NONPARAMETRIC ESTIMATION IN A MULTIPLICATIVE CENSORING
MODEL WITH SYMMETRIC NOISE
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ABSTRACT. We consider the model Y; = X;U;, ¢ = 1,...,n, where the X;, the U; and thus the Y; are
all independent and identically distributed. The X; have density f and are the variables of interest,
the U; are multiplicative noise with uniform density on [1 —a, 1+ a], for some 0 < a < 1, and the two
sequences are independent. However, only the Y; are observed. We study nonparametric estimation of
both the density f and the corresponding survival function. In each context, a projection estimator of
an auxiliary function is built, from which estimator of the function of interest is deduced. Risk bounds
in term of integrated squared error are provided, showing that the dimension parameter associated
with the projection step has to perform a compromise. Thus, a model selection strategy is proposed
in both cases of density and survival function estimation. The resulting estimators are proven to
reach the best possible risk bounds. Simulation experiments illustrate the good performances of the
estimators and a real data example is described.
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1. INTRODUCTION

We consider the following model
Yi=XUy,i=1,...,n, Ui~Uy_gi4q, 0<a<l (1.1)

where (X;)(i—1,..ny and (U;){i=1,..ny are two independent samples. The U;’s are independent and
identically distributed (i.i.d.) random variables from uniform density on an interval [1 — a,1 + a] of
RT with 0 <1 —a < 1+ a and a is assumed to be known. The X;’s are 4.i.d. from an unknown
density f on R". Both sequences are unobserved. Only the Y;’s are observed. The model implies that
they are 7.i.d. and we denote by fy their density on R*. Our goal is to estimate nonparametrically
the density f of the X;’s from the observations Y;, i = 1,...,n.

Equation can be obtained as follows. Classical models involving measurement errors are often
additive and state that the variable of interest X; is not directly observed because an additive noise
hides it: only samples of X; + &; are available, where &; is an i.i.d. centred sequence. Then, in many
contexts, this noise depends on the level of the signal and the simplest strategy is to consider that
it is proportional to the signal. Thus, the model for the observations becomes X; + aX;&;, a € R.
Rewriting this X;(1 + «&;), we obtain a multiplicative noise model with noise 1 + «&; with mean 1.
This corresponds to model where we specified the final distribution of the noise as uniform, and
symmetric around ond'}

IExtension to general U([a, b]) distribution for the U,’s is possible.
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In any case, Equation models an approximate transmission of the information: the recorded
values Y; correspond to the value of interest X, up to an error of order of +100a%. This represents
rather standard situations, when people have to give their height or the amount of money they devote
to some specific expenses, i.e. quantities they may not know exactly with no intention to change them
(for instance, weight or income may be intentionally biased). However, very few studies of this model
have been conducted in the literature. We mainly found it in Sinha et al. [2011], who study "noise
multiplied magnitude microdata" as a form of data masking in contexts where one needs to protect
the privacy of survey respondents. The authors mainly study quantile estimation.

Nevertheless, multiplicative noise models can be found with other distributions for the noise U. The
case of U following a uniform distribution on [0,1] (Z/([0,1])) has been introduced by Vardi [1989]
who called it a “multiplicative censoring" model. This model was studied by [Vardi and Zhang| [1992],
Asgharian et al. [2012], |Abbaszadeh et al.| [2013], Brunel et al. [2015], and is mostly applied in survival
analysis, see van Es et al|[2000]. In these papers, nonparametric estimators of the density f or of
the survival function F = 1 — F, F(x) = { f(u)du, of the unobserved random variable X are built
and studied, but in different contexts. For instance, |Asgharian et al.| [2012] assume that part of the
observations are directly observed and the proposed method is no longer valid if this proportion is null
as in our model. In Brunel et al. [2015], kernel estimators are studied, while |Abbaszadeh et al. [2013]
build wavelet estimators of the density and its derivatives. The case of Gaussian U, for variables on
R, has also been considered in financial context and studied from statistical point of view by e.g. [van
Es et al.|[2005].

In this paper, we build estimators of the density f and of the survival function F = 1 — F. The
operator linking the density of the observations and the density of interest is given by

Fr) =5 [0 8y o+l (1.2

and the inversion of formula ((1.2)) is not obvious. This is why our strategy relies on two steps. Let us
give here a sketch of the procedure. First, we approach an auxiliary function g expressed as a function
of f and a. We prove that for an explicit transformation ¢ € L2(R*) ~ 1/; and this function g in
L2(R*), we have

El¢:(Y1)] =<t 9, (1.3)
where (s, t) = {5, s(x)t(x)dz denotes the scalar product of two functions of L*(R*). The two functions

g and 1, are given in Section Relation (|1.3]) is used to build projection estimators of g. Indeed,
considering the collection of spaces

Sm = Vect{po, ¥1,. .., Pm-1}

where (;);>0 is an orthonormal basis of L?(R™), the orthogonal projection g, of g on Sy, is given
by gm = Z;-n:_ol a;jpj, with a; = {g,¢;). From relation li we notice that a; = E[t,;(Y1)] and

replacing the expectation by its empirical counterpart @;, we obtain the estimator g, = Z;-nz_ol a;p;j.

With similar ideas, we also define G, = Z;”:_Ol ngpj where \b/j are also computed from the observations
Yi,...,Y,. Then we deduce, by inverting the relation between f and g (see Section and between
F and G (see Section , collections of estimators of f and F, for which risk bounds are provided,
in term of mean integrated squared error (MISE) on R*. Model selection criterion are proposed to
automatically select m in both cases, and they are proven to make the adequate tradeoff between
bias (m must be large enough for the projection bias to be small) and variance (estimating too many
coefficients increases the estimation error), see Theorems and

Finally we illustrate our method on simulated and real data. Our purpose is to propose a new
method of privacy protection by the mean of our multiplicative censoring model. On the data given
in [Sinha et al| [2011], knowing the level of noise a, we show how to recover the hidden information
about the original data from the noisy observations.
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The plan of the paper is the following. In Section [2] we describe our estimation method and the
model selection procedure, for the density in Sections[2.2]to and for the survival function in Section
We compute bounds on the integrated quadratic risk associated to the estimators and deduce rates
of convergence. The strategy and the results are detailed for density estimation and then extended to
the case of survival function estimation. In Section (3| we describe a deconvolution strategy based on
the additive model obtained by taking the logarithm of : we compare our method to this one from
theoretical point of view here and in practice in Section [d] Finally Section [4] illustrates the theoretical
results, on simulated data (Section and on real data (Section [4.2). Simulation experiments show
the good performances of our method, and estimation on real data is presented through an example
of application. Lastly, most proofs are gathered in Section

2. MULTIPLICATIVE DENOISING OF DENSITY AND SURVIVAL FUNCTION

2.1. Notations. The space L2(R") is the space of square integrable functions on the positive real
line. The associated L?-norm is denoted [¢|* = §g. [¢(x)[*dz. The Fourier transform of ¢ € L!, for
z € Ris: t*(x) = (t(u)e™®du. Finally, the supremum norm of a bounded function ¢ is denoted by
[t]loc = sup |t(z)|. The Laguerre basis is defined by:

zeRt
wo(z) = V2e™2,  ¢p(z) = V2Lp(2zx)e ® for k=1, x>0, (2.1)

with L; the Laguerre polynomials

k .
ik
Lafa) = 5 (J) - (2.2)

It satisfies the orthonormality property {¢;, pr) = 6; 1 where d; is the Kronecker symbol equal to 1
if j = k and to zero otherwise; and the following relations on the norms (see Abramowitz and Stegun
[1964]):

Vi >0, il < V2, and [@]fo < 2v2(j + 1), (2.3)
where gog- is the derivative of ;. Any function of L?(R*) can be decomposed on this basis.
Lastly, we state a useful lemma, proven in Section [f] relying on the fact that the density fy is given

by (1.2).
Lemma 2.1. The density fy defined in satisfies im yfy (y) =0 and lim yfy(y) =0.
y—0 y——+00

Lemma [2.1] is a useful property to justify the construction of the estimator.

