P L2pR`q and ErX4
1 s ă 8, the final estimator qFN, qm defined by (2.20) and (2.22)

satisfies

Er}qFN, qm ´ F }2s ď Cpaq

ˆ

6 inf
mPMn

t}G´Gm}
2 ` penpmqu `

Da

n

˙

`

ˆ

1´ a

1` a

˙3N

}F }2 (2.23)

where Cpaq is defined in Proposition 2.5 and Da is a constant depending on a.

Only a sketch of proof of the Theorem is given in Section 5.8, and we find qκ ě 192.

2.6. Case of unknown a. Parameter a is not identifiable, unless additional information is available.
Two cases can be considered. First, if an additional K-sample is available, where the signal is a
deterministic known constant, then we have a set of observations of U , say U p1q1 , . . . , U

p1q
K . In this case,

we can use the maximum likelihood estimator max1ďiďKp|U
p1q
i ´ 1|q as an estimator of a with rate of

convergence K (i.e. the mean square risk is of order 1{K2). Secondly, we can consider the model of
repeated observations, where the variable Xi can be observed repeatedly, with independent errors:

Yi,k “ XiUi,k, k P t1, 2u, i “ 1, . . . , n,

where pUi,1qi and pUi,2qi are independent i.i.d. samples with distribution Upr1 ´ a, 1 ` asq. Then we
have

E

«

Y 2
i,1

Y 2
i,2

ff

“ ErU2
i,1sE

«

1

U2
i,2

ff

, ErU2
i,1s “

a2

3
` 1, E

«

1

U2
i,2

ff

“
1

p1´ aqp1` aq
,

which yields ErY 2
i,1{Y

2
i,2s “ p1` a

2{3q{p1´ a2q. Therefore, we make the proposal

pan “

d

Wn ´ 1

Wn ` 1{3
, with Wn “

1

n

n
ÿ

i“1

Wi, Wi :“
Y 2
i,1

Y 2
i,2

. (2.24)

Clearly, pan is a consistent estimator of a and by the limit central Theorem and the delta-method, we
obtain the convergence in distribution

?
nppan ´ aq

L
Ñ Z, Z „ N

`

0, σ2paq
˘

, σ2paq “
1´ a2

40
p15` 8a2 ` a4q P p0, 0.375q.

This estimator can be plugged into the previous estimation procedure.

3. Model transformation and deconvolution approach

We present now another estimation strategy, to which ours may be compared. The idea is to rewrite
the model under an additive form by taking logarithm of (1.1) (see van Es et al. [2005]). We obtain

Zj :“ logpYjq “ logpXjq ` logpUjq “: Tj ` εj , j “ 1 . . . , n. (3.1)

Estimating the density of T1 in model (3.1) is a classical deconvolution problem on R (see for example
Comte et al. [2006]). Each sample pZjqj , pTjqj , pεjqj is i.i.d. from density fZ , fT , fε respectively, and
pTjqj , pεjqj are independent. They satisfy fZ “ fT ‹ fε where ‹ denotes the convolution product.
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Taking the Fourier transform of the equality implies f˚Z “ f˚T f
˚
ε . Then using the Fourier inversion

formula, we get the following closed form for the density fT ,

fT pxq “
1

2π

ż

R
e´iux

f˚Zpuq

f˚ε puq
du, x P R. (3.2)

An estimator of fT is obtained by replacing f˚Z by its empirical counterpart, pf˚Zpuq “ p1{nq
řn
j“1 e

iuZj .

However, although formula (3.2) is well defined, the ratio pfZ{f
˚
ε is not integrable on the whole real

line, since f˚ε tends to zero near infinity. Therefore, we do not only plug pf˚Z in equation (3.2) but we
also introduce a cut-off which avoids integrability problems. Finally the estimator is defined by:

rfT,`pxq “
1

2π

ż π`

´π`
e´iux

pf˚Zpuq

f˚ε puq
du “

1

2π

ż π`

´π`
e´iux

1

n

n
ÿ

j“1

eiuZj

f˚ε puq
du . (3.3)

Clearly Er rfT,`pxqs “ fT,`pxq with

fT,`pxq :“
1

2π

ż π`

´π`
e´iuxf˚T puqdu.

We can remark that, by Plancherel-Parseval formula, }fT,` ´ fT }
2 “ p2πq´1

ş

|u|ěπ` |f
˚
T puq|

2du. Then,
with an additional bound on the variance, we recall the following result.

Proposition 3.1. If fεpuq ‰ 0, for all u P R, the estimator rfT,` defined by (3.3), satisfies

Er} rfT,` ´ fT }2s ď
1

2π

ż

|u|ěπ`
|f˚T puq|

2du`
1

2πn

ż π`

´π`

du

|f˚ε puq|
2
.

Several proofs of this bound can be found in the literature, see for example Comte and Lacour
[2011], Dion [2014]. Using εj “ logpUjq, we have

f˚ε puq “
1

2a

ż

eiu logptq1r1´a,1`asptqdt “
p1` aqelogp1`aqiu ´ pa´ 1qelogp1´aqiu

2ap1` iuq
,

and

|f˚ε puq|
2 “

1` a2 ´ p1´ a2q cospu logpp1` aq{p1´ aqqq

2a2p1` u2q
(3.4)

which never reaches zero, as 0 ă a ă 1. Besides, 1{|f˚ε puq|
2 ď 2a2p1` u2q{p2a2q “ 1` u2, for u P R.

Therefore, Proposition 3.1 writes in the present case

Er} rfT,` ´ fT }2s ď
1

2π

ż

|u|ěπ`
|f˚T puq|

2du`
`

n
`
π2`3

3n
. (3.5)

We can see that here ` plays the role of m previously, and we have to choose it in order to make a com-
promise between the squared bias term p2πq´1

ş

|u|ěπ` |f
˚
T puq|

2du which decreases when ` increases and
the variance term (with main term π2`3{p3nq) which increases when ` increases. Thus as previously,
writing that p2πq´1

ş

|u|ěπ` |f
˚
T puq|

2du “ }fT }
2´}fT,`}

2, we omit the constant term }fT }
2 and estimate

the second term by ´} rfT,`}2; then we replace the variance by its upper bound, up to a multiplicative
constant. Finally, we set

r` “ argmin
`PMn

t´} rfT,`}
2 `Ąpenp`qu, with Ąpenp`q :“ rκ

ˆ

`

n
`
π2

3

`3

n

˙

, (3.6)

where rκ is a numerical constant calibrated in Section 4.1. We can prove for the estimator rf
T,r`

a
non-asymptotic oracle-type inequality.
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Theorem 3.2. The estimator rf
T,r`

defined by (3.3) and (3.6) satisfies

Er} rf
T,r`
´ fT }

2s ď 4 inf
`PMn

t}fT,` ´ fT }
2 `Ąpenp`qu `

K

n

with K a numerical constant and rκ ě 4.

