Licence 3e année, 2013-2014

MÉTHODES NUMÉRIQUES

Examen du 28 avril 2014

Nombre de pages de l'énoncé : 2. Durée 1h30.

Tout document est interdit. Tout appareil électronique, même à titre d'horloge, est également interdit.

Justifiez vos réponses! Il sera tenu compte de la présentation.

Questions de cours

Soit $\|.\|$ une norme sur l'espace vectoriel réel \mathbb{R}^n , $n \in \mathbb{N}^*$. On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels.

- 1. Donner la définition de la norme matricielle sous-jacente à cette norme vectorielle et que l'on notera aussi ||.||.
- 2. Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{R}), x \in \mathbb{R}^n : ||Ax|| \le ||A|| \, ||x||$.
- 3. Montrer que pour tout $A, B \in \mathcal{M}_n(\mathbb{R}) : ||AB|| \le ||A|| \, ||B||$.

Exercice 1

On veut résoudre le système linéaire tridiagonal Ax = y dans \mathbb{R}^n , où

$$A = \begin{pmatrix} b_1 & c_1 & 0 & \cdots & 0 \\ a_2 & b_2 & c_2 & 0 & \cdots & 0 \\ 0 & a_3 & b_3 & c_3 & & & \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & & & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & & & 0 & a_n & b_n \end{pmatrix}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ et } y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

On pose $a_1 = c_n = 0$ et on suppose que les a_i, b_i et c_i sont tels que les calculs qui suivent ne donnent pas de division par zéro.

- 1. Montrer par récurrence que les coordonnées du vecteur $x \in \mathbb{R}^n$ vérifient la relation $x_i = A_i x_{i+1} + B_i$ pour $i = 1, \ldots, n-1$. Déterminer, en fonction des a_i , b_i , c_i et y_i , les réels A_i et B_i pour $i = 1, \ldots, n-1$.
- 2. Montrer que $x_n = B_n$.
- 3. En utilisant ce qui précède, écrire une fonction Scilab [x]=resol_tri(A,y) de résolution d'un système tridiagonal. Prévoir des tests pour éviter les divisions par zéro.
- 4. Donner le nombre d'opérations. Comparer aux méthodes vues en cours.

Exercice 2

Soit I_n la matrice identité dans $\mathcal{M}_n(\mathbb{R})$.

1. Soit
$$B = (b_{ij})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$$
, montrer que $\operatorname{spec}(B) \subset \bigcup_{1 \le i \le n} D(b_{ii}, R_i)$ où

$$D_i = \left\{ z \in \mathbb{C}, |b_{ii} - z| \le \sum_{j \ne i} |b_{ij}| \right\} = D(b_{ii}, R_i) \subset \mathbb{C}, \quad \text{avec } R_i = \sum_{j \ne i} |b_{ij}|.$$

Pour toute la suite on considère les matrices $A = \left(a_{ij}\right)_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ telles que : pour $1 \leq i \neq j \leq n$: $a_{ij} \leq 0$; pour $1 \leq i \leq n$: $a_{ii} > 0$ et pour $j = 1, \ldots, n$: $\sum_{i=1}^{n} a_{ij} = 0$.

2. Pour tout
$$x = (x_1 \cdots x_n)^t \in \mathbb{R}^n$$
, on définit $||x||_A = \sum_{i=1}^n a_{ii} |x_i|$.
Montrer que $||.||_A$ est une norme sur l'espace vectoriel \mathbb{R}^n .

Pour toute la suite on suppose que $\mu \in \mathbb{R}_+^*$ et on pose $A_{\mu} = A + \mu I_n$.

- 3. Localiser (sans les calculer) les valeurs propres de la matrice A_{μ} . En déduire qu'elle est inversible.
- 4. On considère le système linéaire $A_{\mu}x = b$ (*). Vérifier que l'on peut appliquer la méthode de Jacobi à ce système et qu'elle est convergente. Écrire l'équation itérative qui permet de calculer la suite $\left(x^{(k)}\right)_{k\in\mathbb{N}}\in\mathbb{R}^n$. Écrire les formules qui permettent de calculer les coordonnées du vecteur $x^{(k+1)}$ par la méthode de Jacobi.
- 5. En déduire que la suite $\left(x^{(k)}\right)_{k\in\mathbb{N}}\in\mathbb{R}^n$ vérifie $\left\|x^{(k+1)}-x^{(k)}\right\|_A\leq \frac{1}{(1+m)^k}\left\|x^{(1)}-x^{(0)}\right\|_A$ où $m=\min_{1\leqslant i\leqslant n}\frac{\mu}{a_{ii}}\in\mathbb{R}_+^*.$
- 6. Montrer que la suite $(x^{(k)})_{k\in\mathbb{N}} \in \mathbb{R}^n$ est de Cauchy. En déduire de nouveau qu'elle converge vers la solution du système (*).

Exercice 3

On considère la matrice
$$A = \begin{pmatrix} 2 & 1 & -4 \\ 3 & 3 & -5 \\ 4 & 5 & -2 \end{pmatrix}$$

- 1. Énoncer et appliquer un résultat du cours qui permet d'affirmer que la matrice A admet une décomposition LU.
- 2. Déterminer une décomposition A = LU où L est triangulaire inférieure avec des "1" sur la diagonale et où U est triangulaire supérieure.