Université Paris Descartes

U.F.R. Maths/Info. **L3** 2010-2011

Optimisation Partiel 2h00 10/11/2010.

- Tous les documents sont interdits, ainsi que les calculatrices et téléphones portables.
- La notation tiendra compte du soin et de la qualité de la rédaction.
- Le barême n'est donné qu'à titre indicatif.
- Bien que liées, les questions du problème peuvent être traitées séparemment.

Question de cours (3 pts) Soit g une fonction définie sur \mathbb{R}^n à valeurs dans \mathbb{R} , deux fois différentiable.

- 1. Rappeler la définition du gradient et de la matrice heyssienne de g.
- 2. Pour x, h et k dans \mathbb{R}^n , écrire g'(x)(h) en fonction du gradient de g et g''(x)(h,k) en fonction de la matrice heyssienne de g.
- 3. Ecrire les dérivées partielles premières et secondes de g au point $x \in \mathbb{R}^n$ en fonction de g'(x) et g''(x).

Exercice 1 (4 pts) Rechercher les éventuels extrema de la fonction

$$f(x,y) = x^3 + y^3 - 6(x^2 - y^2).$$

Exercice 2 (4 pts) Soit $E = \mathcal{C}_b([0,1],\mathbb{R})$ l'espace des fonctions continues bornées de [0,1] dans \mathbb{R} . E est muni de la norme $|\cdot|_{\infty}$ définie par

$$|f|_{\infty} = \sup_{t \in [0,1]} |f(t)|$$

Pour $\psi \in E$ fixée, on considère l'application $T_{\psi}: E \to E$ définie par

$$T_{\psi}(f) = f\psi$$

Montrer que T_{ψ} est linéaire continue et calculer $|||T_{\psi}|||$.

Problème (9 pts)

Partie I On considère la fonctionnelle quadratique J définie pour tout x de \mathbb{R}^n par

$$J(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle,$$

où A est une matrice symétrique définie positive de taille $n \times n$ et b est un vecteur de \mathbb{R}^n .

1. Pour x et h dans \mathbb{R}^n , écrire J(x+h)-J(x) sous la forme

$$J(x+h) - J(x) = L_x(h) + \frac{1}{2}Q(h,h),$$

où L_x est une application linéaire continue qui dépend de x et Q est une application bilinéaire continue.

2. En déduire que J est deux fois différentiable sur \mathbb{R}^n .

3. Vérifier que le gradient $\nabla J(x)$ et la matrice heyssienne $H_J(x)$ de J en x sont

$$\nabla J(x) = Ax - b$$
 et $H_J(x) = A$.

4. Montrer qu'il existe $\alpha > 0$ tel que

$$\forall h \in \mathbb{R}^n, \langle H_J(x)h, h \rangle \geq \alpha |h|^2.$$

Partie II Soit x fixé dans \mathbb{R}^n tel que $\nabla J(x) \neq 0$. On considère l'application f définie pour tout t de \mathbb{R} par

$$f(t) = J(x - t\nabla J(x)).$$

1. Calculer la dérivée de f en t.

2. Montrer que f admet pour unique point critique

$$t^* = \frac{|w|^2}{\langle Aw, w \rangle}$$
 avec $w = Ax - b$.

3. A l'aide de la question I.4, montrer que f admet un minimum en ce point.

4. On pose $y = x - t^* \nabla J(x)$. Montrer que

$$\langle \nabla J(y), y - x \rangle = 0.$$

5. A l'aide des questions I.3 et I.4, en déduire que

$$J(x) - J(y) \ge \frac{\alpha}{2} |y - x|^2.$$