Finally to estimate f (the density of X) we have to apply the following relations:

fpvq “ fT plogpvqq{v, fT pvq “ flogpXqpvq “ fpevqev.

We define the estimator of f by
rf
r`
pxq :“ rf

T,r`
plogpxqq{x. (3.7)

We can see on this definition that the estimator is not defined near zero, thus we have to consider the
truncated integral

ż `8

α

´

rf
r`
pxq ´ fpxq

¯2
dx ď

1

α
} rf
T,r`
´ fT }

2

to obtain a bound on the risk: for any α ą 0

E
„
ż `8

α
p rf

r`
pxq ´ fpxqq2dx



ď
4

α
inf
`PMn

t}fT,` ´ fT }
2 `Ąpenp`qu `

K

αn
.

We can see on these bounds that, the smaller α, the larger the bound. This is clearly confirmed by
the simulations hereafter.

4. Numerical study

4.1. Simulated data. In this Section we evaluate our estimators of the density and the survival
function on simulated data. We compute three estimators: the estimators of f , pfN, pm given by (2.8)
and rf

r`
given by (3.7) and the estimator of F , qFN, qm, given by (2.20). For each estimator, there is

a preliminary step before estimating the target function. Indeed, we first compute the collection of
projection estimators of function g: pgm. Then we implement the selection procedure for the dimension
parameter m. We obtain the final estimator of g: pg

pm . Finally, applying formula (2.15) with N “ 30,
we obtain our final estimator pf30, pm of f . The estimation procedure is implemented similarly for the
survival function F .

For the deconvolution density estimator we first estimate the density fT “ flogpXq with the col-
lection rfT,` as given by (3.3). The integrals are computed using Riemann approximations with thin
discretisations. We select the best cut-off parameter ` among the collection, according to the criterion
given in Section 3. Finally we use formula (3.7) to obtain rf

r`
.

Each selection procedure depends on a parameter which has to be calibrated, namely κ1, κ2 in (2.14),
qκ in (2.22), rκ in (3.6). They are chosen from preliminary simulation experiments. Different cases of
density f have been investigated with different parameter values, and a large number of repetitions.
Comparing the MISE obtained as functions of the constants of interest, yields to select values making
a good compromise over all experiences. We choose: κ1 “ 0.5, κ2 “ 0.01, qκ “ 0.3, rκ “ 4. In the
following we investigate 3 densities for X:

‚ Γp4, 0.5q.
‚ Ep1q
‚ 0.5Γp2, 0.4q ` 0.5Γp11, 0.4q

The first one is uni-modal and 0 in 0, the second one is decreasing and is 1 in 0: we are indeed
interested in the behaviour near 0 of the estimators. The last one is bi-modal. For each density, we
could start the estimation procedure near x “ 0 for our estimator pfN, pm. But in order to compare our
estimator with the deconvolution estimator rf

r`
which is not defined in 0, we start in x “ 0.1 for all

the grids of density estimation. Figure 1 illustrates the kind of data generated by the model and the
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Figure 1. Example of database when X „ 0.5Γp2, 0.4q ` 0.5Γp11, 0.5q, a “ 0.5,
n “ 200. Top left: plot of X (green or grey) and Y (blue or black). Top right: Y
as a function of X. Bottom left: histogram of X with the true density f , bottom right:
histogram of Y with a projection Laguerre estimator of fY applied on the pYiq’s.

effect of the censoring variable. It is a real issue to successfully reconstruct the density of X from the
censored data Y .

Let us first comment the density estimation procedure. For the projection estimator pfN, pm we choose
mmax “ 10 or 15 because the selected m are small most of the time. For the deconvolution estimator:
`max “ 10 and the selected ` are often small (1,2,3).
Figure 2 illustrates the good performances of our estimation procedure by projection. We represent
20 estimators pfN, pm of f (for 20 simulated samples) in the exponential case and the mixed-gamma
case, and the beam of estimators are very close and close to the true density. On Figure 3, we can see
both estimators pfN, pm, rf

r`
and the true density. We also plot on this graph the projection estimator of

density fY from the observations pYiqi. It is defined for observations pZiqi,

pfZ,m “
m´1
ÿ

j“0

pbjϕj with pbj “
1

n

n
ÿ

i“1

ϕjpZiq, (4.1)

and p

pm “ argmin
mPMn

t´} pfZ,m}
2`m{nu (the calibration constant has been chosen equal to 1 here). We can

notice from the graph that estimator rf
r`
is closer to pf

Y, ppm
(4.1) and fY than to f , the target function.

However, estimator pfN, pm catches the difference between f and fY which is the aim here, and fits well
the true density f of sample pXiqi.

Then we compute approximation of the MISE from 100 or 200 Monte-Carlo simulations. The num-
ber of repetitions has been checked to be large enough to insure the stability of the MISEs. They are
multiplied by 100 and summed up in Table 1 for different values of parameter a and of the number
of observations n, to complete the illustration. When a goes from 0.25 to 0.5 the estimation is more
difficult, and this increases the value of the errors. Likewise, when n increases from 200 to 10000 the
estimation is easier and the MISEs are smaller. We can see again that the results are specifically good
for exponential densities. For the mixed-gamma case function g is hard to estimate because it has 2
modes, thus the estimation of f is also difficult and requires more observations, see the third line of
Table 1. Still according to Table 1, the projection estimator performs better than the deconvolution
method. All along, it has been seen that the projection method is computationally faster than the
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Figure 2. 20 estimator pfN, pm of f in plain grey line (green) versus the true density f
in black bold plain line: on the left when X „ Ep1q with a “ 0.5, n “ 1000; on the
right when X „ 0.5Γp4, 0.25q ` 0.5Γp20, 0.5q, with a “ 0.25, n “ 1000.

deconvolution strategy. Besides, the deconvolution estimator is very unstable around zero.

Remark. Estimation at x “ 0. Note that by definition of function g (2.4) gp0q “ 0, then fN p0q “ 0

and the projection estimator pfN, pm may have to be corrected in point zero if the true density is
non-zero in zero. But, we can see that, if the function f is continuous in 0`, then limyÑ0 fY pyq “
fp0q logpp1` aq{p1´ aqq{p2aq. This implies that estimating fY in zero by a direct the projection
estimator of fY relying on the Laguerre basis ( pf

Y, ppm
) and applying the multiplicative correction factor

2a{ logpp1 ` aq{p1 ´ aqq should be an adequate approximation of f near zero. On Figure 2 the grid
begins in 0.03 for the exponential density and in 0 for the mixed-gamma density. If the statistician
wants to start the estimation in 0, the plugging of corrected pf

Y, ppm
p0q for the first value of estimator

pfN, pm is a good strategy.
For the estimation of the survival function the grid of estimation begins in 0. We choose for the

maximal dimension mmax “ 10, 15, 20 (n “ 200, 1000, 10000) and the selected m are small most of
the time. The left graph of Figure 4 illustrates the good estimation of the survival function of X when
it has an exponential distribution with parameter 1 from observations pYiqi. On the right, the second
graph shows the mixed-gamma case: our estimator qFN, qm (plain grey line) detects well the bimodal
character of the density (true F in plain black line). We also represent the empirical distribution
function F Y,n in dotted grey line, given for a sample pZiqi by:

FZ,nptq “ 1´
1

n

n
ÿ

i“1

1Ziďt. (4.2)

We can see that this function is not a good approximation of F when a “ 0.5. To confirm this fact,
Table 2 provides the MISEs (times 100) for estimator qFN, qm of F . They can be compared to the
MISEs of estimators of F : F Y,n (available in practice) and FX,n (not available in practice). This
table highlights the quality of our estimator when a “ 0.5 (results in bold black). When a “ 0.25 as
expected F Y,n can be considered as a satisfying approximation of the survival function of X, except
for the exponential case, where our estimator is the best. Again, when a increases the MISEs are
higher and with n increases the MISEs are smaller.

