UFR DE MATHÉMATIQUES ET INFORMATIQUE

Optimisation, algorithmique (MML1E31) (M1 Maths, 2016-2017)

Examen du mercredi 4 janvier 2017

Nombre de pages du sujet : 4. Durée 2h.

Les documents suivants sont autorisés :

- Polycopiés distribués en cours et notes de cours manuscrites correspondantes,
- Sujets de TP imprimés et notes manuscrites correspondantes.

La consultation de tout autre document (livres, etc.) et l'utilisation de tout appareil électronique sont interdites.

Exercice 1. (sur environ 12 points)

Rappel sur les fonctionnelles quadratiques : On rappelle qu'une fonction $g: \mathbb{R}^n \to \mathbb{R}$ est une fonctionnelle quadratique s'il existe une matrice carrée symétrique $A \in \mathcal{M}_n(\mathbb{R})$, un vecteur $b \in \mathbb{R}^n$ et une constante $c \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R}^n, \quad g(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle + c$$

(et alors la matrice A, le vecteur b et la constante c sont uniques).

Fonctionnelle des moindres carrés : Soient $n, p \in \mathbb{N}^*$ deux entiers non nuls. Soient $A \in \mathcal{M}_{p,n}(\mathbb{R})$ une matrice rectangulaire, $b \in \mathbb{R}^p$ un vecteur. On définit la fonction $f : \mathbb{R}^n \to \mathbb{R}$ par

$$f(x) = \frac{1}{2} ||Ax - b||^2.$$

Attention on utilisera la même notation pour la norme et le produit scalaire dans \mathbb{R}^n et dans \mathbb{R}^p , mais les vecteurs ne sont a priori pas de la même taille!

- 1. Montrer que f est une fonctionnelle quadratique et préciser la matrice carrée $A' \in \mathcal{M}_n(\mathbb{R})$, le vecteur $b' \in \mathbb{R}^n$ et la constante $c' \in \mathbb{R}$ associés à f.
- 2. Donner l'expression du gradient $\nabla f(x)$ et de la matrice hessienne $\nabla^2 f(x)$ de f en tout point $x \in \mathbb{R}^n$ (on pourra se référer à un résultat du cours plutôt que de faire les calculs).
- 3. Montrer que f est convexe.
- 4. Montrer que f est fortement convexe si et seulement si $ker(A) = \{0\}$.
- 5. Soit $x \in \mathbb{R}^n$ tel que $\nabla f(x) \neq 0$. Rappeler la définition d'une direction de descente $d \in \mathbb{R}^n$ au point x et montrer que $d \in \mathbb{R}^n$ est une direction de descente si et seulement si

$$\langle Ax - b, Ad \rangle < 0$$

(en particulier $Ad \neq 0$).

6. Soit $x \in \mathbb{R}^n$ tel que $\nabla f(x) \neq 0$ et d une direction de descente au point x. Montrer que le problème d'optimisation

$$\inf_{t \in \mathbb{R}} f(x + td)$$

admet une unique solution donnée par

$$t^* = -\frac{\langle \nabla f(x), d \rangle}{\|Ad\|^2}.$$
 (1)

Algorithme de gradient conjugué pour les moindres carrés : On suppose désormais que $\ker(A) = \{0\}$. On rappelle ci-dessous le pseudo-code de l'algorithme du gradient conjugué afin de minimiser une fonctionnelle quadratique

$$g(x) = \frac{1}{2} \langle A'x, x \rangle - \langle b', x \rangle + c'$$

lorsque A' est symétrique définie positive (ce qui revient à résoudre le système linéaire A'x = b'). On rappelle que, par convention, pour cet algorithme ce sont les vecteurs opposés $-d^{(k)}$ qui sont des directions de descente.

