

Introduction aux probabilités - Licence MIA 2e année - parcours Informatique Contrôle continu du 14/01/2013 - Durée : 1 heure

Les documents ne sont pas autorisés. Tous les codes demandés devront être écrits très soigneusement afin que chaque caractère soit lisible.

Exercice 1

- 1. Ecrire une fonction Esperance qui calcule l'espérance d'une variable aléatoire à support fini. La fonction prendra en entrée deux vecteurs \mathbf{x} et \mathbf{p} , où \mathbf{x} représente un vecteur contenant les valeurs x_i prises par la variable, et \mathbf{p} un vecteur contenant les probabilités $p_i = P(X = x_i)$ correspondantes.
- 2. Ecrire une fonction Variance à deux arguments x et p qui calcule la variance d'une variable aléatoire à support fini, en faisant appel à la fonction Esperance.

Exercice 2 Pour chacune des commandes R suivantes, dire à quelle loi de probabilité elle correspond et ce qu'elle renvoie, puis donner la commande prédéfinie de R équivalente :

- 1. sum(sample(c(0,0,1),15,rep=TRUE))
- 2. $\exp(-3)*3^4/factorial(4)$
- 3. sum(runif(10)<0.7)
- 4. 3*exp(-3*4)

Exercice 3 Un système numérique transmet des données sous forme d'un message de n bits (valeur 0 ou 1). Afin de repérer les erreurs de transmission, un $(n+1)^e$ bit appelé bit de parité est ajouté à la fin du message avant la transmission : si le nombre de 1 dans les n premiers bits est pair, le bit de parité est mis à zéro, sinon il est mis à 1. Lors de la transmission, chacun des n+1 bits peut être altéré (sa valeur passe de 0 à 1 ou inversement), avec probabilité p et de façon indépendante des autres bits. Enfin en réception, la système signale une erreur lorsque le nombre de bits à 1 parmi les n premiers bits est en accord avec la valeur du bit de parité.

- 1. Ecrire une fonction AjoutBitParite prenant en entrée un vecteur message supposé ne contenir que des 0 et des 1 et renvoyant un vecteur paquet de taille n+1 (où n est la taille de message) composé du même vecteur et du bit de parité en dernière position. On pourra utiliser l'opération modulo, notée %% en R (exemple : 8 %% 3 renvoie 2, résultat de 8 modulo 3).
- 2. Ecrire une fonction SimulTransmission prenant en entrée un vecteur paquet et un scalaire p, et renvoyant le paquet où chacun des n+1 bits a été altéré avec probabilité p.
- 3. Ecrire une fonction Controle prenant en entrée un vecteur paquet qui vérifie le paquet en réception en comparant la parité du nombre de valeurs à 1 dans les n premiers bits avec la valeur du bit de parité, et renvoie TRUE si le paquet semble correct, FALSE sinon.

Annexe : Lois prédéfinies en R

Loi	Appellation	Arguments	Valeurs par défaut
Binomiale	binom	size=n	
de paramètre $(n,q) \in \mathbb{N}^* \times [0,1]$		prob=q	
Géométrique	geom	prob=q	
de paramètre $q \in [0, 1]$			
Normale (ou Gaussienne)	norm	$\mathtt{mean} \texttt{=} \mu$	mean=0
de paramètre $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_+$		$sd=\sigma$	sd=1
Poisson	pois	lambda= λ	
de paramètre $\lambda \in \mathbb{R}_+$			
Uniforme	unif	min=min	min=0
sur [min, max]		$\max=max$	max=1
Exponentielle	exp	rate=a	rate=1
de paramètre $a > 0$			