2.2. Estimation strategy. Recall that fy is given by (1.2). Now let g be given by

o= |1 (1) -1 (1) | (2.4)

and consider a bounded function ¢, derivable and with derivative function ¢ in L2(R*). Then, an
integration by part and the Lemma [2.] imply

B+ v o) = o[£ (2 ) - (1) |

= (9 (2.5)

In other words
E[y(Y1)] =<t,g) with i(y) == t(y) + yt'(y).
Our strategy is to use equation to build a projection estimator of g, and then to look for an
inversion of formula to recover f. Precisely, it follows from that

-1 ((152) ) = 200400

l1—a
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and iterating the relation (by changing x into (1 + a)z/(1 — a), x > 0), it yields

f@)—f((ii)%) _ QQZ <<1+a> (1+a)x>

Thus a sequence of approximations of f, for x > 0, is

_QaZ <<1+a> (1+a)x>. (2.6)

Besides, using that f(z) — fx(z) = f(((1 + a)/(1 — a))Nx), it is easy to check for f € L2(R*) that
|f — fn]| tends to 0 when N tends to infinity. Now, if f is square-integrable, so is g and therefore we
can write its decomposition on the Laguerre basis:

r) = Y a;(9)p;(x),  with a;(g) = (g;,9)-
§j=0

Recall that g, := Z;ﬁ:_ol a;(g)p; is the orthogonal projection of g on Sy,. According to 1' we have
aj(g) = E[p;(Y1) + Y1¢}(Y1)] = {pj,9). Then the projection g, of g on Sp, is estimated by

n

m—1

~ ~ ~ 1 _

m = Z a;pjg, aj = n Z[YZSDQ(Y) + 90J ! Z 7/’% (27>
j=0

i=1

with m in a finite collection M,, = N that will be given later. Finally, plugging estimator (2.7]) into
(2.6)), gives the collection of estimators of f, for m € M,,,

Fym(x) = 2a Z Gm <<1fa> (1+a)x> . (2.8)

2.3. Risk bound for density estimator. We first state a bound on the mean integrated squared
error (MISE) of fn,, as an estimator of f.

Proposition 2.2. Assume that f € L?(R") and E[X?] < +o0.
(i) The estimator gn, of g defined by satisfies

m3

~ m
Ellgm — 91”1 < lg—gml®+ ato—  a=4, o= 16E[Y?]. (2.9)

(i) The estimator J?N,m of f defined by satisfies

8a? m m> 1—a\"
e (ol e e ) 2 (152) WP o

Both risk bounds involve a bias term (proportional to |g — gm[?) which decreases when m in-
creases, and a variance term with main order m?/n, which increases with m. The last term of
is clearly exponentially decreasing with N. As the value of N is chosen by the statistician, taking
N = log(n)/|log((1 —a)/(1 4+ a))| makes this term negligible (if @ = 0.5, and n = 1000, the condition
is N >8.)

Efl fvm — £I7] <

Rates of convergence of estimators can be computed more precisely. To evaluate the order of
lg — gm|?, the regularity of the function g has to be specified. Let us assume, in this paragraph, that
g belongs to a Sobolev-Laguerre space (see Bongioanni and Torrea, [2009]), defined by

W*(R", L) := {f : RT > R, f e L2(R"), Y j*(f, ;> < L < +0o0}, (2.11)
j=0
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with s > 0 (see Comte and Genon-Catalot| [2015] for equivalent definitions in case s is an integer).
Then we get the following order for the squared bias term:

0 0
[Gm —gl> = D} aj(g) = D, a3(9)j%i~* < Lm™>.
j=m j=m

Therefore we look for the choice m = mgpy which minimizes Lm™% + 02m3/n. We obtain mep; =
CnY+3) with € := (3¢a/(sL))~Y+3) | which implies E[|Gmey: —9)%] = O(n=*(*3)) This rate is the
classical one in the multiplicative censoring model, and it is minimax optimal in case U ~ U([0, 1]),
see Belomestny et al. (2016), Brunel et al. (2015).

2.4. Model selection for density estimation. As the regularity s of ¢ in unknown, the choice
m = Mepy cannot be performed in practice. Therefore, a selection method must be set up to choose
automatically the best m among the discrete collection M,, = {m € [1,n], m® < n}, realizing the

bias-variance trade-off. We want to choose m minimizing the MISE of fy ;. Considering bound
(2.10)), the theoretical value is

- 2 m m? . 9 m m3

My = argmin < ||g — gm|* + c1— + co— ¢ = argmin { —|gm |+ c1— + co—
meMy, n n meMy, n n

as g — gml* = |9]? = llgm|? and | g||* does not depend on m. But functions g,, are unknown, thus we

replace them by estimators. Therefore, we may select m as the minimizer of the sum —||g,,|? + pen(m)

with
3

m m

pen(m) := K1 + HQE[Y12]7 =: pen; (m) + peny(m). (2.12)
The penalty terms have the order of the variance term in (2.9). Note that the definition of M,, ensures
that it is bounded. As E[Y{] is unknown, we finally propose to replace it by its empirical counterpart
and we get:

i = argmin {~[gp|? + pen(m)}, (2.13)
meMp
where
__ m ~ m? __
pen(m) = 2k;— + 2reCy— := 2pen; (m) + 2peny(m), Cy = Z \ (2.14)
n n

The constants m and ko are numerlcal constants which are calibrated in the snnulatlons. Note that
|Gm|? = Z;" 01 a; with @; given in is easy to compute. Our final estimator is

Fxm(@) = 2a Z G ((“_r“) (1 +a)x> . (2.15)

We can prove the following result.

Theorem 2.3. Assume that f € L2(R"), that f is bounded and that E[X}] < +oo. For the final

estimator fNﬁL defined by , and , there exists kg such that for ki, Ko = Ko,

- 16a> _ ) C, 1—a\", .,
Bll v~ 1) < gz (0,0t {1 = sl + pentom)} + 52 ) + (1521412

where pen is given by (2.12 , and Cy is a positive constant depending on a and | f| -

The theoretical study gives the bounds: k1 = 32 and ko > 288. But it is well known that these
theoretical constants are too large in practice: this is why the calibration step for choosing the values
of the constants is done through simulations. Theorem [2.3]is a non-asymptotic bound for the MISE of
the adaptive estimator J?N,m- It shows that the selection method leads to an estimator with smallest
possible risk among all the estimators in the collection. Note that as previously, the choice N =
log(n)/|log((1 —a)/(1 + a))| is suitable for the last term to be negligible.
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2.5. Survival function estimation. In this section, we extend the previous procedure to provide
an estimator of the survival function of X, defined on R* by

F(z)=1-F(x) = w f(u)du. (2.16)

T

We denote by Fy the survival function of Y, defined accordingly. We also define a similar function G
associated with g (which is not a density). We can prove the following Lemma.

Lemma 2.4. For all z in R*,
Glz) = foog(u)du _ % {(1 +a)F <1 > a) _(l-a)F (12)] —afy(z) + Fy(z). (217)

By integrating relation (2.6, we also get a relation between F and G: for z > 0, let

Fa(@) ;:12+‘LQNZ_1(LZ)ICG(GfZ)k(Ha)x), (2.18)

k=0

Fla) — Falz) G;Z)NF (Gfi)%) .

