

MASTER MA 2009-2010

EDP: Approfondissement

Examen du 20 mai 2010, durée 2h

Les documents et l'utilisation de tout appareil électronique sont interdits. Justifier les réponses. Il sera tenu compte de la rédaction de la copie.

Exercice 1

Soit $\Omega =]0,1[\times]0,1[\subset \mathbb{R}^2$.

On note $\mathcal{D}(\Omega)$ l'ensemble des fonctions de classe \mathcal{C}^{∞} à support compact dans Ω et $H_0^1(\Omega)$ l'adhérence de $\mathcal{D}(\Omega)$ dans $H^1(\Omega)$.

1. Démontrer que

$$\forall u \in H_0^1(\Omega) : \int_{\Omega} u^2 \, dx dy \le \int_{\Omega} |\nabla u|^2 \, dx dy .$$

(Indic. : démontrer le résultat d'abord pour $u \in \mathcal{D}(\Omega)$).

Pour $f \in L^2(\Omega)$, on considère l'équation aux dérivées partielles suivante

(*)
$$\begin{cases} -\Delta u + \frac{1}{2}(u_x + u_y) = f & \text{sur } \Omega \\ u = 0 & \text{sur } \partial \Omega \end{cases}$$

2. Déterminer a(.,.) et l(.) de façon à transformer (*) en

$$(**) \qquad \begin{cases} u \in H_0^1(\Omega) \\ \forall v \in H_0^1(\Omega) \ : \ a(u,v) = l(v) \end{cases}$$

Expliquer de façon précise le lien entre (*) et (**).

- 3. Montrer que a(.,.) est une forme bilinéaire continue sur $H_0^1(\Omega)$ et que l(.) est une forme linéaire continue sur $H_0^1(\Omega)$.
- 4. Montrer qu'il existe une constante $\nu > 0$ tel que $a(u,u) \ge \nu \|u\|_{H^1_0(\Omega)}^2$ pour tout $u \in H^1_0(\Omega)$.
- 5. Conclusion?

Exercice 2

Grâce au principe du maximum faible, démontrer les deux résultats (indépendants) suivants :

- 1. Soit Ω un ouvert borné de \mathbb{R}^d avec $\partial\Omega$ régulier. On considère une suite de fonctions harmoniques $(u_n)_{n\in\mathbb{N}}$ telle que $u_n\in\mathcal{C}^2(\Omega)\cap\mathcal{C}^0(\overline{\Omega})$. Montrer que si la suite (u_n) converge uniformément sur $\partial\Omega$, alors elle converge uniformément sur $\overline{\Omega}$.
- 2. On pose $\widetilde{\Omega} = \{x \in \mathbb{R}^d / |x| > 1\}$, soit $u \in \mathcal{C}^2(\widetilde{\Omega}) \cap \mathcal{C}^0(\overline{\widetilde{\Omega}})$ tel que $\Delta u = 0$ sur $\widetilde{\Omega}$ et $\lim_{|x| \to \infty} u(x) = 0$. Montrer que

$$\max_{\overline{\widetilde{O}}} |u| = \max_{\partial \widetilde{\Omega}} |u| .$$

(Indic.: considérer les ensembles $C_R = \{x \in \mathbb{R}^d / 1 < |x| < R\}$, avec $C_R \nearrow \widetilde{\Omega}$ quand $R \to \infty$)

(Page 1/2)

Exercice 3

Soit Ω un ouvert borné de \mathbb{R}^d , de bord $\partial\Omega$ régulier et $u\in\mathcal{C}^2(\overline{\Omega})$, f,g et h régulières, données.

1. On suppose que h est positive et non identiquement nulle sur $\partial\Omega$. Démontrer alors l'unicité d'une solution $u\in\mathcal{C}^2(\overline{\Omega})$ du problème de ROBIN

$$\begin{cases} \Delta u(x) = f(x) \text{ pour } x \in \Omega\\ \frac{\mathrm{d}u}{\mathrm{d}n}(x) + h(x)u(x) = g(x) \text{ pour } x \in \partial\Omega \end{cases}$$

où n est le vecteur normal extérieur à Ω , |n|=1.

2. On va montrer que le résultat précédent est faux si h est négative sur $\partial\Omega$. On suppose que u est régulière et vérifie, pour tout $x\in\mathbb{R}^d$:

$$u(x) = \sum_{i=1}^{d} x_i \frac{\partial u}{\partial x_i}(x)$$
 et $\frac{\partial^2 u}{\partial x_i^2}(x) = 0$ (C)

- a) Vérifiez que toute fonction u, vérifiant (C), est solution du même problème de Robin sur la boule unité, $\Omega = B(0,1)$. Précisez f, g et h.
- b) Donnez un exemple d'une famille de fonctions vérifiant les conditions (C).