4.2. Application. Klein et al. [2013] detail the problem of confidential protection of data. The issue
it how to alter the data before releasing it to the public in order to minimize the risk of disclosure and
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Figure 3. Gamma case: X „ Γp4, 0.5q, a “ 0.5, n “ 1000. Left graph: f in bold
black line, estimator pfN, pm of f in plain bold grey line (green), estimator rf

r`
of f in

thin dotted grey line (green). Right graph: f in bold black line, fY in bold grey line
(green), estimator of fY by projection pf

Y, ppm
in dotted grey line (green).

Distribution of f a Estimator pfN, pm Estimator rf
r`

n “ 200 n “ 1000 n “ 10000 n “ 200 n “ 1000 n “ 10000
Exponential 0.25 0.386 0.075 0.006 0.703 0.153 0.024

0.5 0.470 0.095 0.009 0.964 0.231 0.030
Gamma 0.25 0.538 0.110 0.014 1.122 0.987 0.017

0.5 0.972 0.394 0.154 1.589 1.851 0.217
Mixed-gamma 0.25 1.070 0.146 0.015 1.603 0.346 0.048

0.5 1.441 0.563 0.208 2.703 2.833 0.337

Table 1. MISE for the estimators of f : pfN, pm and rf
r`
, times 100, with 200 repetitions

for n “ 200, 1000 and 100 for n “ 10000.

Distribution f a qFN, qm F Y,n FX,n
n “ 200 n “ 1000 n “ 10000 n “ 200 n “ 1000 n “ 200 n “ 1000

Exponential 0.25 0.194 0.043 0.026 0.253 0.055 0.248 0.054
0.5 0.269 0.072 0.027 0.277 0.106 0.234 0.054

Gamma 0.25 0.269 0.151 0.121 0.260 0.081 0.245 0.054
0.5 0.500 0.133 0.121 0.756 0.497 0.281 0.057

Mixed-gamma 0.25 0.677 0.175 0.098 0.610 0.126 0.557 0.097
0.5 0.888 0.225 0.126 0.855 0.430 0.517 0.102

Table 2. MISE for the estimators of F : qFN, qm, F Y,n, FX,n, times 100, with 200
repetitions for n “ 200, 1000 and 100 for n “ 10000.

at the same time to remain able to find the main characteristics of the original dataset when the level
of noise is known.
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Figure 4. Left: 20 estimators qFN, qm of F in plain grey line (green) versus the true
function F in black bold plain line: when X „ Ep1q, a “ 0.25, n “ 200. Right:
estimator qFN, qm in bold plain grey line (green) and empirical distribution Fn of Y in
dotted bold grey line (green), when X „ 0.5Γp4, 0.25q` 0.5Γp20, 0.5q (F in black plain
bold line), a “ 0.5, n “ 1000.

The multiplicative noise perturbation can be proposed in this context. Sinha et al. [2011] investigate
this method on n “ 51 magnitude data, different noise distributions, among which a uniform density
Ur1´a,1`as for a “ 0.1 (the data set is publicly available from the American Community Survey (ACS)
via http://factfinder.census.gov). The question is: how can the moments, the quantiles, the
minimal value, maximal value of the sample X be estimated from the observations Yi. They propose a
strategy which delivers good results. But, looking at the noisy data Yi one can see that they are very
close from the true ones and thus in that case the privacy may be not insured. We illustrate this fact
on Figure 5: it represents the multiplicative noise scenario, with a “ 0.1 on the left and a “ 0.5 on
the right, for the original data pXiqi“1,...,n“51 from Sinha et al. [2011]. The three graphs are: top left
the histogram of the pXiqi the real data, top right an histogram of pYi “ XiUiqi and on the bottom a
plot of Y versus X.

Thus here we choose to illustrate the second choice: a “ 0.5. What is the estimated density of
X from these observations pYi “ XiUiqi? Are we capable of giving predictions of the data from this
estimated density? What are the mean, the min, the max, the main quantiles of our new sample?

Figure 6 shows the estimator pf30, pm of f from the pYiqi, the projection estimator of f on the sample
pXiqi: pf

X, ppm
(a benchmark, not available in practice) and pf

Y, ppm
the projection estimator of fY on the

pYiqi. It seems that the two densities are very different. The quality of the method is asserted by the
fact that pf

X, ppm
and pf30, pm are very close. Then, from the estimator pf30, pm we simulate a new sample

pXprediqi of length n “ 51. To do so, we generate a "discrete variable" because we have a discrete
version of the estimator of the density function f . The graph of the sorted new sample versus the
sorted original sample is presented of Figure 7. The lining up of the values confirms the goodness
of our estimator pfN, pm from the noisy observations pYiqi. Finally we can compare the quantities of
interest of pXiqi (not available), pYiqi (noisy sample) and pXprediqi, see Table 3. Except for the third
quantile Q3 at (75 %), the information we get from our new sample is very close from the information
from X.

The proposed procedure allows to correctly mask the data and to recover the main information
from the original sample, as soon as the level of noise (given by a) is known. The method is easy to
use in practice and insures the privacy protection of the data.

 http://factfinder.census.gov
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Figure 5. Illustration of uniform noise multiplication on real data. Three graphs for
a “ 0.1 on the left and a “ 0.5 on the right. Top left histogram of pXiqi, top right
histogram of pYiqi, bottom plot of Yi versus Xi.

Mean Standard deviation Minimum Maximum Q1 Median Q3
X 12.82 2.98 7.6 21.2 10.5 12.5 14.75
Y 12.59 4.93 6.10 27.6 7.91 12.70 14.46

Xpred 12.78 3.09 7.18 19.31 10.42 12.77 14.54

Table 3. Comparison of characteristic quantities from samples pXiqi, pYiqi, pXprediqi
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5
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Figure 6. Histogram of the real data Xi’s with full multiplicative noise, with a “ 0.5,
Yi “ XiUi. Dotted black line estimator pf

X, ppm
of f on the pXiqi, plain black line (red)

pfN, pm estimator of f on the pYiqi, plain grey line (green) line estimator pf
Y, ppm

of fY on
the pYiqi.
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Figure 7. Plot of the new predictive sample pXprediqi versus original data pXiqi.