Note that G(0) = 1 and thus limy_,, Fx(0) = 1, which is coherent with F'(0) = 1. Moreover, if
E[X1] < 400 the function F, and thus G, is square integrable on R*. Denoting by G,, the orthogonal
projection of G on §,,, we have

then

m—1
Gm = Y. bi(G)pj,  with bj(G) :=< G, p; > .
=0

According to relation , the coefficients b;(G) can also be written as follows:b;(G) = E[Y;(Y)]+ <
Fy,pj >. Thus we estimate the projection G, of G on S, by
~ mflv - 1 n
G = Z bjj, bj=— Z [fR+ (Pj(m')]l}’izxdl' + Y;‘PJ(Y;)] . (2'19)
j=0

n
=1

Finally, plugging (2.19) into (2.18)), an estimator of F is given by

N-1 k k
~ 2a 1—a\" = 1+a
Fm =1~ > <1+a> Gm<<1_a> (1+a)x>. (2.20)

k=0

We can prove the following bound.

~

Proposition 2.5. Assume that E[X%] < 400. Then, F is square integrable and the estimator FNM

of F given by satisfies

g m a3V
Bll P - FIP) < 0@ (16 - Gol? + 48012 + 2R ) 4 (129 yre, ey

n 1+a
where €(a) = 8a%/((1 + a)¥? — (1 — a)*?)%.

Inequality provides a squared-bias/variance decomposition with bias proportional to |G —
Gpm|? and variance proportional to E[Y?]m/n. The term of order E[Y;]/n is negligible, as well as
the last one, for N > log(n)/[3log((1 + a)/(1 — a))] (if @ = 0.5, and n = 1000, the condition is
N = 3). If G belongs to W*(R™, L) defined by , then choosing m,, proportional to pl/(s+1)
)

yields }E[HFngpt —F|?] = O(n¥*1Y). The rate is better than the one obtained for density estimation.
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However, it remains a nonparametric rate while cumulative distribution functions are estimated with
parametric rates in direct problems.
Then we proceed as in the density case for selecting m and set:

i = argmin {—|Gom|? + pen(m)}, pen(m) = 25Ca— (2.22)
meMp, n

where 6’2 is given by 1) The constant K is calibrated in the simulation part. We can prove the

following oracle-type inequality of the final estimator FN,m-

Theorem 2.6. If F € L>(R") and E[X}] < o0, the final estimator ?va% defined by (2.20) and (2.22
satisfies

~ — — D 1—a\*N _
T2 . _ 2 a 2
E[|Fnm — FI7] < €(a) (Gmg}an{lG G+ pen(m)} + —= ) + <1 n a) I1£] (2.23)

where €(a) is defined in Proposz'tion and Dy is a constant depending on a.
Only a sketch of proof of the Theorem is given in Section and we find £ > 192.

2.6. Case of unknown a. Parameter a is not identifiable, unless additional information is available.
Two cases can be considered. First, if an additional K-sample is available, where the signal is a

deterministic known constant, then we have a set of observations of U, say Ul(l), ce ]((1). In this case,

we can use the maximum likelihood estimator max;<;< K(\Ui(l) —1|) as an estimator of a with rate of
convergence K (i.e. the mean square risk is of order 1/K?). Secondly, we can consider the model of
repeated observations, where the variable X; can be observed repeatedly, with independent errors:

Yik = XU, ke{l,2}, i=1,...,n,

where (Uj1); and (U;2); are independent i.i.d. samples with distribution U([1 — a,1 + a]). Then we
have

Y2 1 a’ 1 1
E|- 2| —EULE|=|, B[U4]=%+1, E|l—o|=— "
Y;? [ Z,l] U22 ) [ Z,l] 3 + Y U22 (1 o (l)(l + a))

which yields E[Y? / YfQ] = (14 a?/3)/(1 — a?). Therefore, we make the proposal

R W, —1 I Y3
a = > Wlth W = — IA/'7 W = . . 224
"N\ WL+ 13 " ng T YR (2.24)

Clearly, ay, is a consistent estimator of a and by the limit central Theorem and the delta-method, we
obtain the convergence in distribution

1 —a?

40
This estimator can be plugged into the previous estimation procedure.

Vilan—a) 5 2, Z ~N(0,6%a)),0%(a) = (15 + 8a2 + a*) € (0,0.375).

3. MODEL TRANSFORMATION AND DECONVOLUTION APPROACH

We present now another estimation strategy, to which ours may be compared. The idea is to rewrite
the model under an additive form by taking logarithm of (1.1 (see van Es et al.| [2005]). We obtain
Zj = log(Y;) = log(X;) +1og(U;) = Tj +¢;, j=1...,n. (3.1)

Estimating the density of 77 in model (3.1]) is a classical deconvolution problem on R (see for example
Comte et al.| [2006]). Each sample (Z;);, (1});, (¢5); is i.i.d. from density fz, fr, f respectively, and
(Tj);, (¢j); are independent. They satisfy fz = fr » f. where x denotes the convolution product.
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Taking the Fourier transform of the equality implies f7 = f7f¥. Then using the Fourier inversion
formula, we get the following closed form for the density fr,

fr(x) = lj etz f;(u)du, z € R. (3.2)

27 Jr f2(u)
An estimator of fr is obtained by replacing f7 by its empirical counterpart, f}(u) = (1/n) X5_, e,
However, although formula 1} is well defined, the ratio fz/ f¥ is not integrable on the whole real

line, since f¥ tends to zero near infinity. Therefore, we do not only plug f} in equation |D but we
also introduce a cut-off which avoids integrability problems. Finally the estimator is defined by:

1 e ) T 1 Tl 1 n YA
f e_“”fii(u)du — e e* " du . (3.3)
27T —ml fe (u) 2m —ml n = fa (U)

Clearly E[]‘N’Tj(q:)] = fre(z) with

Fru(z) =

1 7l

Dy e~ £ (1) du.

—7l

fro(z) =

We can remark that, by Plancherel-Parseval formula, || fr, — fr|? = (2m)~! S\u\zﬂ | f(u)|*du. Then,
with an additional bound on the variance, we recall the following result.

Proposition 3.1. If f.(u) # 0, for all u € R, the estimator frﬂg defined by , satisfies

T = 2 u|=me r 2mn ) gy ‘fe*(u)|2

Several proofs of this bound can be found in the literature, see for example |Comte and Lacour
[2011], Dion| [2014]. Using €; = log(U;), we have

1
2

(1 + a)elsl+aliv — (g — 1)elos(i=a)iu
2a(1 + zu)

F2(u) = fa“%@mkwﬂ¢ww=

and
()2 1+a?—(1—a?) cos(ulog((1+a)/(1—a)))
u =
© 2a2(1 + u?)
which never reaches zero, as 0 < a < 1. Besides, 1/|f*(u)|? < 2a%(1 + u?)/(2a?) = 1 + u?, for u € R.
Therefore, Proposition [3.1] writes in the present case

(3.4)

Bl el < 5o [ UpPaus £+ T (5.5)
Te¢ — JT < 5 u .

