

Licence 3e année, 2015-2016

MÉTHODES NUMÉRIQUES

Examen du 6 mai 2016

Nombre de pages de l'énoncé : 3. Durée 1h30.

Tout document est interdit.

Tout appareil électronique, même à titre d'horloge, est également interdit.

Justifiez vos réponses! Il sera tenu compte de la présentation.

Questions de cours

Soit $\|.\|$ une norme vectorielle et $\|.\|$ la norme matricielle subordonnée. Soit $A \in \mathcal{M}_n(\mathbb{R})$ inversible et $b, \delta b \in \mathbb{R}^n$.

- 1. Donner la définition de c(A), le conditionnement du problème d'inversion de la matrice A pour la norme matricielle $\|.\|$.
- 2. On considère le système Ax = b et le système perturbé $Ay = b + \delta b$, où $y = x + \delta x$.

Montrer que l'on a
$$\frac{\|\delta x\|}{\|x\|} \leq c(A) \frac{\|\delta b\|}{\|b\|} \ .$$

Exercice 1.

On considère la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 5 \end{pmatrix}$.

- 1. Donner un encadrement des valeurs propres de A, sans les calculer directement.
- 2. Déduire l'existence de la factorisation de Cholesky pour la matrice A.
- 3. Effectuer la factorisation de Cholesky de A.

Exercice 2.

Pour
$$\alpha \in \mathbb{R}$$
, on considère la matrice $A = \begin{pmatrix} \alpha & -1 & 0 \\ -1 & \alpha & -1 \\ 0 & -1 & \alpha \end{pmatrix}$.

Soit $b \in \mathbb{R}^3$ quelconque, on s'intéresse à la résolution de Ax = b par méthodes itératives.

- 1. Déterminer les valeurs propres de A.
- 2. Pour quelles valeurs de α la matrice est-elle inversible? On supposer dans la suite A inversible.
- 3. Écrire la matrice de Jacobi \mathcal{J} associée à A. Donner les valeurs de α pour lesquelles la méthode de Jacobi est convergente.
- 4. Écrire l'équation itérative générale de Jacobi (reliant $x^{(k+1)}$ et $x^{(k)}$). En déduire l'algorithme dans le cas particulier de la matrice A de cet exercice (i.e. exprimer $x_i^{(k+1)}$ pour $1 \le i \le 3$).
- 5. Pour quelles valeurs de α et ω la méthode de relaxation $\mathcal{L}_{rel(\omega)}$ est-elle convergente?

Exercice 3.

Les deux parties peuvent être traitées de façon indépendante. On suppose $n \geq 2$.

Partie I

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire supérieure inversible.

- 1. Montrer qu'il existe une matrice inversible D telle que la matrice $\tilde{A} = DA$ soit triangulaire supérieure et n'ayant que des 1 sur la diagonale.
- 2. On pose $B = I_n \tilde{A}$. Déterminer le polynôme caractéristique de B et donner $\rho(B)$.
- 3. Montrer que $B^n = O$. (Indic. : on pourra appliquer le théorème de Cayley-Hamilton)
- 4. Déduire de ce qui précède \tilde{A}^{-1} et ensuite A^{-1} .

Partie II

On considère la matrice carrée réelle $A=(a_{ij})_{1\leq i,j\leq n}$ définie par $a_{i,i}=1$ et $a_{i,i+1}=2$ pour $1 \leq i \leq n\,,$ tous les autres coefficients a_{ij} étant nuls :

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & & & \ddots & \ddots & & \vdots \\ 0 & \cdots & & & 1 & 2 & 0 \\ 0 & \cdots & & & & 0 & 1 & 2 \\ 0 & 0 & & \cdots & & 0 & 0 & 1 \end{pmatrix} .$$

5. Soit $b \in \mathbb{R}^n$ défini par $b_i = 3$ pour $1 \le i \le n - 1$ et $b_n = 1$.

Trouver x tel que Ax = b.

(Indic. : écrire d'abord le vecteur Ax et en déduire x par identification des coordonnées. Ne PAS utiliser l'inverse A^{-1} !)

6. Soit $\delta b \in \mathbb{R}^n$ défini par $(\delta b)_i = (-1)^{i+1} \varepsilon$, pour $i=1,\ldots,n$ $\varepsilon \in \mathbb{R}_+^*$, b étant défini dans la question précédente.

On considère le système $Ay = b + \delta b$, donner un système vérifié par $\delta x = y - x \in \mathbb{R}^n$ et montrer que les coordonnées de δx vérifient $(\delta x)_{n-i} = (-1)^{n-(i-1)}(2^{i+1}-1)\varepsilon$, $0 \le i \le n - 1$.

- 7. Calculer $||b||_{\infty}$, $||\delta b||_{\infty}$, $||x||_{\infty}$ et $||\delta x||_{\infty}$.
- 8. Démontrer que

 $\uparrow j$ -ième colonne

(Indic. : On pourra

- -> soit utiliser la partie I et déterminer la matrice B et les B^k ;
- -> soit utiliser la partie I et determiner la matrice B et les B^n ; -> soit résoudre les systèmes $Ax = e_j$, j = n, n 1, ..., 1 où $\{e_1, ..., e_n\}$ est la base canonique de \mathbb{R}^n)
- 9. On rappelle que $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$. Calculer $c_{\infty}(A)$.
- 10. Comparer l'erreur relative en x par rapport à l'erreur relative en b. Commenter. Expliciter pour une précision de $\varepsilon=2^{-20}$ et dimension n=40 . Est-ce que ce résultat était prévisible?