

IMAGES NUMÉRIQUES : ACQUISITION

Joan Glaunès alexis.glaunes@parisdescartes.fr

MAP5, Université de Paris

M2 Mathématiques et Modélisation

Slides écrites par Julie Delon

Modèles d'acquisition d'images

 $\textcircled{C}\mathsf{D}\mathsf{isney}$ Studios, RED

©DLR, EADS Astrium

 \bigcirc Julie Digne

Spectre électromagnétique

©Julien Tierny

©Disney studio, gettyimages

 $u \in \mathbb{R}^{|\Omega|}$ avec $\Omega \subset \mathbb{Z}^2$, rectangle de N lignes et M colonnes.

 $u \in \mathbb{R}^{|\Omega|}$ avec $\Omega \subset \mathbb{Z}^2$, rectangle de N lignes et M colonnes.

- Résolution : nombre de pixels de l'image <u>A</u>
- Quantification : nombre de valeurs possibles que peuvent prendre les pixels de l'image cas typique : 8 bits = {0,...,255}

A gauche, image de taille 324 \times 486, à droite taille divisée par 8 dans chaque dimension.

A gauche, image avec 256 niveaux de gris, à droite image avec 3 niveaux de gris.

A gauche, image avec 256 niveaux de gris, à droite image avec 3 niveaux de gris. \rightarrow Pour aller plus loin : http ://images.math.cnrs.fr/Le-traitement-numerique-des-images.html

 $u \in \mathbb{R}^{|\Omega| \times 3}$ avec $\Omega \subset \mathbb{Z}^2$ domaine rectangulaire discret de l'image

Chttp://www.markelowitz.com/Hyperspectral.html

Image **hyperspectrale** : acquisition de plusieurs longueurs d'onde, dans ou hors du spectre visible, $u \in \mathbb{R}^{|\Omega| \times H}$ avec H la dimension spectrale

CWikimedia Commons

 $u \in \mathbb{R}^{|\Omega|}$ avec $\Omega \subset \mathbb{Z}^3$

Claude Shannon (1916-2001)

Combien faut-il d'échantillons pour représenter un signal continu?

Echantillonnage

— Basse fréquence — Haute fréquence 🖷 Echantilions

Claude Shannon (1916-2001)

Combien faut-il d'échantillons pour représenter un signal continu ?

Echantillonnage

Théorème d'échantillonnage (1949) : La fréquence d'échantillonnage doit être plus grande que le double de la fréquence maximale présente dans le signal.

Claude Shannon (1916-2001)

Combien faut-il d'échantillons pour représenter un signal continu ?

Echantillonnage

Théorème d'échantillonnage (1949) : La fréquence d'échantillonnage doit être plus grande que le double de la fréquence maximale présente dans le signal.

Traitement de l'image : discipline dont le but est de diriger et contrôler la qualité de l'acquisition de l'image et de la restaurer. **Quelles maths ?** : analyse spectrale, distributions, optimisation, probabilités, estimation statistique, etc.

Un peu d'histoire...

\mathbf{V}	ISION
	• • •
	David Marr
	rearense er Shimen Ullfann artenense er Tomaso Poggio

David Marr (1945-1980)

Vision par ordinateur (branche de l'IA, début des 80's)

- Discipline scientifique issue de la psychophysique, de la neurophysiologie, des mathématiques et de l'informatique
- But : algorithmes partant d'images ou de vidéos brutes et arrivant à une interprétation sémantique de la scène, permettant des actions automatiques

Applications : analyse de scène et alertes en vidéo surveillance, recherche d'une image par son contenu, planification du mouvement d'un robot, conduite automatique, etc.

Quelles maths ? : géométrie projective, statistique, optimisation, apprentissage, etc.

Interférométrie Interf

Des mathématiques pour les images

Calcul des variations Géométrie projective Analyse Numérique Analyse fonctionnelle Transport optimal Probabilités Topologie Analyse de Courte 1e Algèbre linéaire R Géométrie différentielle Géométrie stochasti

AUJOURD'HUI...

Vision par ordinateur + Informatique graphique + Traitement d'images

Géométrie projective, Algèbre linéaire, Synthèse de texture (Probas / Stat), etc...

Le modèle sténopé (pin-hole)

Illustration from wikipedia.org

(Aristote, Alhazen 10^{eme} s., Brunelleschi début 15^{eme} s., Da Vinci 1500, Kepler 1604 *camera obscura*)

Victoria Cooper - Doug Spowart - creative commons

Le modèle sténopé (pin-hole)

Une partie de la lumière issue de l'objet passe par l'ouverture O et se projette sur le plan focal. La distance f est appelée distance focale. Première conséquence : pas de perception absolue de la taille des objets.