’ 2w u|=me A n 3n

We can see that here £ plays the role of m previously, and we have to choose it in order to make a com-
promise between the squared bias term (27)~ S|u|>7re | £%(u)|?du which decreases when ¢ increases and

the variance term (Wlth main term 7r2€3 /(3n)) which increases when ¢ increases. Thus as previously,
writing that (27)~ S|u|>7rz | fE(w)|?du = | fr|? 2 we omit the constant term | fr|? and estimate

the second term by —| fT,gH2, then we replace the variance by its upper bound, up to a multiplicative
constant. Finally, we set

>~ . ~ 2 —_—~— . —~ ~ E 7T2 ES
¢ = argmin {—| fr¢|* + pen(¢)}, with pen({) .=k | —+ —— ), (3.6)
e My,

n 3 n

where K is a numerical constant calibrated in Section We can prove for the estimator J?TZ a
non-asymptotic oracle-type inequality.
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Theorem 3.2. The estimator J?TZ defined by and satisfies

~ K
E — frl?] < 4 inf — fr|* + pen(0)} + —
[ = fr12) < 4 0t {1 = frI? + R0} +
with K a numerical constant and & = 4.

Finally to estimate f (the density of X) we have to apply the following relations:
f) = frlog(v))/v,  fr(v) = fiogx)(v) = fle")e".
We define the estimator of f by
fi(@) = fpp(log(z)) /. (3.7)

We can see on this definition that the estimator is not defined near zero, thus we have to consider the

truncated integral
+oo 2
| (fe) - 1@) do <

[0}

1 ~ 2

aHfT,g - fTH

to obtain a bound on the risk: for any oo > 0

B[ [ ) - @] <3t (e ol + o)+ X
~(x) — < — in — én —.
I\ x €T o T, T p an

[0}

We can see on these bounds that, the smaller «, the larger the bound. This is clearly confirmed by
the simulations hereafter.

4. NUMERICAL STUDY

4.1. Simulated data. In this Section we evaluate our estimators of the density and the survival
function on simulated data. We compute three estimators: the estimators of f, fNﬁ given by
and fi given by and the estimator of F, ﬁN,m, given by . For each estimator, there is
a preliminary step before estimating the target function. Indeed, we first compute the collection of
projection estimators of function g: g,,. Then we implement the selection procedure for the dimension
parameter m. We obtain the final estimator of g: g5 . Finally, applying formula with N = 30,
we obtain our final estimator ]?307,;1 of f. The estimation procedure is implemented similarly for the
survival function F.

For the deconvolution density estimator we first estimate the density fr = fiogx) with the col-

lection .]?T’[ as given by . The integrals are computed using Riemann approximations with thin
discretisations. We select the best cut-off parameter ¢ among the collection, according to the criterion
given in Section . Finally we use formula to obtain ]?g.
Each selection procedure depends on a parameter which has to be calibrated, namely k1, k2 in (2.14)),

K in , K in (3.6). They are chosen from preliminary simulation experiments. Different cases of
density f have been investigated with different parameter values, and a large number of repetitions.
Comparing the MISE obtained as functions of the constants of interest, yields to select values making
a good compromise over all experiences. We choose: k1 = 0.5, k9 = 0.01, K = 0.3, K = 4. In the
following we investigate 3 densities for X:

e I'(4,0.5).

e £(1)

e 0.5I'(2,0.4) + 0.5I'(11,0.4)
The first one is uni-modal and 0 in 0, the second one is decreasing and is 1 in 0: we are indeed
interested in the behaviour near 0 of the estimators. The last one is bi-modal. For each density, we
could start the estimation procedure near x = 0 for our estimator fN,m. But in order to compare our

estimator with the deconvolution estimator J?Z which is not defined in 0, we start in x = 0.1 for all
the grids of density estimation. Figure [I] illustrates the kind of data generated by the model and the
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FIGURE 1. Example of database when X ~ 0.5I'(2,0.4) + 0.5I'(11,0.5), a = 0.5,
n = 200. Top left: plot of X (green or grey) and Y (blue or black). Top right: Y
as a function of X. Bottom left: histogram of X with the true density f, bottom right:
histogram of Y with a projection Laguerre estimator of fy applied on the (Y;)’s.

effect of the censoring variable. It is a real issue to successfully reconstruct the density of X from the
censored data Y. R

Let us first comment the density estimation procedure. For the projection estimator fx 7 we choose
Mmaz = 10 or 15 because the selected m are small most of the time. For the deconvolution estimator:
lmaz = 10 and the selected ¢ are often small (1,2,3).
Figure illustrimtes the good performances of our estimation procedure by projection. We represent
20 estimators fy s of f (for 20 simulated samples) in the exponential case and the mixed-gamma
case, and the beam of estimators are very close and close to the true density. On Figure [3| we can see
both estimators fN’m, J?Z and the true density. We also plot on this graph the projection estimator of
density fy from the observations (Y;);. It is defined for observations (Z;);,

=

m—1
R R L
fam = D bjp;  with by = = > 0;(Z), (4.1)
i=o nia

and 7 = argmin {—|| fz7m\|2 +m/n} (the calibration constant has been chosen equal to 1 here). We can
meMn

notice from the graph that estimator J?Z is closer to fy A |D and fy than to f, the target function.

However, estimator fN’ﬁl catches the difference between f and fy which is the aim here, and fits well
the true density f of sample (X;);.

Then we compute approximation of the MISE from 100 or 200 Monte-Carlo simulations. The num-
ber of repetitions has been checked to be large enough to insure the stability of the MISEs. They are
multiplied by 100 and summed up in Table [I] for different values of parameter a and of the number
of observations n, to complete the illustration. When a goes from 0.25 to 0.5 the estimation is more
difficult, and this increases the value of the errors. Likewise, when n increases from 200 to 10000 the
estimation is easier and the MISEs are smaller. We can see again that the results are specifically good
for exponential densities. For the mixed-gamma case function ¢ is hard to estimate because it has 2
modes, thus the estimation of f is also difficult and requires more observations, see the third line of
Table [[] Still according to Table [T} the projection estimator performs better than the deconvolution
method. All along, it has been seen that the projection method is computationally faster than the
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FIGURE 2. 20 estimator fN,ﬁ"b of f in plain grey line (green) versus the true density f
in black bold plain line: on the left when X ~ £(1) with a = 0.5, n = 1000; on the
right when X ~ 0.5I'(4,0.25) + 0.5'(20, 0.5), with a = 0.25, n = 1000.

deconvolution strategy. Besides, the deconvolution estimator is very unstable around zero.

Remark. Estimation at x = 0. Note that by definition of function ¢ . g(0) =0, then fx(0) =0
and the projection estimator me may have to be corrected in point zero 1f the true density is
non-zero in zero. But, we can see that, if the function f is continuous in 07, then lim, .o fy (y) =
f(0)log((1+a)/(1— a))/(2a). This implies that estimating fy in zero by a direct the projection
estimator of fy relying on the Laguerre basis (fK A ) and applying the multiplicative correction factor
2a/log((1 + a)/(1 — a)) should be an adequate approximation of f near zero. On Figure 2 the grid
begins in 0.03 for the exponential density and in 0 for the mixed-gamma density. If the statistician
wants to start the estimation in 0, the plugging of corrected fY, 2 (0) for the first value of estimator
fN,fﬁ is a good strategy.

