

Licence 3e année, 2015-2016

MÉTHODES NUMÉRIQUES

Partiel du 15 mars 2016

Nombre de pages de l'énoncé : 2. Durée 1h30.

Tout document est interdit.

Tout appareil électronique, même à titre d'horloge, est également interdit.

Justifiez vos réponses! Il sera tenu compte de la présentation.

Questions de cours

Soit $\|.\|$ une norme vectorielle sur \mathbb{R}^d et $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Donner une définition de la norme matricielle subordonnée que l'on notera aussi ||.||.
- 2. Démontrer que pour tout $x \in \mathbb{R}^d$, $||Ax|| \le ||A|| \, ||x||$.
- 3. Démontrer que cette norme sur les matrices est compatible avec la multiplication matricielle.

Exercice 1.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice non nulle à diagonale strictement dominante, c'est-à-dire telle que

$$\forall 1 \le i \le n, \quad |a_{ii}| > \sum_{1 \le j \ne i \le n} |a_{ij}|$$

1. Soit $u \in \mathbb{R}^n$ tel que Au = 0 et $i_0 \in \{1, \dots, n\}$ tel que $|u_{i_0}| = ||u||_{\infty}$. Démontrer que

$$|a_{i_0i_0}||u_{i_0}| \le \sum_{1 \le j \ne i_0 \le n} |a_{i_0j}||u_{i_0}|$$

(Indic. : Considérer une coordonnée du vecteur Au)

2. En déduire que A est nécessairement inversible.

Exercice 2.

Soit $\tilde{A} \in \mathcal{M}_n(\mathbb{R})$ avec $n \geq 2$.

On suppose qu'il existe une matrice carrée réelle inversible P telle que $\tilde{A} = PAP^{-1}$ où A est diagonale par blocs et de la forme $A = \begin{pmatrix} I_p & O_{p,q} \\ O_{q,p} & B \end{pmatrix}$.

Avec I_p la matrice identité de taille $p, B \in \mathcal{M}_q(\mathbb{R})$ et p+q=n. Par $O_{k,l}$ on désigne une matrice de zéros de taille [k,1].

On suppose par ailleurs que spec $(B) = \{\lambda_1, \dots, \lambda_q\}$ avec $|\lambda_1| \leq \dots \leq |\lambda_q| < 1$.

- 1. Calculer $\lim_{k \to +\infty} B^k$.
- 2. Montrer que $\operatorname{spec}(A) = \{1\} \cup \operatorname{spec}(B)$. En déduire $\rho(A)$. (Indic. : Pour v vecteur propre de A, considérer une décomposition en blocs adaptée)
- 3. Pour $k \in \mathbb{N}^*$, calculer par récurrence A^k . En déduire $\lim_{k \to +\infty} A^k$.
- 4. Déduire de ce qui précède \tilde{A}^k , $k \in \mathbb{N}^*$, et $\lim_{k \to +\infty} \tilde{A}^k$.

 Donner une représentation de cette limite grâce à une décomposition en blocs adaptée de P et de P^{-1} .
- 5. Sous quelle condition la matrice \tilde{A} est-elle inversible ? Calculer alors \tilde{A}^{-1} .

Exercice 3.

Soit I_n la matrice identité dans $\mathcal{M}_n(\mathbb{R})$, $b \in \mathbb{R}^n$ et A une matrice carrée d'ordre n, symétrique définie positive, de valeurs propres $0 < \lambda_1 \leq \ldots \leq \lambda_n$.

On veut déterminer la solution x^* du système linéaire Ax = b pour n grand. Pour cela, on définit dans \mathbb{R}^n la suite :

$$\begin{cases} x^{(0)} \operatorname{donn\acute{e}}; \\ x^{(k)} = (I_n - \sigma A)x^{(k-1)} + \sigma b, k \ge 1, \end{cases}$$

où $\sigma \in \mathbb{R}_+^*$ est un paramètre réel vérifiant $0 < \sigma < 2/\lambda_n$.

- 1. Montrer que $x^{(k)} = \left(\sum_{i=0}^{k-1} (I_n \sigma A)^i\right) \sigma b + (I_n \sigma A)^k x^{(0)}$.
- 2. Montrer que $\rho(I_n \sigma A) < 1$.
- 3. Déterminer $\lim_{k\to+\infty} (I_n \sigma A)^k$ et $\sum_{i=0}^{+\infty} (I_n \sigma A)^i$.
- 4. Déduire que $\lim_{k\to +\infty} x^{(k)} = x^*$ pour tout $x^{(0)}$.
- 5. Exprimer $x^{(k)} x^*$ en fonction de $x^{(k-1)} x^*$ et de $I_n \sigma A$. En déduire qu'il existe $\varepsilon > 0$ et une norme vectorielle $\|.\|_{\varepsilon}$ telle que

$$||x^{(k)} - x^*||_{\varepsilon} \le (\rho(I_n - \sigma A) + \varepsilon)^k ||x^{(0)} - x^*||_{\varepsilon}.$$