Deuxième conséquence : le phénomène d'occultation \rightarrow discontinuités (bords)

Ouverture *O* finie : rayons \rightarrow cônes \rightarrow flou Pour une ouverture de diamètre *D* et *S* la scène (à distance *z*), on observe (en première approximation)

 $g_z * S$,

où g_z est la fonction indicatrice d'un disque de rayon (z + f)D/z. Si z >> f chaque point donne à peu près la même tache de flou Modélisation plus fine : prise en compte de la diffraction

from Sheila Bocchine - creative commons

- Pour obtenir une image plus nette tout en ayant une ouverture non nulle (besoin de lumière) : ajout d'une lentille.
- On observe toujours g * S, où g est la réponse impulsionnelle du système optique (en negligeant diverses aberrations et interferences).

Le modèle "lentille mince"

Hypothèses :

- Rayons lumineux proches de la normale à la surface de la lentille
- On néglige le trajet de la lumière à l'intérieur de la lentille.

Rayons issus de P se concentrent sur P'. On note f la distance focale

 \rightarrow Relation de Descartes

$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f}.$$

Mise au point : choix du plan P.

Si l'objet photographié n'est pas dans le plan P : flou de mise au point \rightarrow convolution.

On observe une scène

$$\tilde{s} = g_o * s$$
,

où

$$g_o = g_{ouv} * g_{flou} * g_{fil}$$
.

- gouv ouverture finie
- g_{flou} défaut de mise au point
- g_{fil} flou de bougé (ou de filé)

 g_o s'appelle la *réponse impulsionnelle* (PSF en anglais pour Point Spread Function) du système optique.

Un phénomène non pris en compte : le flou est variable selon la distance des objets à l'appareil photo

La profondeur de champ

hors programme

Distance séparant l'objet net le plus proche de l'appareil de l'objet net le plus lointain.

Figure par H. Maître

En utilisant la relation de Descartes et en notant D l'ouverture du diaphragme, on trouve

$$\Delta = \frac{4\epsilon Dpf(p-f)}{4D^2f^2 - \epsilon^2p^2}$$

En supposant que $\delta' << s'$ et f << p on a

$$\Delta \approx \frac{\epsilon p^2}{Df}$$

ouverture D diamètre du diaphragme; f distance focale; nombre d'ouverture N = f/D (généralement progression géométrique)

images wikipedia.org

Quand N augmente (à f constant) :

- La profondeur de champs augmente (formule précédente)
- Les défauts de diffraction augmentent
- Les défauts de vignettage diminuent

Flou artistique

hors programme

f/2.8 - by bahramr - creative commons

Acquisition alternative : le light field

hors programme

Caméra Lytro

Parmi les phénomènes qui ne rentrent pas dans le cadre d'un système linéaire invariant par translation :

• Distortion géométriques

• Vignetage

Aberration latérale

Avant et après correction du vignettage dxo.com

Autre paramètre d'acquisition : le temps d'exposition

- Peut compenser un manque de lumière ou une ouverture faible
- Doit être court pour les objets en mouvement
- Sinon, flou de mouvement

Alternative à l'obturation unique : l'ouverture papillonante (flutter shutter) \rightarrow démo ipol

- $\bullet\,$ Après passage dans le système optique $\to\,$ acquisition de l'information lumineuse du plan focal
- Utilisation d'un capteur numérique : grille de capteurs photosensibles qui convertissent les photons en courant électrique
- Echantillonnage du signal lumineux

$$(f: \mathbb{R}^2 \mapsto \mathbb{R}) \to (\{f(k)\}_{k \in \Omega}).$$

• Intégration des photons par le capteur (comptage des photons) \rightarrow convolution avec g_{capt} , fonction indicatrice du capteur Modification de la PSF

Retour à l'acquisition des images :

$$u = (g_o * s).\Pi_{\Gamma}.F$$

où

- s scène (fonction de L^1),
- g_o: réponse impulsionnelle du système optique et de l'intégration des capteurs (g_{ouv} * g_{flou} * g_{fil} * g_{capt}),
- $\Pi_{\Gamma} = \sum_{\gamma \in \Gamma} \delta_{\gamma}$,
- $F = \mathbb{1}_{\Omega}$, $\Omega \subset \mathbb{R}^2$, support de l'acquisition.

$$u = Q \left[\frac{h}{((g_o * s).\Pi_{\Gamma}.F + b)} \right]$$

où

- s scène (fonction de L¹),
- g_o: réponse impulsionnelle du système optique et de l'intégration des capteurs (g_{ouv} * g_{flou} * g_{fil} * g_{capt}),
- $\Pi_{\Gamma} = \sum_{\gamma \in \Gamma} \delta_{\gamma}$,
- $F = \mathbb{1}_{\Omega}$, $\Omega \subset \mathbb{R}^2$, support de l'acquisition.
- b bruit additif : pour $(i,j) \in \Gamma$, $\{b(i,j)\}$ est une famille de variables aléatoires i.i.d.
- *h* est une fonction croissante non linéaire (un "changement de contraste")
- Q est un opérateur de quantification