For the estimation of the survival function the grid of estimation begins in 0. We choose for the
maximal dimension my,., = 10,15,20 (n = 200, 1000,10000) and the selected m are small most of
the time. The left graph of Figure [ illustrates the good estimation of the survival function of X when
it has an exponential distribution with parameter 1 from observations (Y;);. On the right, the second
graph shows the mixed-gamma case: our estimator FN,m (plain grey line) detects well the bimodal
character of the density (true F in plain black line). We also represent the empirical distribution
function F'y,, in dotted grey line, given for a sample (Z;); by:

— 1
Fznt)=1-= Z 1z,<. (4.2)

We can see that this function is not a good approx1mat10n of F when a = 0.5. To confirm this fact,

Table 2 provides the MISEs (times 100) for estimator FNm of F. They can be compared to the
MISEs of estimators of F: Fy,, (available in practice) and Fx, (not available in practice). This
table highlights the quality of our estimator when a = 0.5 (results in bold black). When a = 0.25 as
expected Fy,, can be considered as a satisfying approximation of the survival function of X, except
for the exponential case, where our estimator is the best. Again, when a increases the MISEs are
higher and with n increases the MISEs are smaller.

4.2. Application. [Klein et al. [2013| detail the problem of confidential protection of data. The issue
it how to alter the data before releasing it to the public in order to minimize the risk of disclosure and
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FIGURE 3. Gamma case: X ~ I'(4,0.5), a = 0.5, n = 1000. Left graph: f in bold
black line, estimator meg of f in plain bold grey line (green), estimator f@ of f in
thin dotted grey line (green). Right graph: f in bold black line, fy in bold grey line
(green), estimator of fy by projection fY, 5 in dotted grey line (green).

Distribution of f a Estimator f N,m Estimator fZ
n =200 n =1000 n = 10000 |n =200 n = 1000 n = 10000
Exponential | 0.25 0.386 0.075 0.006 0.703 0.153 0.024
0.5 0.470 0.095 0.009 0.964 0.231 0.030
Gamma | 0.25 0.538 0.110 0.014 1.122 0.987 0.017
0.5 0.972 0.394 0.154 1.589 1.851 0.217
Mixed-gamma | 0.25 1.070 0.146 0.015 1.603 0.346 0.048
0.5 1.441 0.563 0.208 2.703 2.833 0.337

TABLE 1. MISE for the estimators of f: ]?N,m and J?z% times 100, with 200 repetitions
for n = 200, 1000 and 100 for n = 10000.

Distribution f a FN,m Fym Fxm
n =200 n=1000 n = 10000 |n =200 n =1000|n =200 n = 1000
Exponential | 0.25 0.194 0.043 0.026 0.253 0.055 0.248 0.054
0.5 0.269 0.072 0.027 0.277 0.106 0.234 0.054
Gamma | 0.25 0.269 0.151 0.121 0.260 0.081 0.245 0.054
0.5 0.500 0.133 0.121 0.756 0.497 0.281 0.057
Mixed-gamma | 0.25 0.677 0.175 0.098 | 0.610 0.126 0.557 0.097
0.5 0.888 0.225 0.126 | 0.855 0.430 0.517 0.102

TABLE 2. MISE for the estimators of F: an% Fy.,, FXM, times 100, with 200
repetitions for n = 200, 1000 and 100 for n = 10000.

at the same time to remain able to find the main characteristics of the original dataset when the level
of noise is known.
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IR

FIGURE 4. Left: 20 estimators FN@ of F in plain grey line (green) versus the true
function Fvin black bold plain line: when X ~ £(1), a = 0.25, n = 200. Right:
estimator FN,M in bold plain grey line (green) and empirical distribution F,, of Y in
dotted bold grey line (green), when X ~ 0.5I'(4,0.25) + 0.5'(20,0.5) (F in black plain
bold line), a = 0.5, n = 1000.

The multiplicative noise perturbation can be proposed in this context. [Sinha et al. [2011] investigate
this method on n = 51 magnitude data, different noise distributions, among which a uniform density
U1—a,1+4q) for a =0.1 (the data set is publicly available from the American Community Survey (ACS)
via http://factfinder.census.gov). The question is: how can the moments, the quantiles, the
minimal value, maximal value of the sample X be estimated from the observations Y;. They propose a
strategy which delivers good results. But, looking at the noisy data Y; one can see that they are very
close from the true ones and thus in that case the privacy may be not insured. We illustrate this fact
on Figure [5} it represents the multiplicative noise scenario, with @ = 0.1 on the left and a = 0.5 on
the right, for the original data (X;);=1,.. n—51 from Sinha et al. [2011]. The three graphs are: top left
the histogram of the (X;); the real data, top right an histogram of (Y; = X;U;); and on the bottom a
plot of Y versus X.

Thus here we choose to illustrate the second choice: a = 0.5. What is the estimated density of
X from these observations (Y; = X;U;);? Are we capable of giving predictions of the data from this
estimated density? What are the mean, the min, the max, the main quantiles of our new sample?

Figure |§| shows the estimator .]?E))O’T’h of f from the (Y;);, the projection estimator of f on the sample
(X5):: fX7 A (a benchmark, not available in practice) and fY, 5, the projection estimator of fy on the
(Y;)i. It seems that the two densities are very different. The quality of the method is asserted by the
fact that .]?X7 5 and fgoﬁ are very close. Then, from the estimator j;,mﬁl we simulate a new sample
(Xpred;); of length n = 51. To do so, we generate a "discrete variable" because we have a discrete
version of the estimator of the density function f. The graph of the sorted new sample versus the
sorted original sample is presented of Figure [7] The lining up of the values confirms the goodness
of our estimator J?N,m from the noisy observations (Y;);. Finally we can compare the quantities of
interest of (X;); (not available), (Y;); (noisy sample) and (Xpred,);, see Table 3| Except for the third
quantile Q3 at (75 %), the information we get from our new sample is very close from the information
from X.

The proposed procedure allows to correctly mask the data and to recover the main information
from the original sample, as soon as the level of noise (given by a) is known. The method is easy to
use in practice and insures the privacy protection of the data.
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F1GURE 5. Illustration of uniform noise multiplication on real data. Three graphs for
a = 0.1 on the left and a = 0.5 on the right. Top left histogram of (X;);, top right
histogram of (Y;);, bottom plot of Y; versus Xj.

Mean Standard deviation Minimum Maximum Q1 Median Q3

X | 12.82 2.98 7.6 21.2 105 12,5 14.75

Y | 12.59 4.93 6.10 276 791 12.70 14.46
Xpred | 12.78 3.09 7.18 19.31 10.42 12.77 14.54

TABLE 3. Comparison of characteristic quantities from samples (X;);, (Y;);, (Xpred;);

0.15
|

010
|

0.00
L
d

FIGURE 6. Histogram of the real data X;’s with full multiplicative noise, with a = 0.5,
Y; = X;U;. Dotted black line estimator f, = of f on the (X;);, plain black line (red)
]?Nﬁ1 estimator of f on the (Y;);, plain grey line (green) line estimator fy 5 of fy on
the (Y;)z



MULTIPLICATIVE CENSORING MODEL 15

FIGURE 7. Plot of the new predictive sample (Xpred;); versus original data (X;);.

5. PROOFS

5.1. Proof of Lemma 2.1} Denote F' the cumulative distribution function of X, it comes the bounds

l—a (Ta l+a (Ta
| e < vy < St [ oo
Tra Tra

Calp () - (22)] < < e (2) - ()] o

Equation 1) shows that yfy (y) = 0and yfy(y) — 0.0
y—)

Yy—+0

5.2. Useful properties of the Laguerre basis.
Property 5.1. If t € Si, (1) [t)oo < V2mt], (2) |]lc < 2\/§m3/2HtH and (3) If |t| = 1,

[t <1+ 4/2m(m—1).

The two first points are direct consequences of ([2.3]). The last point comes from the following Lemma.