5. Proofs

5.1. Proof of Lemma 2.1. Denote F the cumulative distribution function ofX1, it comes the bounds

1´ a

2a

ż
y

1´a

y
1`a

fpxqdx ď yfY pyq ď
1` a

2a

ż
y

1´a

y
1`a

fpxqdx

1´ a

2a

„

F

ˆ

y

1´ a

˙

´ F

ˆ

y

1` a

˙

ď yfY pyq ď
1` a

2a

„

F

ˆ

y

1´ a

˙

´ F

ˆ

y

1` a

˙

. (5.1)

Equation (5.1) shows that yfY pyq Ñ
yÑ0

0 and yfY pyq Ñ
yÑ`8

0. l

5.2. Useful properties of the Laguerre basis.

Property 5.1. If t P Sm, (1) }t}8 ď
?

2m}t}, (2) }t1}8 ď 2
?

2m3{2}t} and (3) If }t} “ 1,
}t1} ď 1`

a

2mpm´ 1q.

The two first points are direct consequences of (2.3). The last point comes from the following Lemma.

Lemma 5.2. For all j P N, the Laguerre basis function pϕjqj satisfies:

ϕ10pxq “ ´ϕ0pxq, ϕ1jpxq “ ´ϕjpxq ´ 2

j´1
ÿ

k“0

ϕkpxq, j ě 1. (5.2)

Considering t P Sm, such that }t} “ 1, tpxq “
řm´1
j“0 ajϕjpxq, then

t1pxq “

m´1
ÿ

j“0

ajϕ
1
jpxq “

m´1
ÿ

j“1

aj

˜

´ϕjpxq ´ 2

j´1
ÿ

k“0

ϕkpxq

¸

´ a0ϕ0pxq

“ ´

m´1
ÿ

j“0

ajϕjpxq ´ 2
m´1
ÿ

j“1

aj

˜

j´1
ÿ

k“0

ϕkpxq

¸

.

Then, }t1} ď }t} ` 2}
řm´1
j“1 ajp

řj´1
k“0 ϕkq}

˜

m´1
ÿ

j“1

aj

˜

j´1
ÿ

k“0

ϕkpxq

¸¸2

ď

m´1
ÿ

j“1

a2
j

˜

m´1
ÿ

j“1

pϕ0 ` ϕ1 ` ¨ ¨ ¨ ` ϕj´1

¸2

“ }t}2
m´1
ÿ

j“1

pϕ0 ` ϕ1 ` ¨ ¨ ¨ ` ϕj´1q
2

thus using that }t} “ 1 and integrating, as the pϕjq’s form a b.o.n, it yields
›

›

›

›

›

m´1
ÿ

j“1

aj

˜

j´1
ÿ

k“0

ϕk

¸›

›

›

›

›

2

ď

m´1
ÿ

j“1

p}ϕ0}
2 ` }ϕ1}

2 ` ¨ ¨ ¨ ` }ϕj´1}
2q ď

m´1
ÿ

j“1

j “ mpm´ 1q{2.
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Finally }t1} ď 1`
a

2mpm´ 1q. l

Proof of Lemma 5.2.
The following equality holds ϕ1jpxq “ ´ϕjpxq`2

?
2e´xL1jp2xq which is a polynomial function of degree

j multiplied by e´x. Thus, it could be decomposed as ϕ1jpxq “
j
ÿ

k“0

a
pjq
k ϕkpxq with

a
pjq
k “ ă ϕ1j , ϕk ą“

ż `8

0
ϕ1jpxqϕkpxqdx “ rϕjpxqϕkpxqs

`8
0 ´

ż `8

0
ϕjpxqϕ

1
kpxqdx

“ ´ϕjp0qϕkp0q ´

ż `8

0
ϕjpxqϕ

1
kpxqdx “ ´2´ 2 ă ϕj , ϕ

1
k ą“ ´2´ 2a

pkq
j

Notice that this formula is also true when k “ j: ă ϕ1j , ϕj ą“
ş`8

0 ϕ1jpxqϕjpxqdx “ ´p1{2qϕ
2
j p0q “

´2{2 “ ´1. Thus we obtain:

ϕ1jpxq “

j
ÿ

k“0

p´2´ ă ϕ1j , ϕk ąqϕkpxq “ ´2

j
ÿ

k“0

ϕkpxq ´

j
ÿ

k“0

ă ϕj , ϕ
1
k ą ϕkpxq

“ ´ϕjpxq ´ 2

j´1
ÿ

k“0

ϕkpxq ´

j´1
ÿ

k“0

ă ϕj , ϕ
1
k ą ϕkpxq

Or the ă ϕj , ϕ
1
k ą are zero for k ď j ´ 1. Thus we obtain (5.2). l

5.3. Proof of Proposition 2.2.

Proof of (i). To compute Er}gm ´ pgm}
2s we start by noting that }gm ´ pgm}

2 “

m´1
ÿ

j“0

ppaj ´ ajpgqq
2.

This implies

Er}gm ´ pgm}
2s “

m´1
ÿ

j“0

Varppajq ď
1

n

m´1
ÿ

j“0

ErpY1ϕ
1
jpY1q ` ϕjpY1qq

2s.

Now, Equation (2.5) applied with t “ ϕ2
j and (2.3) lead to

ErpY1ϕ
1
jpY1q ` ϕjpY1qq

2s ď Er2Y 2
1 ϕ

12
j pY1q ` 2ϕjpY1q

2s ď 2}ϕ1j}
2
8ErY 2

1 s ` 2}ϕj}
2
8

ď 16pj ` 1q2ErY 2
1 s ` 4.

As 8
m´1
ÿ

j“0

pj ` 1q2 “ 8
m
ÿ

j“1

j2 ď 8m3, it yields

Er}gm ´ pgm}
2s ď 16ErY 2

1 s
m3

n
` 4

m

n
, (5.3)

which is the result (i). l

Proof of (ii). Let us study the mean of the estimator of f :

Er pfN,mpxqs “ 2a
N´1
ÿ

k“0

E

«

pgm

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸ff

“ 2a
N´1
ÿ

k“0

m
ÿ

j“1

ajϕj

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸

“ 2a
N´1
ÿ

k“0

gm

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸

:“ fN,mpxq.

Thus the estimator pfN,m is an unbiased estimator of fN,m and

Er} pfN,m ´ f}2s “ }f ´ fN,m}2 ` Er}fN,m ´ pfN,m}
2s. (5.4)
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In the following we denote by hk the composition of h with the function

x ÞÑ

ˆ

1` a

1´ a

˙k

p1` aqx.

