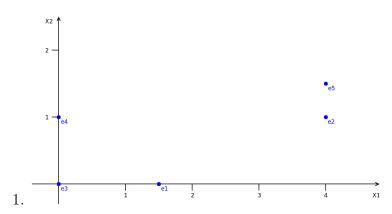
Classification Master 1 Ingénierie Mathématique Examen partiel du 21 mars 2019 - Correction


Exercice 1 (à faire sur feuille)

Soit le tableau de données suivant (5 individus, deux variables quantitatives)

	e_1	e_2	e_3	e_4	e_5
X^1	1.5	4	0	0	4
X^2	0	1	0	1	1.5

- 1. Représenter les observations sur un graphique avec X^1 et abscisse et X^2 en ordonnée.
- 2. Donner les différentes étapes de la classification ascendante hiérarchique de ces données pour la distance euclidienne et avec la stratégie d'agrégation du minimum.

Correction

- 2. état initial : partition $\{e_1\}, \{e_2\}, \{e_3\}, \{e_4\}, \{e_5\}.$
 - étape 1 : on regroupe e_2 et e_5 car ce sont les plus proches au sens de la distance euclidienne $(d(e_2,e_5)=0.5)$ La partition devient $\{e_1\},\{e_2,e_5\},\{e_3\},\{e_4\}$.
 - étape 2 : on regroupe e_3 et e_4 ($d(e_2, e_5) = 1$). La partition devient $\{e_1\}, \{e_2, e_5\}, \{e_3, e_4\}$.
 - étape 3 : on regroupe e_1 et $\{e_3, e_4\}$ $(d_{min}(\{e_1\}, \{e_3, e_4\}) = d(e_1, e_3) = 1.5)$. La partition devient $\{e_1, e_3, e_4\}, \{e_2, e_5\}$.
 - étape 4 : on regroupe les deux groupes restants $(d_{min}(\{e_1, e_3, e_4\}, \{e_3, e_4\})) = d(e_1, e_2) = 2.7)$. La partition devient $\{e_1, e_3, e_4, e_2, e_5\}$.