Lemma 5.2. For all j € N, the Laguerre basis function (p;); satisfies:
j—1
vo(r) = —po(x),  ¢j(x) = —pj() =2 Y wr(z), j=1. (5.2)
k=0

Considering t € Sy, such that [t]| =1, t(z) = ZT;Ol ajp;(z), then

m—1 -1

m Jj—1
t'(x) = ajp(z) = Y a (-sﬂj(iﬂ) -2 s%(fv)) — appo()
j=0 j=1 k=0

SR )

-1 j—1
Then, [[¢'] < [¢] + 2] 2755 a5 (o ex)l

m—1 7j—1 2 m—1 m—1 2 m—1
(Z i (Z ¢k<x>>> <4 (2(¢o+¢1+~--+¢j—1> = It? Y o+ o1+ 950)’
k=0

Jj=1 J=1 Jj=1 J=1

I

|

3

]
h@
S
O

|

[\
[
b@

thus using that |t| = 1 and integrating, as the (y;)’s form a b.o.n, it yields
2

m—1 J—1 m—1 1
2 <Z ¢k> < S (ool + el + - + logal®) < 3} = m(m —1)/2,
Jj=1 k=0 j=1 ]
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Finally ||t']| <1+ +/2m(m —1). [

Proof of Lemma [5.2]
The following equality holds ¢’(z) = —¢;(x) +24/2e72L/ 1 (22) Which is a polynomial function of degree

7 multiplied by e™®. Thus, it could be decomposed as cpj Z ak gpk ) with
) 40 +00
o) = <dpc= | e - le@aeli® - [ e

+00

— i (0)pr(0) - JO o3 (@) = —2— 2 < ;g == —2 — 20

Notice that this formula is also true when k = j: < ¢}, p; >= Saroo @ (v)pj(z)dr = —(1/2)@?(0) =
—2/2 = —1. Thus we obtain:

J J
pi(x) = Z —2— < @l ok >) k(T =—2Z<,0k — > <90 > en(a)
k=0 k=0
j—1

= —pj(= —2Zsok Z<90j790;g>90k($)
k=0

Or the < ¢j, ¢}, > are zero for k < j — 1. Thus we obtain (5.2). O
5.3. Proof of Proposition

m—1
Proof of (i). To compute E[|gn — Gm|?] we start by noting that | g, — Gm|? = Z (@; — aj(g))>
j=0
This implies
m—1 1 m—
Ellgm = gm[*] = D Var(@;) < ~ Z [(Y1¢5(Y1) + 95 (Y1))°).
— j=0

J_
Now, Equation 1) applied with t = go? and lead to
E[(Yi¢;(11) + ¢;(11))?] < E[Qthpf(Yl) +20;(Y1)%] < 2| LEYT] + 2]0512
< 16(5 + 1)*E[Y3] + 4.

m—1

A582 (j+1) —82] < 8m?, it yields
7=0

3
E[”gm - gmHz] 16E[Yl ] — +4 E (5-3)

which is the result (i). [
Proof of (ii). Let us study the mean of the estimator of f:

E[fxm(z)] = 2a ZE[gm <<1f“> (1+a) )]—2@ Jvzli%%((lf;b)k(ua)x)

k=0 j=1

_ % Z . ((1f“> (l—l—a)x) = fam(@).

Thus the estimator fN7m is an unbiased estimator of fy,, and

E[fvm = FIP1 = 1f = fnml® + Bl — Frm]*]- (5:4)
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In the following we denote by hj the composition of h with the function

k
1
T — (1tz> (1+a)x.

We note that for any function h € L?(RT),

mu%ﬁ?((}ig)kumn)m:1ia(1;§)’“jh2<y>dy:11 (52) e 65)

Let us study of the bias term |f — fn m?:

N-1 N N—
(f — fym)(@) = 2 Egk<x>+f((1fj) ) 2 e
1

N—
= 20’2 gmk: )+f

k=0
N
1+4+a
- 5.6
As a consequence, using (.5)), we get

Nt 1—a\"? 1 - <%+Z>N/2
S lgs - gmsll = 2 = (152) 19l = e ol

= l+a — /1

/_\

The triangular inequality gives

N-1
If = fvml < 20 e —
k=0

Hg - gmH
Vita—+1-a
Furthermore, | f(((1+a)/(1—a))V-)| = (1 —a)/(1 + a))N/2| f|, and plugging this and in (5.6),

we obtain

(5.7)

8a?
(WV1+a—+1—a)?

For the variance term, we study | fnm — meHz. We easily obtain

If = fvml?® <

N
g gm12+2( ) 7P (5.8)

1+a

~ N-1 N-1 1 g\ k2
i = Pl =20 | 53 e —ame)| <20 3 lim —~0nl 7 (17

and finally

~(k2)

— < 2 G — 5.9
HfNﬂn fN,mH a \/m_m”gm gmH ( )
and E[||gm — gm|] has been evaluated in (5.3]). Gathering (5.4), (5.8) and (5.9)) implies (ii). [
5.4. Proof of Theorem First, by the Cauchy-Schwarz inequality, we have
B[l fnm — FIP] < 2E[If = fanl®] + 2E[ fxm — Frml’]
Then we apply (5.8) and (5.9):
- 1—a\V 160>
E —fI7] < 4 2 ¢ E[lg — g#l?] + E[lGs — g2
Uiva—1P) < 4(15%) WP+ e (Blla = 9a ) + Bllg — 9a1%)
l—a 16a*
= 4 S Ellg — ga]%]) - 5.10
(155) 1P+ = (Blls —2)?) (5.10)
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The last term is the MISE of the estimator gz which follows from the following Lemma.

Lemma 5.3. Under the assumptions of Theorem the estimator §g, defined by and ,
satisfies
!

~ . C
E[|g7 — gl*] < 6 inf {|g — gml|* + pen(m)} + —
meM n
with C" a positive constant depending on a and || fy |-

Gathering Lemma and Inequality ([5.10)) ends the proof of Theorem O

Proof of Lemma [5.3l Let us define the contrast
2 n

m(t) = [t]* ~ - Z;[t(Yi) +Yit'(Y3)]. (5.11)
1=
It is easy to check that g, = argmin ,(t), i.e. the estimator g, is also a minimum contrast estimator,
teSm
and to compute that v,(gm) = —|/gm|?. We notice that
Y (t) = n(s) = [t = g = |Is — g|* = 2vn(t - s) (5.12)
with
1 n
() = Y (YD) + Vit (¥;) = (t.9)
i=1

I
S|
D=

s
Il
—_

t(Y:) + Yit (V) — E[t(Y;) + Vit (Yi)] = v (8) + vn2(t) + v s(t)

where v, 1(t) := (1/n) >3, t(Y;) — E[t(Y;)] and

1 n
vnalt) = = Vit (V) lvice, — B[Vt (Vi) Tyice, ]
i=1
1 n
vna(t) = = Vit (Vi)lyise, — B[Vt (Vi) ly>e, ]
i=1
with
¢n := C3E[Y2]v/n/(log(n)). (5.13)

By definition of gz, for all m € M,,, we have

'Yn(.’g\ﬁm) + ﬁ(m) < 'Yn(gm) + ﬁ(m)

Denoting m v m’ = m*,

Bm,m’ = {t € vam’v ”tH = 1}7 (514>
and using (5.12) we get
195 — 91> < g —gml® + 135 — 9I” = g — gml?

