

MASTER I INFO 2013–2014

OPTIMISATION ET ALGORITHMIQUE

EXAMEN, durée 2h

Tout document est interdit.

Tout appareil électronique, même à titre d'horloge, est également interdit.

Nombre de pages de l'énoncé : 2

Il faut justifier les réponses. Il sera tenu compte de la rédaction de la copie.

Questions de cours

Soit f une fonction définie sur \mathbb{R}^2 , on note $\nabla f(x)$ le gradient de f au point x et $H_f(x)$ la matrice hessienne de f en $x \in \mathbb{R}^2$.

On suppose qu'il existe un minimum unique $x^* = \underset{x}{\operatorname{arg\,min}} f(x)$ et l'on note $(x^{(k)})_{k \in \mathbb{N}} = (x_1^{(k)}, x_2^{(k)})_{k \in \mathbb{N}}$ une suite de \mathbb{R}^2 qui converge vers $x^* \in \mathbb{R}^2$ quand k tend vers l'infini.

- 1. Sous quelles condition(s) un vecteur $d \in \mathbb{R}^2$ est une direction de descente de f en $x \in \mathbb{R}^2$?
- 2. Que doit vérifier le scalaire σ que l'on appelle pas de descente ?
- 3. Pour déterminer le pas de descente σ de f en x dans la direction d on utilise souvent le "backtracking". Décrire de quoi il s'agit. Donner un bout de code Scilab qui implémente cette méthode.
- 4. Donner l'algorithme de descente général appliqué à la fonction f (pseudo code).
- 5. Donner l'algorithme de descente de gradient appliqué à la fonction f (pseudo code).
- 6. Donner l'algorithme de Newton appliqué à la fonction f (pseudo code).
- 7. Comparez les avantages et inconvénients de ces deux méthodes. En particulier, tracez en fonction du nombre d'itérations k, la précision $-\log_{10} \|x^* - x^{(k)}\|$ où la suite $(x^{(k)})$ est obtenue par une descente de gradient, resp. la méthode de Newton. Commentez.

Exercice 1

Soit
$$f(x_1, x_2) = x_1^2 + \frac{1}{2}x_2^2$$
.

- 1. Que vaut $x^* = \underset{x}{\operatorname{arg \, min}} f(x)$?
- 2. Calculer $\nabla f(x)$ et $H_f(x)$ au point $x = (x_1, x_2) \in \mathbb{R}^2$.
- 3. Au point $x^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, vérifier que $d^{(0)} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ est une direction de descente.
- 4. Déterminer le pas σ_0 qui minimise f le long de cette direction. (Indic.: poser $\varphi(\sigma) = f(x^{(0)} + \sigma d^{(0)})$ et minimiser φ sur \mathbb{R}_+^*).

Calculer ensuite $f(x^{(1)})$. Conclusion?

- 5. Tracer la ligne de niveau de f qui passe par $x^{(0)}$, placez les points x^* , $x^{(0)}$ et le vecteur $d^{(0)}$.
- 6. On garde le même point initial $x^{(0)}$ mais l'on prend $d^{(0)} = -\nabla f(x^{(0)})$. Déterminer alors σ_0 , $x^{(1)}$ et $f(x^{(1)})$, comme dans 4. Commentez.
- 7. Montrer que, indépendamment de $x^{(0)}$, la méthode de Newton converge en une itération. Expliquez.

Exercice 2

On considère la fonction Scilab suivante, où x0 et b sont des vecteurs de \mathbb{R}^n et A est une matrice carrée, définie positive de taille n.

```
1
     function [x_h, v_h] = toto(x0, A, b)
2
        MAX = 500;
        epsilon = 1e-10;
3
4
        x_h = [];
        v_h = [];
5
6
        x = x0;
7
        s = 0;
8
9
        for k=1:MAX
          v = 0.5.*(x'*A*x)-b'*x;
10
          d = -(A*x-b);
11
          n = sqrt(d,*d);
12
13
14
          x_h = [x_h, x];
          v_h = [v_h , v];
15
16
          if (n<epsilon) then
17
            mprintf("\n
                          %i \n",k);
18
            return;
19
20
          end;
          s = (n*n)/(d'*A*d) ;
21
22
          x = x+s*d;
23
        end;
        mprintf("\n
                       %i \n",MAX);
24
25
     endfunction;
```

- 1. Que calcule cette fonction? Expliquez l'affichage et les sorties x_h et v_h.
- 2. Expliquez les lignes 17 à 19 et le calcul de s (ligne 21).