

Licence 3^e année, 2017–2018

MÉTHODES NUMÉRIQUES

Examen du 9 mai 2018

Nombre de pages de l'énoncé : 2. Durée 1h30.

Tout document est interdit.

Tout appareil électronique, même à titre d'horloge, est également interdit.

Justifiez vos réponses! Il sera tenu compte de la présentation.

Questions de cours Soit $\|.\|$ une norme vectorielle et $\|.\|$ la norme matricielle subordonnée. Soit $A \in \mathcal{M}_n(\mathbb{R})$ inversible et $b, \delta b \in \mathbb{R}^n$.

- 1. Donner la définition de c(A), le conditionnement du problème d'inversion de la matrice A pour la norme matricielle $\|.\|$.
- 2. On considère le système Ax = b et le système perturbé $Ay = b + \delta b$, où $y = x + \delta x$.

Montrer que l'on a
$$\frac{\|\delta x\|}{\|x\|} \le c(A) \frac{\|\delta b\|}{\|b\|} .$$

Exercice 1.

On considère la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 5 \end{pmatrix}$.

- 1. Donner un encadrement des valeurs propres de A, sans les calculer directement.
- 2. Déduire l'existence de la factorisation de Cholesky pour la matrice A.
- 3. Effectuer la factorisation de Cholesky de A.

Exercice 2

Pour $\alpha, \beta, \gamma, \delta \in \mathbb{R}$, on considère la matrice $A = \begin{pmatrix} \alpha & 0 & \gamma \\ 0 & \alpha & \beta \\ 0 & \delta & \alpha \end{pmatrix}$.

Soit $b \in \mathbb{R}^3$ quelconque, on s'intéresse à la résolution de Ax = b par méthodes itératives.

- 1. Pour quelles valeurs de α, β, γ et δ la matrice est-elle inversible? On supposera dans la suite A inversible.
- 2. Donner des conditions suffisantes sur α, β, γ et δ , pour avoir convergence de la méthode de Jacobi et convergence de la méthode de Gauss-Seidel.
- 3. Écrire la matrice de Jacobi J associée à A. Calculer ses valeurs propres et en déduire une conditions nécessaire et suffisante de convergence de la méthode de Jacobi.

Exercice 3

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ et $a, b \in \mathbb{R}^n$. Pour $x^{(0)}, y^{(0)} \in \mathbb{R}^n$ donnés, on définit

(1)
$$\begin{cases} x^{(k+1)} &= Ay^{(k)} + a \\ y^{(k+1)} &= Bx^{(k+1)} + b \end{cases} \quad \text{pour } x^{(0)}, y^{(0)} \in \mathbb{R}^n$$

- 1. Exprimer $x^{(k+1)}$ en fonction de $x^{(k)}$ ainsi que $y^{(k+1)}$ en fonction de $y^{(k)}$.
- 2. Donner une condition nécessaire et suffisante de convergence pour chacune des suites. Quelles équations vérifient les limites respectives x^* et y^* ?
- 3. Montrer que (1) est équivalent à $z^{(k+1)} = Cz^{(k)} + c$ où $C \in \mathcal{M}_{2n}(\mathbb{R})$. Expliciter C et $c \in \mathbb{R}^{2n}$.
- 4. Montrer que $\rho(C) = \rho(BA)$. (Indic. : montrer que $\operatorname{spec}(C) = \operatorname{spec}(BA)$)

On rappelle que la vitesse de convergence asymptotique d'une méthodé itérative définie par $x^{(k)} = Mx^{(k-1)} + m$, $M \in \mathcal{M}_{2n}(\mathbb{R})$ et $\in \mathbb{R}^{2n}$ est défini par $R(M) = -\log_{10}(\rho(M))$. On pose $e^{(k)} = x^{(k)} - x^*$ l'erreur à l'itération $k \in \mathbb{N}$.

- 5. Montrer que le nombre d'itérations k pour réduire l'erreur d'un facteur $\epsilon, i.e., \|e^{(k)}\| \le \epsilon \|e^{(0)}\|$ vérifie $k \ge \frac{-\log_{10}\epsilon}{R(M)}$.
- 6. Déterminer le nombre d'itérations nécessaires pour obtenir $\epsilon=10^{-7}$ si

$$A = \begin{pmatrix} \frac{1}{2} & 1\\ 0 & \frac{1}{2} \end{pmatrix} \text{ et } B = \begin{pmatrix} \frac{1}{5} & 1\\ 0 & \frac{1}{5} \end{pmatrix}.$$