< g — gml? + Pen(m) + 2, (G — gm) — PeR(7R)

1, . _ A
< g = gml® + 195 — gml” + 4 sup vy (t) + pen(m) — pen(m)

EDm,m

1 ~ ]. — —~ A

< lg—gml*+ 5195 — 9I* + Slgm — 9> + 4 sup vi(t) + pen(m) — pen(in)

te

m,m
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Therefore we get

197 —9I” < 3lg—gml*+ § sup V5 (t) + 2pen(m) — 2pen(im)
EOm,m
< 3lg—gml®+24 sup v (t)+24 sup vi,(t) +24 sup v} 4(t)
te m,m tEBm m tEBm m
+2pen(m) — 2pen(m) + 2pen(m) — 2pen(m) + 2pen(m) — 2pen(m)
< 3lg — gml? + 24( Sup Va1 (t) = p1(m, i) s + 24( sup 1y, 5(t) — p2(m, i)+
t m,m € m,m
+24 sup 1/2 3(t) + 2pen(m) — 2pen(m) + 2pen(m) + 2pen(m) (5.15)
teB,, m

with p1(m,m’) = 6m™*/n satisfying 12p;(m,m’) < pen;(m) + pen; (m’) for k1 > 72 and
palim, ml) = 2AB[Y 2} fn
12 pa(m,m’) < peny(m) + peny(m’) for ko = 288. Let us state intermediate results.

Lemma 5.4. Under the assumption of Theorem [2.3,
(i) E | (supses,, , 2, (5) = pi(m. i)+ | < Ku/m,
(ii) E | (supep,, , v22(H) = pa(m. i)+ | < Ka/n,

(iif) E [supyes,, v25(1)] < Ka/n,
where K1, Ko, K3 are constants which do not depend on n.
(iv) There exists a positive constant K4 depending on a such that,

E[{ pen() — Ben(i)} ] <

Taking expectation of (5.15)), using E[pen(m)] = 2pen(m), and plugging the results of Lemmas
implies Lemma O

5.5. Proof of Lemma [5.4]
First notice that, for i = 1, 2,

E[( sup 12 (t)—pz-(m,fn)> ]< Z ( sup v2 (t)—pi(m,m’)>

tEBm m m/eMy, tEB +

In the following we apply Talagrand’s inequality to the two above terms. For that purpose, we compute
the terms denoted by H?, v and M in Theorem

Proof of (i). We bound E[ sup Vi’l(t)]. For ¢ € By, using that 370 71<t Yt =1, we get

teBB ’

* 2 * 2 *
m*—1 m*—1 m*—1
vaa(t) = <Vn,1 < > <t790j>90j>> = ( > <ta(Pj>Vn,1((Pj)> < D vaales)
i=0 i=0 i=0
m*—1 m* — l om*
E[ P vai] < ). Elvnales)’] Z Lvar(p;(11)) < — =
te .
7=0

as ¢} (z) < 2,Vj,Vo. Now, | fle = Slf@‘f(x)‘ < oo implies that | fy (y)| < (|f]0/2a)log((1+a)/(1-a))

and || fy | < 00. Thus

Var(t(¥1)) < E[t(Y1)*] < Ifyolt]® = [ fy o = v
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Finally, point (1) of Property gives

sup |tleo = V2m* sup |t| = v2m* =: M.
teB,, m

te /

We obtain (for a = 1/2 in Theorem [5.7)):

E[( sup v (t)—6m*> ] 36<|fY|oo et 615) 4 ¢ T c2f)

3/2—-1
with C] = &, Cy = L Consequently,
5/2 —/6 42
2 m/ “fYHOO /(6 m/ C.
SN OE sup V() =67 < Y 36 <e—m (CTSIeRL m)
m/'eM,, tEB n N meM,, n n

/
< Y 36 (”fYooe—m'/(ﬁnfm) +Clm2€—czm> K
n

n n
mIEMn

with C a positive constant depending on | fy|s. This explains the choice py(m,m’) = 6m*/n, and
the constraint k1 > 12 x 6 = 72.

Proof of (ii). As before

n

- m¥*—1 m¥*—1
1 1
E[ - vao(t)] < 2 = ) Va(Vigi(M)lvice) < 3, CE[YP(¢))*(1)]
€ j=0 j=0 7=0
m* — 1 ) m*3 5
< Z ﬁ ||ooEY1] 8E[Y}] = H

We introduce the followmg result
Lemma 5.5. E[Y242(Y;)] < E[X22(X,U)] < (1 + )2 [|?ELX, .
Using also Lemma [5.2] we obtain
Var(Vit' (Vi) 1y <e,) < E[Y22(YD)] < |¢|?E[X] < 3(1 + a)?m*?E[X] =: v

Finally: supyep  (sup, [2t'(z)Lo<e, | < SUpep, et < cn2v/2m* 32 =: M. We obtain, apply-
ing Theorem With a = 1/2 again:

/ 1 2m2EIX] _ CLE[Y 2]/
3 E[( sup 12 (t)—24IE[Y12]m> ] < ) 24<(3( + o) mPEX] -G
n
+

n
m/eMy tEBm m/ m/'eMy
2,13
+ MQ*CSE[YE]\/H/CH

2 n2
K>
< ==
n

with Oy = 8, Cy = 2352/(5/2 — V/6), Cs = (1/3/2 — 1)/42 with ¢, given by (5.13) and C' a constant
depending on E[X;] and E[Y{?]. We choose

m3 m*3
pa(m,m’) = QZUE[YE]—7 peny(m) = IQQIE[YE] ,
n n

Ko = 288

and obtain (ii). []
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Proof of Lemma [5.5]
We have, as U < (1 + a) a.s.,

+00 r(1+a)
BY200)] < B[ +aPX3HXU)] = (4 | J; 2202 (vu) f (o) duda

< (1+a)? +OO Y2 (v) dv JJFOO zf(z) dx

0 0
(1+a)?lvPE[X]. O

Proof of (iii). We use that m*3 < n, it yields

-1

1
E[ ZUP vas(t)] < Z Var(Y1¢5 (Y1) 1y, >c,) < Z | B[V 1y, e, ]
te
7=0
m*3 - E[Y2+P]
s 88— E[Y?dlyise,]e, ' <8 #
with the choice of ¢, (5.13]) we obtain
E[Y*?]Card K.
E Sllp 1/23(t) < p[ 1 2] ar (Mn)Q < H3
teB,, CYE[YE]P log(n)Pnp/ n

for p = 4, using that card(/\/ln) < n'/3 and that the function log(n)*/n??3 is bounded with C” a
positive constant depending on E[Y;]. (]
Proof of (iv). Let us study the difference

mmmmw—@mm»4=EP@{E§ﬂ—é%+mj.

n
Denote Q = {[E[Y2] — Co| < E[Y2]/2}. Then E[Y?2]/2 — C5 < 0 on €, thus

R A E Y2 =R ~3 ~3
E[{pen(m) — pen(m)}+] =E [2/12 <[21] — C’g) TZ]IQC:| <E [2/@2 (]E[ %] - C'g) m]ch:| .
By Cauchy-Schwarz we have

E[[B[Y?] - G| 1o: | < BIE[Y?] - Cof*]/2p(0)"/2

First, Markov’s inequality implies

() = 2 (BDYE] - Cal > FH ) < o BlIEl?) - Cof)

Then the Rosenthal inequality implies that there exists a constant C, such that
E[E[Y?] - Caol'] < Cn2E|(vE-E[vE)'].

Gathering the results we obtain:

1/2

E H]E[Yf] - 6*2] nge] < Var(Cy)'/? (Cl - %)1/2 (E[(Y? — E[Y?])"])