Algorithme 1 : Algorithme du gradient conjugué

Données : Un point initial $x^{(0)} \in \mathbb{R}^n$, un seuil de tolérance $\varepsilon > 0$

Résultat : Un point $x \in \mathbb{R}^n$ proche de x^*

Initialiser x:

$$x \leftarrow x^{(0)}$$
;

$$k \leftarrow 0$$
;

Première itération:

- 1. Calculer $d^{(0)} = \nabla g(x)$ $(d^{(0)} = \nabla g(x^{(k)}))$
- 2. Calculer le pas de descente optimal $t^{(0)}$ dans la direction de descente $-d^{(0)}$
- 3. Mettre à jour x:

$$x \leftarrow x^{(1)} = x^{(0)} - t^{(0)}d^{(0)}$$
; (attention c'est bien un signe –) $k \leftarrow k + 1$:

tant que $\|\nabla f(x)\|^2 > \varepsilon^2$ faire

- 1. Calculer $d^{(k)} = \nabla g(x^{(k)}) + \frac{\|\nabla g(x^{(k)})\|^2}{\|\nabla g(x^{(k-1)})\|^2} d^{(k-1)}$.
- 2. Calculer le pas de descente optimal $t^{(k)}$ dans la direction de descente $-d^{(k)}$
- 3. Mettre à jour x:

$$x \leftarrow x^{(k+1)} = x^{(k)} - t^{(k)}d^{(k)}$$
; (attention c'est bien un signe –) $k \leftarrow k+1$;

fin

7. En utilisant l'équation (1), donner l'expression des pas de descente $t^{(0)}$ et $t^{(k)}$, $k \geqslant 1$, pour la fonction $f(x) = \frac{1}{2} \|Ax - b\|^2$ en fonction de $\nabla f(x^{(0)})$, A et $d^{(0)}$ pour $t^{(0)}$ et $\nabla f(x^{(k)})$, A et $d^{(k)}$ pour $t^{(k)}$ (en faisant attention à la convention sur les directions de descentes).

8. Ecrire une fonction scilab

function $x = grad_conj_moindres_carres(A, b, x0, eps)$

qui applique l'algorithme du gradient conjugué à la fonctionnelle $f(x) = \frac{1}{2} ||Ax - b||^2$ en partant du point x_0 et avec une tolérance ε pour le critère d'arrêt. On pourra introduire une fonction intermédiaire qui calcule le gradient de f (non obligatoire).

Exercice 2. (sur environ 9 points)

Soit $n \ge 2$ un entier. On note e_1, e_2, \dots, e_n les vecteurs de la base canonique de \mathbb{R}^n . On note $||x|| = \sqrt{\langle x, x \rangle}$ la norme euclidienne usuelle de \mathbb{R}^n et

$$||x||_{\infty} = \max_{i \in \{1, \dots, n\}} |x_i|.$$

Dans la suite de l'exercice, $f:\mathbb{R}^n\to\mathbb{R}$ désigne une fonction deux fois différentiable sur \mathbb{R}^n et fortement convexe telle que

$$\forall x, h \in \mathbb{R}^n, \quad m\|h\|^2 \leqslant \langle \nabla^2 f(x)h, h \rangle \leqslant M\|h\|^2$$

avec $0 < m \le M$. On note x^* le point où f atteint son minimum global et $p^* = f(x^*)$ la valeur minimale de f.

Le but de l'exercice est d'étudier la convergence d'un algorithme de descente qui prend pour direction de descente à l'étape k le vecteur

$$d^{(k)} = -\frac{\partial f}{\partial x_i}(x^{(k)})e_i$$

où i est le plus petit indice pour lequel

$$\left| \frac{\partial f}{\partial x_i}(x^{(k)}) \right| = \|\nabla f(x^{(k)})\|_{\infty}.$$

Plus précisément, on considère l'Algorithme 2 ci-dessous.