Les causes du bruit

hors programme

Illustration par Cecilia Aguerrebere

- Bruit *shot noise* Nb de photons emis par la source : loi de Poisson de moyenne $C\tau$ avec C radiance (nombre de photons par unité de temps) et τ temps d'exposition
- Courant d'obscurité (Dark current) Emission résiduelle d'électrons d'origine thermique : Poisson de moyenne d_{τ} dépendant de τ
- Bruit de lecture (readout noise). Erreurs lors de la lecture des électrons (par rapport à un voltage de référence)
- Non uniformités spatiales de la réponse des photo-senseurs (PRNU) du bruit thermique (DCNU)

$$I_{noise} = f\left(\left[g(Poiss(C\tau) + Poiss(d_{\tau}))\right] + N_{out}\right) + Q$$

avec

- $Poiss(\lambda)$: variable de Poisson de moyenne λ
- C radiance (photons / temps)
- g : gain
- τ : temps d'acquisition
- d_{τ} : valeur moyenne du bruit *dark current*
- N_{out} : bruit de lecture (gaussien de moyenne μ_R et variance σ_R^2).
- Q : bruit de quantification (uniforme)
- f : fonction de réponse de l'appareil

Remarque : on néglige les variations spatiales

Approximation gaussienne

hors programme

$$I_{noise} = f\left(\left[g(\textit{Poiss}(\textit{C} au) + \textit{Poiss}(\textit{d}_{ au}))
ight] + \textit{N}_{out}
ight) + Q$$

- On a $P(\lambda) \approx N(\lambda, \lambda)$ pour λ grand (en pratique quelques dizaines)
- En photographie standard : l'approximation gaussienne est suffisante (faux pour e.g. l'astrophotographie)
- Bruit de quantification négligeable devant le bruit de lecture

• Dark current négligeable pour temps d'exposition courts (< 1s) Approximation gaussienne :

$$N(gC\tau + \mu_R, g^2C\tau + \sigma_R^2)$$

avec μ_R et σ_R les moyennes et variances du bruit de lecture Application : création d'images HDR (cours à venir)

Approximation gaussienne

hors programme

Bleu : Poisson ; rouge : normale

hors programme Conclusion : la variance du bruit dépend du signal.

Pour prendre en compte ce phénomène, deux approches possibles :

- utilisation directe du modèle de bruit (e.g. pour dériver des estimateurs statistiques) : cf cours HDR à venir
- modification du signal pour se ramener à un bruit gaussien i.i.d. opération de *stabilisation de la variance* (e.g. transformée de Anscombe)

Compléments :

- Study of the digital camera acquisition process and statistical modeling of the sensor raw data, C. Aguerrebere et al., preprint HAL, 2013
- Optimal inversion of the generalized Anscomb transformation for Poisson-Gausian noise, A. Mäkitalo et A. Foi, IEEE Image Processing, 22, 1, pp.91-103, 2013

Et la couleur?

Trame de Bayer

Demosaicing (Détramage)

Exemple d'image obtenue par la trame de Bayer (par ex. fichier RAW d'un reflex numérique).

Fichier RAW (12 bits) compressé sans perte $\xrightarrow{}_{interpolation}$ Fichier TIFF ou JPEG 24 bits.

Demosaicing (Détramage)

Interpolation possible

Fichier RAW (12 bits) compressé sans perte $\xrightarrow{}_{interpolation}$ Fichier TIFF ou JPEG 24 bits.

Acquisition d'images par un appareil photo numérique (suite)

hors programme

Modèle d'acquisition : de la scène à l'image RAW

$$s$$
 scène $\xrightarrow{PSF+mouvement}_{+capt+flou} s * g_o \xrightarrow{sampling}_{quantization} u = Q((s * g).\Pi_{\Gamma}.F + b)$

Acquisition d'images par un appareil photo numérique (suite)

hors programme

Modèle d'acquisition : de la scène à l'image RAW

$$s$$
 scène $\xrightarrow{PSF+mouvement}_{+capt+flou} s * g_o \xrightarrow{sampling}_{quantization} u = Q((s * g).\Pi_{\Gamma}.F + b)$

Oemosaicking de u

Acquisition d'images par un appareil photo numérique (suite)

hors programme

Modèle d'acquisition : de la scène à l'image RAW

$$s$$
 scène $\xrightarrow{PSF+mouvement}_{+capt+flou} s * g_o \xrightarrow{sampling}_{quantization} u = Q((s * g).\Pi_{\Gamma}.F + b)$

Ø Demosaicking de u

O De l'image RAW à l'image RGB

$$u \xrightarrow{\text{white balance}} T_w.u \xrightarrow{linear} T_s T_w.u \xrightarrow{\text{tone mapping}} h[T_s T_w.u] \xrightarrow{+compression}_{denoising} u_{jpg}$$