We note that for any function h P L2pR`q,

}hk}
2
“

ż

h2

˜

ˆ

1` a

1´ a

˙k

p1` aqx

¸

dx “
1

1` a

ˆ

1´ a

1` a

˙k ż

h2pyqdy “
1

1` a

ˆ

1´ a

1` a

˙k

}h}2. (5.5)

Let us study of the bias term }f ´ fN,m}
2:

pf ´ fN,mqpxq “ 2a
N´1
ÿ

k“0

gkpxq ` f

˜

ˆ

1` a

1´ a

˙N

x

¸

´ 2a
N´1
ÿ

k“0

gm,kpxq

“ 2a
N´1
ÿ

k“0

pgk ´ gm,kqpxq ` f

˜

ˆ

1` a

1´ a

˙N

x

¸

.

The triangular inequality gives

}f ´ fN,m} ď 2a
N´1
ÿ

k“0

}gk ´ gm,k} `

›

›

›

›

›

f

˜

ˆ

1` a

1´ a

˙N

¨

¸›

›

›

›

›

. (5.6)

As a consequence, using (5.5), we get

N´1
ÿ

k“0

}gk ´ gm,k} “

N´1
ÿ

k“0

1
?

1` a

ˆ

1´ a

1` a

˙k{2

}g ´ gm} “
1´

´

1´a
1`a

¯N{2

?
1` a´

?
1´ a

}g ´ gm}

ď
}g ´ gm}

?
1` a´

?
1´ a

. (5.7)

Furthermore, }fppp1` aq{p1´ aqqN ¨q} “ pp1´ aq{p1` aqqN{2}f}, and plugging this and (5.7) in (5.6),
we obtain

}f ´ fN,m}
2 ď

8a2

p
?

1` a´
?

1´ aq2
}g ´ gm}

2 ` 2

ˆ

1´ a

1` a

˙N

}f}2. (5.8)

For the variance term, we study }fN,m ´ pfN,m}
2. We easily obtain

}fN,m ´ pfN,m} “ 2a

›

›

›

›

›

N´1
ÿ

k“0

ppgm,k ´ gm,kq

›

›

›

›

›

ď 2a
N´1
ÿ

k“0

}pgm ´ gm}
1

?
1` a

ˆ

1´ a

1` a

˙k{2

and finally

}fN,m ´ pfN,m} ď 2a
1´

´

1´a
1`a

¯N{2

?
1` a´

?
1´ a

}pgm ´ gm} (5.9)

and Er}pgm ´ gm}s has been evaluated in (5.3). Gathering (5.4), (5.8) and (5.9) implies (ii). l

5.4. Proof of Theorem 2.3. First, by the Cauchy-Schwarz inequality, we have

Er} pfN, pm ´ f}2s ď 2Er}f ´ f
pm,N}

2s ` 2Er}fN, pm ´ pfN, pm}
2s

Then we apply (5.8) and (5.9):

Er} pfN, pm ´ f}2s ď 4

ˆ

1´ a

1` a

˙N

}f}2 `
16a2

p
?

1` a´
?

1´ aq2

`

Er}g ´ g
pm}

2s ` Er}pg
pm ´ g pm}

2s
˘

“ 4

ˆ

1´ a

1` a

˙N

}f}2 `
16a2

p
?

1` a´
?

1´ aq2

`

Er}g ´ pg
pm}

2s
˘

. (5.10)
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The last term is the MISE of the estimator pg
pm which follows from the following Lemma.

Lemma 5.3. Under the assumptions of Theorem 2.3, the estimator pg
pm defined by (2.7) and (2.13),

satisfies

Er}pg
pm ´ g}

2s ď 6 inf
mPM

t}g ´ gm}
2 ` penpmqu `

C 1

n

with C 1 a positive constant depending on a and }fY }8.

Gathering Lemma 5.3 and Inequality (5.10) ends the proof of Theorem 2.3. l

Proof of Lemma 5.3. Let us define the contrast

γnptq “ }t}
2 ´

2

n

n
ÿ

i“1

rtpYiq ` Yit
1pYiqs. (5.11)

It is easy to check that pgm “ argmin
tPSm

γnptq, i.e. the estimator pgm is also a minimum contrast estimator,

and to compute that γnppgmq “ ´}pgm}2. We notice that

γnptq ´ γnpsq “ }t´ g}
2 ´ }s´ g}2 ´ 2νnpt´ sq (5.12)

with

νnptq “
1

n

n
ÿ

i“1

tpYiq ` Yit
1pYiq ´ xt, gy

“
1

n

n
ÿ

i“1

tpYiq ` Yit
1pYiq ´ ErtpYiq ` Yit1pYiqs “ νn,1ptq ` νn,2ptq ` νn,3ptq

where νn,1ptq :“ p1{nq
řn
i“1 tpYiq ´ ErtpYiqs and

νn,2ptq :“
1

n

n
ÿ

i“1

Yit
1pYiq1Yiďcn ´ ErYit1pYiq1Yiďcns

νn,3ptq :“
1

n

n
ÿ

i“1

Yit
1pYiq1Yiącn ´ ErYit1pYiq1Yiącns

with
cn :“ C3ErY 2

1 s
?
n{plogpnqq. (5.13)

By definition of pg
pm, for all m PMn, we have

γnppg
pmq `ypenppmq ď γnpgmq `ypenpmq.

Denoting m_m1 “ m˚,
Bm,m1 “ tt P Sm_m1 , }t} “ 1u, (5.14)

and using (5.12) we get

}pg
pm ´ g}

2 ď }g ´ gm}
2 ` }pg

pm ´ g}
2 ´ }g ´ gm}

2

ď }g ´ gm}
2 `ypenpmq ` 2νnppg

pm ´ gmq ´ypenppmq

ď }g ´ gm}
2 `

1

4
}pg

pm ´ gm}
2 ` 4 sup

tPBm,xm

ν2
nptq `ypenpmq ´ypenppmq

ď }g ´ gm}
2 `

1

2
}pg

pm ´ g}
2 `

1

2
}gm ´ g}

2 ` 4 sup
tPBm,xm

ν2
nptq `ypenpmq ´ypenppmq
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Therefore we get

}pg
pm ´ g}

2 ď 3}g ´ gm}
2 ` 8 sup

tPBm,xm

ν2
nptq ` 2ypenpmq ´ 2ypenppmq

ď 3}g ´ gm}
2 ` 24 sup

tPBm,xm

ν2
n,1ptq ` 24 sup

tPBm,xm

ν2
n,2ptq ` 24 sup

tPBm,xm

ν2
n,3ptq

`2ypenpmq ´ 2ypenppmq ` 2penppmq ´ 2penppmq ` 2penpmq ´ 2penpmq

ď 3}g ´ gm}
2 ` 24p sup

tPBm,xm

ν2
n,1ptq ´ p1pm, pmqq` ` 24p sup

tPBm,xm

ν2
n,2ptq ´ p2pm, pmqq`

`24 sup
tPBm,xm

ν2
n,3ptq ` 2ypenpmq ´ 2ypenppmq ` 2penppmq ` 2penpmq (5.15)

with p1pm,m
1q “ 6m˚{n satisfying 12p1pm,m

1q ď pen1pmq ` pen1pm
1q for κ1 ě 72 and

p2pm,m
1q “ 24ErY 2

1 sm
3˚{n

12 p2pm,m
1q ď pen2pmq ` pen2pm

1q for κ2 ě 288. Let us state intermediate results.