IE[Y2]

Thus, as E[Y}] = E[XF]E[U}] and the moments of E[U}] are finite depending on a, if E[X}] < o
the quantities my := E[(YZ — E[Y{])?], Var(C2) are bounded, we have the announced result. []
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5.6. Proof of Lemma [2.4l The survival function of Y satisfies

+00

v (17 f(a) )
dz = —d d
Y fY(Z) ) L (J‘lia v ’ )
0 z(1+a)
f+ (J v dz) de
= yv(l—a)z T

1+a

2aFy (y)

_ f:of( w4 a)—y v (1 —a)z] da

+00 +00 +00 €T
-+ || - -0 [ @t ey [P0, @
with z v y = max(z,y). Finally it yields:
Fyt) = 5 [0+ aF ((20) ~a-oF (12,) | - un (5.16)

But, looking at the definition of g given in ([2.4]), we define analogously the function

Gla) o= [ oty - 5 [0+ oF (() ~a-oF (2.

Thus relation (5.16]) becomes:

é(l‘) =xfy(z) + Fy(m) ]

5.7. Proof of Proposition First note that E[X?] < +oo0 implies that F integrable. Indeed

+00 +oo
F(z)dzr < F(z)dz = E[X,] < EY2(X?).
0 0

The result follows if we prove that

PR

2E75Y1] R[]

E[|Grm — Gm?] <

The MISE of estimator Gy, is:

E[|Gm — G|?] = |E[Gm] — G|* + E[|E[Gnm] — Gw|*].
First, E[G)] = 27" o E[b lej =205 oy (G)g0] = G, Then to compute the variance term E[|G,, —
Gm|?] we start with the relation: |G, — Gm”2 Z;”:Ol (b —b;)? and then

m—1 m—1 2
_ ~ 1
Bl[Tn — Gul?] = 3, Var) < Y B (wm + [ ooy sala)as ]
7=0 7=0
9 m—1 2 m—1 2
< " j;) E[ Yl @i Yl ﬁ jZO E [(fR+ goj'(x)]ly@x(:c)dx> ]

2m
s ILE[YE] +

N\
RN
D73
L
=
| —
VN
= ?
+
S
o
=
=
V
8
=
K]
N———
"

The last term:

%E [mi Uw i (@) y; 50 (2 )dm>2] :%

7=0

E[[1y,- 2] = H21)

1
n
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Thus it comes
E[Yl]

E[[Gr — G2 < +4E[YZ. O

5.8. Proof of Theorem This proof follows the same line as the proof of Theorem [2.3] We define
the contrast

2 n
20 =102 =23 | [tz + v . (5.17)
no o LURT
It is such that %) (ém) = —Hém\P and ém — argmin 7” (t). Then, let
teSm
1 n
=, Z J )y, >zdx + Yit(Vi) — IE[JR+ t(x)ly,>zdx + Yit(Yi)] = vp1(t) + vn2(t) + vp3(t)
with =
) = EEJ' R
W) o= 4,§3Yt y,<c, — E[Yit(Y)ly,<c,]
ARIONES 4,§3Yt Myime, — E[Yit(Yi)ly,c,]

with ¢, a numerical constant dependlng on n. Following the steps which lead to Equation (5.15)), we
choose ¢, := dE[Y{?]y/n/(log(n)) for numerical d a constant and we get the result with two applications
of Talagrand inequality. []

5.9. Proof of Theorem [3.2 Denote:

wm:%ﬁ%mﬁaw

2 © >
and y(t) := [t|? — - Z di(Z;) = |t|* — 2¢t, fr.e)- Let us define

1 > 1 ¢
v(t) == %<t*af’_;:,f — fro = - Z(¢t(zj) —E[ee(Z5)])-
j=1
The two functions «(t) and v(t) satisfy the following relation, for ¢, s € Sy:
Sy = {t e LY(R n L2(R),support(t*) c [—ml, nl]},

Y() = [t = £ = (v(s) = s = £I*) = —2v(t — 5). (5.18)
Thus writing this relation with fTe and fry and as, by definition, 'y(fTe) +pen(f) < v(fr.e) + pen(l),
it yields

Vg = frl? = Wfre—frl? + 1 fpp = frl? = I fre — frl?
< | fre = frl* +20(Fpp = fra) + pon(e) — pen(l).
- N Jry—Tre _ . .
Let us remark that v(f.; — fre) = [fr7— v | —<==————. This leads, as in the previous
7 7 HfT’g - fT,f”

proofs, to

|Fp=frl® < 3lfre— frl? +4pen(e) +8 ) ( sup v*(t) —p(&f')>
l'eM +

tEBgye/
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with a function p such that V¢, ¢, 4p(¢,¢") < pen(¢) + pen(¢’).

Lemma 5.6. There exists a constant C' > 0 such that
< =

E sup v2(t) — p(¢, ¢ .
2 <teB}';, () = p( ))+ ~

V'eMy,
We conclude that there exist two numerical constants Cy,Cy > 0 such that

~ C
2 . 2|~ 2
B[1F;— frl’] < Cu jnf (Ifre— frl? + 500} + 52 O
5.10. Proof of the Lemma [5.6| For ¢ € M,,, we consider t € S;. We use Talagrand’s inequality.
We denote By = {t € Spyp, |t]| = 1} and £* = £ v ¢'. Using Proposition we obtain

~ 0* 7T2(€*)3 0% 7T2(£*)3
E 2| =E — P —+— < — 4+ ——L = g%
LEEE_,,V ( )] |fre = frolP < -+ — - 9
Then, by the Plancherel-Parseval inequality,it yields

sup e <

71 2ml* + 2moe
s
teBZ,l’ V 2

3 <A OF + w20%3 = M.

Finally, for t € By ¢, as we know the characteristic function f*, we have

¥ eiuZ1 2
J t*(—u) du
Tl*

- Jz(u)
jne* £ (—u)eivs

Var(@i(21)) < E[l6u(Z)] = —

= 1ot

e

Wl ()2
47 rex fE(u) 2 Jmex | fE(u)]
. Uzl "

UZlo (1 4 (e Lre* () Pdu < 12%@(1 T+ (r0)?) = .

Indeed | fz]o < (1 +a)/(2a) < +00 since | fz]o = | f1* felo < |felo = (1 + a)/(2a), with fe(z)
e”/(2a)1[10g(1—a),log(1+a)] (7). According to Talagrand’s inequality, for o = 1/2, we obtain

1 26*2
E || sup v3(t) — 4H? < 24 (M
teBy o I n

exp (—0*/12)

294 0¥ 23 £/3/2 -1
+ 32|:2+7T 5 ]exp —y\/kk%-ﬂ'zf*:i

Then we use that 1 < £*3 < n, thus for k > 4 we obtain that there exist four numerical constants
Aq, As, Az, A3 and a constant C > 0 such that

Z E [( sup v2(t) —p(ﬁ,f’)) ]
VeM,, teBy o 4

eM,,
C

X

n

2912
< Z Al# exp (—AQE') + % exp <—A4£’3/2>

4 * 4 2 px3
with p(6,¢) = 22 & W?)E O
n
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APPENDIX

5.11. Talagrand’s inequality. The following result follows from the Talagrand concentration in-
equality.

Theorem 5.7. Considern € N*, F a class at most countable of measurable functions, and (X;)ie(1,... n)
a family of real independent random variables. One defines, for all f € F,
1 n
va(f) = = D (F(X) — E[f (X))

n i=1

Supposing there are three positive constants M, H and v such that sup|f|. < M,
feF

Efsup|vn(f)|] < H, and sup(1/n) > " | Var(f(X;)) < v, then for all « > 0,
feF feF

2
E [<§2£|Vn(f)|2 —-2(1+ 2a)H2> +] < % (Z exp (—banf>

R e )

with C(a) = (W1+a—1) A l, and b= 3.
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