Algorithme 2 : Algorithme de descente selon la dérivée partielle maximale

Données : Un point initial $x^{(0)} \in \mathbb{R}^n$, un seuil de tolérance $\varepsilon > 0$

Résultat : Un point $x \in \mathbb{R}^n$ proche de x^*

Initialiser x:

$$x \leftarrow x^{(0)}$$
;

$$k \leftarrow 0$$
;

tant que $\|\nabla f(x)\| > \varepsilon$ faire

- 1. Déterminer le plus petit indice i tel que $\left| \frac{\partial f}{\partial x_i}(x^{(k)}) \right| = \|\nabla f(x^{(k)})\|_{\infty}$
- 2. Déterminer un pas de descente $t^{(k)}>0$ par la méthode exacte pour la direction de descente $d^{(k)}=-\frac{\partial f}{\partial x_i}(x^{(k)})e_i$ (ou par la méthode de rebroussement de paramètres α et β).

3. Mettre à jour x:

$$x \leftarrow x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)};$$

 $k \leftarrow k + 1;$

fin

Implémentation de l'Algorithme 2 avec la méthode de rebroussement On suppose que les fonctions

function
$$fx = f(x)$$
 et function $gfx = gradf(x)$

sont définies dans scilab. On rappelle qu'en Scilab si u est un vecteur $u=(u_1,\ldots,u_n)$, alors

- abs (u) renvoie le vecteur $(|u_1|, \ldots, |u_n|)$.
- [v,i] = max(u) renvoie la valeur maximale $v = \max_i u_i$ des coordonnées de u ainsi que le plus petit indice i tel que $u_i = v = \max_i u_i$.
- 1. Ecrire une fonction scilab

function
$$x = desc_der_partielle_max(x0, eps, alph, bet)$$

qui prend en entrées un point initial $x^{(0)} \in \mathbb{R}^n$, un seuil de tolérance $\varepsilon > 0$, et deux paramètres α et β , et renvoie le point x calculé par l'algorithme de descente selon la dérivée partielle maximale utilisant la méthode de rebroussement pour le calcul du pas de descente (avec les paramètres $\alpha \in [0, \frac{1}{2}[$ et $\beta \in]0, 1[$).

Etude de la convergence de l'Algorithme 2 avec la méthode exacte Le but de la fin de l'exercice est de démontrer la convergence de l'Algorithme 2 avec la méthode exacte pour le calcul du pas de descente. On rappelle que la forte convexité de f implique que pour tout $x \in \mathbb{R}^n$,

$$\|\nabla f(x)\|^2 \geqslant 2m(f(x) - p^*)$$

On suppose qu'à l'étape k de l'Algorithme 2 le point $x^{(k)}$ est différent de x^\star . On note i le plus petit indice tel que $\left|\frac{\partial f}{\partial x_i}(x^{(k)})\right| = \|\nabla f(x^{(k)})\|_\infty$ et on pose $d^{(k)} = -\frac{\partial f}{\partial x_i}(x^{(k)})e_i$.

- 2. Montrer que $\langle \nabla f(x^{(k)}), d^{(k)} \rangle = -\|\nabla f(x^{(k)})\|_{\infty}^2$ (ce qui montre que $d^{(k)}$ est bien une direction de descente pour le point x).
- 3. Montrer que pour tout t > 0,

$$f(x^{(k+1)}) \leqslant f(x^{(k)} + td^{(k)}) \leqslant f(x^{(k)}) - t \|\nabla f(x^{(k)})\|_{\infty}^{2} + t^{2} \frac{M}{2} \|\nabla f(x^{(k)})\|_{\infty}^{2}.$$

4. En déduire que

$$f(x^{(k+1)}) \le f(x^{(k)}) - \frac{1}{2M} \|\nabla f(x^{(k)})\|_{\infty}^{2}.$$

- 5. Démontrer que pour tout $x \in \mathbb{R}^n$, $||x||_{\infty}^2 \geqslant \frac{1}{n}||x||^2$.
- 6. Montrer, à l'aide des deux questions précédentes, que

$$f(x^{(k+1)}) - p^* \leqslant \left(1 - \frac{m}{nM}\right) \left(f(x^{(k)}) - p^*\right).$$

7. Conclure sur la convergence de l'Algorithme 2.