Lemma 5.4. Under the assumption of Theorem 2.3,
(i) E

”

psuptPBm,xm
ν2
n,1ptq ´ p1pm, pmqq`

ı

ď K1{n,

(ii) E
”

psuptPBm,xm
ν2
n,2ptq ´ p2pm, pmqq`

ı

ď K2{n,

(iii) E
”

suptPBm,xm
ν2
n,3ptq

ı

ď K3{n,
where K1,K2,K3 are constants which do not depend on n.
(iv) There exists a positive constant K4 depending on a such that,

Ert penppmq ´zpenppmqu`s ď
K4

n
.

Taking expectation of (5.15), using Erypenpmqs “ 2penpmq, and plugging the results of Lemmas 5.4
implies Lemma 5.3. l

5.5. Proof of Lemma 5.4.
First notice that, for i “ 1, 2,

E

«˜

sup
tPBm,xm

ν2
n,iptq ´ pipm, pmq

¸

`

ff

ď
ÿ

m1PMn

˜

sup
tPBm,m1

ν2
n,iptq ´ pipm,m

1q

¸

`

.

In the following we apply Talagrand’s inequality to the two above terms. For that purpose, we compute
the terms denoted by H2, v and M in Theorem 5.7.
Proof of (i). We bound Er sup

tPBm,m1

ν2
n,1ptqs. For t P Bm,m1 , using that

řm˚´1
j“0 xt, ϕjy

2 “ 1, we get

ν2
n,1ptq “

˜

νn,1

˜

m˚´1
ÿ

j“0

xt, ϕjyϕj

¸¸2

“

˜

m˚´1
ÿ

j“0

xt, ϕjyνn,1pϕjq

¸2

ď

m˚´1
ÿ

j“0

ν2
n,1pϕjq

Er sup
tPBm,m1

ν2
n,1ptqs ď

m˚´1
ÿ

j“0

Erνn,1pϕjq2s “
m˚´1
ÿ

j“0

1

n
VarpϕjpY1qq ď

2m˚

n
“: H2,

as ϕ2
j pxq ď 2, @j,@x. Now, }f}8 “ sup

xPR`
|fpxq| ă 8 implies that |fY pyq| ď p}f}8{2aq logpp1`aq{p1´aqq

and }fY }8 ă 8. Thus

VarptpY1qq ď ErtpY1q
2s ď }fY }8}t}

2 “ }fY }8 “: v
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Finally, point (1) of Property 5.1 gives

sup
tPBm,m1

}t}8 “
?

2m˚ sup
tPBm,m1

}t} “
?

2m˚ “: M.

We obtain (for α “ 1{2 in Theorem 5.7):

E

«˜

sup
tPBm,m1

ν2
n,1ptq ´ 6

m˚

n

¸

`

ff

ď 36

ˆ

}fY }8
n

e´m
˚{p6}fY }8q ` C1

m˚

n2
e´C2

?
n

˙

with C1 “
588

5{2´
?

6
, C2 “

a

3{2´ 1

42
. Consequently,

ÿ

m1PMn

E

«˜

sup
tPBm,m1

ν2
n,1ptq ´ 6

m1

n

¸

`

ff

ď
ÿ

m1PMn

36

ˆ

}fY }8
n

e´m
1{p6}fY }8q ` C1

m1

n2
e´C2

?
n

˙

ď
ÿ

m1PMn

36

ˆ

}fY }8
n

e´m
1{p6}fY }8q ` C1

m1

n2
e´C2

?
m1
˙

ď
K1

n

with C a positive constant depending on }fY }8. This explains the choice p1pm,m
1q “ 6m˚{n, and

the constraint κ1 ě 12ˆ 6 “ 72.

Proof of (ii). As before

Er sup
tPBm,m1

ν2
n,2ptqs ď

m˚´1
ÿ

j“0

Erν2
n,2pϕjqs “

m˚´1
ÿ

j“0

1

n
VarpY1ϕ

1
jpY1q1Y1ďcnq ď

m˚´1
ÿ

j“0

1

n
ErY 2

1 pϕ
1
jq

2pY1qs

ď

m˚´1
ÿ

j“0

1

n
}ϕ

12
j }8ErY 2

1 s ď 8ErY 2
1 s
m˚3

n
“: H2

We introduce the following result

Lemma 5.5. ErY 2
i ψ

2pYiqs ď ErX2
i ψ

2pXiUiqs ď p1` aq
2}ψ}2ErXis.

Using also Lemma 5.2, we obtain

VarpY1t
1pY1q1Y1ďcnq ď ErY 2

1 t
12pY1qs ď }t

1}2ErXs ď 3p1` aq2m˚2ErXs “: v

Finally: suptPBm,m1
psupx |xt

1pxq1xďcn | ď suptPBm,m1
cn}t

1}8 ď cn2
?

2m˚ 3{2 “: M . We obtain, apply-
ing Theorem 5.7 with α “ 1{2 again:

ÿ

m1PMn

E

«˜

sup
tPBm,m1

ν2
n,2ptq ´ 24ErY 2

1 s
m1

n

¸

`

ff

ď
ÿ

m1PMn

24

˜

p3p1` aq2m12ErXs
n

e
´

C1ErY
2
1 sm

1

p3p1`aq2ErXsq

` C2
c2
nm

13

n2
e´C3ErY 2

1 s
?
n{cn

˙

ď
K2

n

with C1 “ 8, C2 “ 2352{p5{2´
?

6q, C3 “ p
a

3{2´ 1q{42 with cn given by (5.13) and C 1 a constant
depending on ErX1s and ErY 2

1 s. We choose

p2pm,m
1q “ 24ErY 2

1 s
m3

n
, pen2pmq “ κ2ErY 2

1 s
m˚3

n
, κ2 ě 288

and obtain (ii). l
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Proof of Lemma 5.5
We have, as U ď p1` aq a.s.,

ErY 2ψ2pY qs ď Erp1` aq2X2ψ2pXUqs “ p1` aq2
ż `8

0

ż p1`aq

p1´aq
x2ψ2pxuqfpxqdudx

ď p1` aq2
ż `8

0
ψ2pvq dv

ż `8

0
xfpxq dx

“ p1` aq2}ψ}2ErXs. l

Proof of (iii). We use that m˚3 ď n, it yields

Er sup
tPBm,m1

ν2
n,3ptqs ď

1

n

m˚´1
ÿ

j“0

VarpY1ϕ
1
jpY1q1Y1ącnq ď

1

n

m˚´1
ÿ

j“0

}ϕ
12
j }8ErY 2

1 1Y1ącns

ď 8
m˚3

n
ErY 2

1 c
p
n1Y1ącnsc

´1
n ď 8

ErY 2`p
1 s

cpn

with the choice of cn (5.13) we obtain

E

«

sup
tPBm,m1

ν2
n,3ptq

ff

ď 8
ErY 2`p

1 sCardpMnq

Cp3ErY 2
1 s
p logpnqpnp{2

ď
K3

n

for p “ 4, using that cardpMnq ď n1{3 and that the function logpnq4{n2{3 is bounded with C” a
positive constant depending on ErY 4

1 s. l

Proof of (iv). Let us study the difference

Ertpenppmq ´ypenppmqu`s “ E
„

2κ2

"

ErY 2
1 s

2
´ pC2

*

`

pm3

n



.

