

Licence $3^{\rm ème}$ année, 2017-2018

MÉTHODES NUMÉRIQUES

Partiel du 12 mars 2018

Nombre de pages de l'énoncé : 2. Durée 1h30.

Tout document est interdit.

Tout appareil électronique, même à titre d'horloge, est également interdit.

Justifiez vos réponses! Il sera tenu compte de la présentation.

Questions de cours

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire supérieure, c'est-à-dire que $a_{ij} = 0$ pour $1 \leq j < i \leq$ n. On considère le système linéaire Ax=b où $b,x\in\mathbb{R}^n,$

- 1. Sous quelle condition ce système admet-il une solution unique?
- 2. Donner l'algorithme de résolution de Ax = b.
- 3. Quel est le coût en opérations élémentaires $(+,-,\cdot,/)$ de cet algorithme? faire les calculs et expliquer.

Exercice 1
Soit
$$A = \left(a_{ij}\right)_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R}).$$

On note $B(a_{ii}, R_i) \subset \mathbb{C}$ la boule fermée de centre a_{ii} et de rayon $R_i = \sum_{i=1}^{n} |a_{ij}|$

et on note G(A) le sous-ensemble de \mathbb{C} défini par $G(A) = \bigcup_{i=1}^{n} B(a_{ii}, R_i)$.

Soit $\lambda \in \operatorname{spec}(A)$ et $v \neq 0$ tel que $Av = \lambda v$, on note $p \in \{1, \dots, n\}$ l'indice, non nécessairement unique, tel que $||v||_{\infty} = |v_p|$.

 $|a_{ii} - \lambda| \ge R_i$, pour tout $1 \le i \le n$. On suppose que λ vérifie les inégalités :

- 1. Que peut-on dire de la position de λ par rapport à G(A)?
- 2. Montrer que pour tout indice $k \in \{1, ..., n\}$ vérifiant $|v_k| = ||v||_{\infty}$ on a $|a_{kk} \lambda| = R_k$. (Indic. : écrire que $(Av)_i = \lambda v_i$ pour tout $1 \le i \le n$)
- 3. On pose $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 2 & 0 & 2 \end{pmatrix}$.
 - (a) Calculer $\operatorname{spec}(A)$.
 - (b) Tracer l'ensemble G(A) et placer les valeurs propres de A.
 - (c) Déterminer $v \in \mathbb{R}^n$ tel que Av = 0. Que peut-on dire des $|v_i|, 1 \leq i \leq 3$? de $||v||_{\infty}$?

Exercice 2

Soit $A \in \mathcal{M}_n(\mathbb{R})$, inversible.

- 1. Écrire une fonction Scilab [x]=normeinfinie(A) qui calcule $||A||_{\infty}$. Comment en déduire $||A||_{1}$, $c_{\infty}(A)$ et $c_{1}(A)$?
- 2. On suppose que n=2 et on note $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Calculer A^{-1} ainsi que $\|A^{-1}\|_{\infty}$ et $\|A^{-1}\|_{1}$. En déduire que $c_{\infty}(A)=c_{1}(A)$.
- 3. On pose $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Calculer A^{-1} ainsi que $c_{\infty}(A)$ et $c_1(A)$. Conclusion?

Exercice 3

Soit $\|.\|$ une norme matricielle, induite sur $\mathcal{M}_n(\mathbb{R})$ par une norme sur \mathbb{R}^n , notée aussi $\|.\|$, $n \in \mathbb{N}^*$. Soit $A \in \mathcal{M}_n(\mathbb{R})$.

1. Donner une condition sur A pour que la série réelle positive $\sum_{k=0}^{+\infty} ||A^k v||$ soit convergente pour tout $v \in \mathbb{R}^n$. Justifier!

On supposera cette condition vérifiée dans toute la suite.

2. Montrer que l'application $N: \mathbb{R}^n \longrightarrow \mathbb{R}_+$ donnée pour tout $v \in \mathbb{R}^n$ par

$$N(v) = \sum_{k=0}^{+\infty} \|A^k v\|$$

définit une norme sur \mathbb{R}^n .

- 3. Justifier l'existence d'un vecteur $u \in \mathbb{R}^n$ tel que N(u) = 1.
- 4. Soit $u \in \mathbb{R}^n$ tel que N(u) = 1, calculer N(Au).
- 5. On note aussi N(.) la norme induite sur $\mathcal{M}_n(\mathbb{R})$ par N(.). Calculer N(A) et montrer que N(A) < 1.