

MASTER MA 2008–2009

EDP: Approfondissement

Examen partiel, 8 avril 2009, durée 1h30

Les documents et l'utilisation de tout appareil électronique sont interdits. Justifier les réponses. Il sera tenu compte de la rédaction de la copie.

Exercice 1

On pose $K(x,y,t)=\frac{1}{\sqrt{4\pi t}}\,e^{-\frac{|x-y|^2}{4t}}$ et on rappelle que $u(x,t)=\int_{\mathbb{R}}K(x,y,t)\,f(y)\,dy$ est solution de l'équation de la chaleur dans $\mathbb{R}:u_t=\Delta u$ dans $\mathbb{R}\times]0,\infty[$, avec u(x,0)=f(x) pour $x\in\mathbb{R}$.

On veut déterminer une solution u(x,t) sur $\mathbb{R} \times \mathbb{R}_+$ du problème

$$\left\{ \begin{array}{rcl} u_t - u_{xx} + V u_x - \varphi(t) & = & 0 & \text{pour } x \in \mathbb{R}, t \in \mathbb{R}_+^* \\ u(x,0) & = & f(x) & \text{pour } x \in \mathbb{R}, t = 0 \end{array} \right. \quad \text{où } V \in \mathbb{R} \text{ et } f, \varphi \text{ sont continues.}$$

- 1. Interprétez les différents termes de l'équation aux dérivées partielles ci-dessus.
- 2. Cherchez une solution du problème sous la forme u(x,t) = w(t) + v(y,t) où y = x Vt.
- $3.\$ Interprétez la solution trouvée en 2 en fonction des remarques du $1.\$

Exercice 2

Soit ω un ouvert borné, régulier de \mathbb{R}^2 et $\Omega_T = \omega \times]0,T]$, pour T>0.

On suppose que
$$w \in \mathcal{C}^2(\Omega_T)$$
 est une solution de
$$\begin{cases} w_t - \Delta w &= 0 \quad \text{pour } (x,t) \in \omega \times]0, T[\\ w(x,t) &= 0 \quad \text{pour } x \in \partial \omega, t \in [0,T] \end{cases}$$
Pour $t \in [0,T]$, on pose $E(t) = \frac{1}{2} \int_{\omega} w(x,t)^2 \, dx$.

- 1. Calculer E'(t), pour $t \in]0,T]$. Exprimez le résultat grâce à $|\nabla w|$.
- 2. Calculer E''(t), pour $t \in]0,T]$. Exprimez le résultat grâce à Δw .
- 3. Montrez que pour $t \in]0,T[,E'(t)^2 \leq E(t)E''(t).$
- 4. Soit $[t_1, t_2] \subset]0, T[$ tel que pour $t \in [t_1, t_2], E(t) > 0$. On pose $h(t) = \ln(E(t))$, calculer h''(t) et en déduire que h est convexe sur $[t_1, t_2]$. En déduire une majoration de E(t) pour $t_1 < t < t_2$.
- 5. On suppose que w(x,T)=0 pour tout $x\in\omega$. Déduire de ce qui précède que E(t)=0 pour $t\in]0,T]$. Que peut-on dire de w?

6. Soient $u, \tilde{u} \in \mathcal{C}^2(\Omega_T)$, respectivement solutions de

$$\begin{cases} u_t &= \Delta u & \text{pour } (x,t) \in \omega \times]0,T[\\ u(x,t) &= f(x,t) & \text{pour } x \in \partial \omega, t \in [0,T] \\ u(x,T) &= g(x) & \text{pour } x \in \omega, t = T \\ u(x,0) &= h(x) & \text{pour } x \in \omega, t = 0 \end{cases} \begin{cases} \tilde{u}_t &= \Delta \tilde{u} & \text{pour } (x,t) \in \omega \times]0,T[\\ \tilde{u}(x,t) &= f(x,t) & \text{pour } x \in \partial \omega, t \in [0,T] \\ \tilde{u}(x,T) &= g(x) & \text{pour } x \in \omega, t = T \\ \tilde{u}(x,0) &= \tilde{h}(x) & \text{pour } x \in \omega, t = 0 \end{cases}$$

où f et g sont continues et $f(x,0)=h(x)=\tilde{h}(x)$ pour tout $x\in\partial\omega$.

Que peut-on dire de $u - \tilde{u}$ sur Ω_T ? sur $\omega \times \{t = 0\}$? Discutez le résultat.

Exercice 3

Soit Ω un ouvert borné, régulier de \mathbb{R}^d , $n \in \mathbb{N}^*$ et $\mathcal{A} = \{v \in \mathcal{C}^2(\overline{\Omega}) / v_{|\partial\Omega} = 0\}$.

Pour
$$v \in \mathcal{A}$$
, on pose $E[v] = \int_{\Omega} \left[\frac{1}{2} |\nabla v|^2 - \frac{1}{n+1} v^{n+1} \right] dx$.

Soit $u \in \mathcal{A}$ et $E[u] = \min_{v \in \mathcal{A}} E[v]$, montrer que u est solution de l'équation de Poisson non linéaire

$$(*) \left\{ \begin{array}{rcl} -\Delta u &=& u^n & \sup \Omega \\ u &=& 0 & \sup \partial \Omega \end{array} \right.$$

Indic. : Calculer $\Phi'(0)$ où, pour tout $h \in \mathbb{R}$, $\Phi(h) = E[u + h\varphi]$ et $\varphi \in \mathcal{D}(\Omega)$ quelconque.