Denote Ω “ t|ErY 2
1 s ´

pC2| ď ErY 2
1 s{2u. Then ErY 2

1 s{2´
pC2 ď 0 on Ω, thus

Ertpenppmq ´ypenppmqu`s “ E
„

2κ2

ˆ

ErY 2
1 s

2
´ pC2

˙

pm3

n
1Ωc



ď E
„

2κ2

´

ErY 2
1 s ´

pC2

¯

pm3

n
1Ωc



.

By Cauchy-Schwarz we have

E
”ˇ

ˇ

ˇ
ErY 2

1 s ´
pC2

ˇ

ˇ

ˇ
1Ωc

ı

ď Er|ErY 2
1 s ´

pC2|
2s1{2PpΩcq1{2.

First, Markov’s inequality implies

PpΩcq “ P
ˆ

|ErY 2
1 s ´

pC2| ě
ErY 2

1 s

2

˙

ď
24

ErY 2
1 s

4
Er|ErY 2

1 s ´
pC2|

4s.

Then the Rosenthal inequality implies that there exists a constant C, such that

Er|ErY 2
1 s ´

pC2|
4s ď Cn´2E

”

`

Y 2
1 ´ ErY 2

1 s
˘4
ı

.

Gathering the results we obtain:

E
”ˇ

ˇ

ˇ
ErY 2

1 s ´
pC2

ˇ

ˇ

ˇ
1Ωc

ı

ď Varp pC2q
1{2 4

ErY 2
1 s

2

´ c1

n3
`
c2

n2

¯1{2
`

ErpY 2
1 ´ ErY 2

1 sq
4s
˘1{2

.

Thus, as ErY k
1 s “ ErXk

1 sErUk1 s and the moments of ErUk1 s are finite depending on a, if ErX8
1 s ă 8

the quantities m4 :“ ErpY 2
1 ´ ErY 2

1 sq
4s, Varp pC2q are bounded, we have the announced result. l
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5.6. Proof of Lemma 2.4. The survival function of Y satisfies

2aF Y pyq “

ż `8

y
fY pzqdz “

ż `8

y

˜

ż z
1´a

z
1`a

fpxq

x
dx

¸

dz

“

ż `8

y
1`a

˜

ż xp1`aq

y_p1´aqx
dz

¸

fpxq

x
dx

“

ż `8

y
1`a

fpxq

x
rxp1` aq ´ y _ p1´ aqxs dx

“ p1` aq

ż `8

y
1`a

fpxqdx´ p1´ aq

ż `8

y
1`a

fpxq1yăp1´aqxpxqdx´ y

ż `8

y
1`a

fpxq

x
1yąp1´aqxpxqdx.

with x_ y “ maxpx, yq. Finally it yields:

F Y pyq “
1

2a

„

p1` aqF

ˆ

y

1` a

˙

´ p1´ aqF

ˆ

y

1´ a

˙

´ yfY pyq. (5.16)

But, looking at the definition of g given in (2.4), we define analogously the function

Gpxq :“

ż 8

x
gpyqdy “

1

2a

„

p1` aqF

ˆ

x

1` a

˙

´ p1´ aqF

ˆ

x

1´ a

˙

.

Thus relation (5.16) becomes:
Gpxq “ xfY pxq ` F Y pxq. l

5.7. Proof of Proposition 2.5. First note that ErX2
1 s ă `8 implies that F integrable. Indeed

ż `8

0
F

2
pxqdx ď

ż `8

0
F pxqdx “ ErX1s ď E1{2pX2

1 q.

The result follows if we prove that

Er}Gm ´ qGm}
2s ď

2ErY1s

n
` 4ErY 2

1 s
m

n
.

The MISE of estimator qGm is:

Er}qGm ´G}2s “ }ErqGms ´G}2 ` Er}ErqGms ´ qGm}
2s.

First, ErGms “
řm´1
j“0 Erqbjsϕj “

řm´1
j“0 bjpGqϕj “ Gm. Then to compute the variance term Er}Gm ´

qGm}
2s we start with the relation: }Gm ´ qGm}

2 “
řm´1
j“0 p

qbj ´ bjq
2 and then

Er}Gm ´ qGm}
2s “

m´1
ÿ

j“0

Varpqbjq ď
1

n

m´1
ÿ

j“0

E

«

ˆ

Y1ϕjpY1q `

ż

R`
ϕjpxq1Y1ěxpxqdx

˙2
ff

ď
2

n

m´1
ÿ

j“0

ErY 2
1 ϕjpY1q

2s `
2

n

m´1
ÿ

j“0

E

«

ˆ
ż

R`
ϕjpxq1Y1ěxpxqdx

˙2
ff

ď
2m

n
}ϕj}

2
8ErY 2

1 s `
2

n

m´1
ÿ

j“0

E

«

ˆ
ż

R`
ϕjpxq1Y1ěxpxqdx

˙2
ff

.

The last term:

1

n
E

«

m´1
ÿ

j“0

ˆ
ż

R`
ϕjpxq1Y1ěxpxqdx

˙2
ff

“
1

n
E

«

m´1
ÿ

j“0

xϕj1Y1ě¨y
2

ff

ď
1

n
E
“

}1Y1ě¨}
2
‰

“
ErY1s

n
.
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Thus it comes
Er}Gm ´ qGm}

2s ď
2ErY1s

n
` 4ErY 2

1 s
m

n
. l

5.8. Proof of Theorem 2.6. This proof follows the same line as the proof of Theorem 2.3. We define
the contrast

γp2qn ptq “ }t}
2 ´

2

n

n
ÿ

i“1

„
ż

R`
tpxq1Yiěxdx` YitpYiq



. (5.17)

It is such that γp2qn pqGmq “ ´}qGm}2 and qGm “ argmin
tPSm

γ
p2q
n ptq. Then, let

νp2qn ptq “
1

n

n
ÿ

i“1

ż

R`
tpxq1Yiěxdx ` YitpYiq ´ Er

ż

R`
tpxq1Yiěxdx ` YitpYiqs “ νn,1ptq ` νn,2ptq ` νn,3ptq

with

ν
p2q
n,1ptq :“

1

n

n
ÿ

i“1

ż

R`
tpxq1Yiěxdx´ E

„
ż

R`
tpxq1Yiěxdx



ν
p2q
n,2ptq :“

1

n

n
ÿ

i“1

YitpYiq1Yiďcn ´ ErYitpYiq1Yiďcns

ν
p2q
n,3ptq :“

1

n

n
ÿ

i“1

YitpYiq1Yiącn ´ ErYitpYiq1Yiącns

with cn a numerical constant depending on n. Following the steps which lead to Equation (5.15), we
choose cn :“ dErY 2

1 s
?
n{plogpnqq for numerical d a constant and we get the result with two applications

of Talagrand inequality. l

5.9. Proof of Theorem 3.2. Denote:

φtpxq “
1

2π

ż

t˚p´uq
eiux

f˚ε puq
du

and γptq :“ }t}2 ´
2

n

n
ÿ

j“1

φtpZjq “ }t}
2 ´ 2xt, rfT,`y. Let us define

νptq :“
1

2π
xt˚, rf˚T,` ´ f

˚
T,`y “

1

n

n
ÿ

j“1

pφtpZjq ´ ErφtpZjqsq.

The two functions γptq and νptq satisfy the following relation, for t, s P S`:

S` “ tt P L1pRX L2pRq, supportpt˚q Ă r´π`, π`su,

γptq ´ }t´ f}2 ´ pγpsq ´ }s´ f}2q “ ´2νpt´ sq. (5.18)
Thus writing this relation with rf

T,r`
and fT,` and as, by definition, γp rf

T,r`
q`Ąpenpr`q ď γpfT,`q`Ąpenp`q,

it yields

} rf
T,r`
´ fT }

2 “ }fT,` ´ fT }
2 ` } rf

T,r`
´ fT }

2 ´ }fT,` ´ fT }
2

ď }fT,` ´ fT }
2 ` 2νp rf

T,r`
´ fT,`q `Ąpenp`q ´Ąpenpr`q.

Let us remark that νp rf
T,r`
´ fT,`q “ } rf

T,r`
´ fT,`}ν

˜

rf
T,r`
´ fT,`

} rf
T,r`
´ fT,`}

¸

. This leads, as in the previous

proofs, to

} rf
T,r`
´ fT }

2 ď 3}fT,` ´ fT }
2 ` 4Ąpenp`q ` 8

ÿ

`1PMn

˜

sup
tPB`,`1

ν2ptq ´ pp`, `1q

¸

`
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with a function p such that @`, `1, 4pp`, `1q ď penp`q ` penp`1q.

Lemma 5.6. There exists a constant C ą 0 such that

ÿ

`1PMn

E

«˜

sup
tPB`,`1

ν2ptq ´ pp`, `1q

¸

`

ff

ď
C

N
.

We conclude that there exist two numerical constants C1, C2 ą 0 such that

Er} rf
r`
´ fT }

2s ď C1 inf
`PMn

t}fT,` ´ fT }
2 `Ąpenp`qu `

C2

N
. l

5.10. Proof of the Lemma 5.6. For ` P Mn, we consider t P S`. We use Talagrand’s inequality.
We denote B`,`1 “ tt P S`_`1 , }t} “ 1u and `˚ “ `_ `1. Using Proposition 3.1, we obtain

E

«

sup
tPB`,`1

ν2ptq

ff

“ E} rfT,`˚ ´ f˚T,`}2 ď
`˚

n
`
π2p`˚q3

3n
ď
`˚

n
`
π2p`˚q3

n
:“ H2.

Then, by the Plancherel-Parseval inequality,it yields

sup
tPB`,`1

}φt}8 ď
1
?

2π

c

2π`˚ `
2π3`˚3

3
ď

a

`˚ ` π2`˚3 :“M.

Finally, for t P B`,`1 , as we know the characteristic function f˚ε , we have

VarpφtpZ1qq ď Er|φtpZ1q|
2s “

1

4π2
E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż π`˚

´π`˚
t˚p´uq

eiuZ1

f˚ε puq
du

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

ď
}fZ}8

4π2

ż

ˇ

ˇ

ˇ

ˇ

ˇ

ż π`˚

´π`˚

t˚p´uqeiuz

f˚ε puq
du

ˇ

ˇ

ˇ

ˇ

ˇ

2

dz “
}fZ}8

2π

ż π`˚

´π`˚

|t˚p´uq|2

|f˚ε puq|
2
du

ď
}fZ}8

2π
p1` pπ`˚q2q

ż π`˚

´π`˚
|t˚p´uq|2du ď

1` a

2a
p1` pπ`˚q2q :“ v.

Indeed }fZ}8 ď p1 ` aq{p2aq ă `8 since }fZ}8 “ }fT ‹ fε}8 ď }fε}8 “ p1 ` aq{p2aq, with fεpxq “
ex{p2aq1rlogp1´aq,logp1`aqspxq. According to Talagrand’s inequality, for α “ 1{2, we obtain

E

«˜

sup
tPB`,`1

ν2ptq ´ 4H2

¸

`

ff

ď 24

ˆ

1` π2`˚2

n
exp p´`˚{12q

`
294

p3
2 ´ 1q2

„

`˚

n2
`
π2`˚3

n2



exp

˜

´
p
a

3{2´ 1q

42

a

`˚ ` π2`˚3

¸¸

Then we use that 1 ď `˚3 ď n, thus for κ ě 4 we obtain that there exist four numerical constants
A1, A2, A3, A3 and a constant C ą 0 such that

ÿ

`1PMn

E

«˜

sup
tPB`,`1

ν2ptq ´ pp`, `1q

¸

`

ff

ď
ÿ

`1PMn

A1
1` π2`12

n
exp

`

´A2`
1
˘

`
A3

n
exp

´

´A4`
13{2

¯

ď
C

n

with pp`, `1q “
4 `˚

n
`

4π2 `˚3

3n
. l
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Appendix

5.11. Talagrand’s inequality. The following result follows from the Talagrand concentration in-
equality.

Theorem 5.7. Consider n P N˚, F a class at most countable of measurable functions, and pXiqiPt1,...,nu
a family of real independent random variables. One defines, for all f P F ,

νnpfq “
1

n

n
ÿ

i“1

pfpXiq ´ ErfpXiqsq.

Supposing there are three positive constants M , H and v such that sup
fPF
}f}8 ďM ,

Ersup
fPF
|νnpfq|s ď H, and sup

fPF
p1{nq

řn
i“1 VarpfpXiqq ď v, then for all α ą 0,

E

«˜

sup
fPF
|νnpfq|

2 ´ 2p1` 2αqH2

¸

`

ff

ď
4

b

ˆ

v

n
exp

ˆ

´bα
nH2

v

˙

`
49M2

bC2pαqn2
exp

ˆ

´

?
2bCpαq

?
α

7

nH

M

˙˙

with Cpαq “ p
?

1` α´ 1q ^ 1, and b “ 1
6 .
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