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In this paper, we present a computer-assisted metho d for facial
reconstruction : this method provides an estimation of the facial
outlook associated with unidentified skeletal remai ns. Current
computer-assisted methods using a statistical frame work rely on a
common set of points extracted form the bone and so ft-tissue
surfaces. Facial reconstruction then attempt to pre dict the
position of the soft-tissue surface points knowing the positions of
the bone surface points. We propose to use linear | atent variable
regression methods for the prediction (such as Prin cipal Component
Regression or Latent Root Root Regression) and to c ompare the
results obtained to those given by the use of stati stical shape
models. In conjunction, we have evaluated the influ ence of the
number of skull landmarks used. Anatomical skull la ndmarks are
completed iteratively by points located upon geodes ics linking the
anatomical landmarks. They enable us to artificiall y augment the
number of skull points. Facial landmarks are obtain ed using a mesh-
matching algorithm between a common reference mesh and the
individual soft-tissue surface meshes. The proposed method is
validated in terms of accuracy, based on a leave-on e-out cross-
validation test applied on a homogeneous database. Accuracy
measures are obtained by computing the distance bet ween the
reconstruction and the ground truth. Finally, these results are
discussed in regard to current computer-assisted fa cial
reconstruction techniques, including deformation ba sed techniques.
INTRODUCTION

In forensic medicine, craniofacial reconstruction refers ng process that aims to
recover the morphology of the face from skull observation (Wikan2005) . Otherwise
known as facial approximation, it is usually considered whenraootgd with an
unrecognisable corpse and when no other identification evidenceailsbde. This
reconstruction may hopefully provide a route to a positive ifiegition. Forensic facial
reconstruction is more of a tool for recognition, than a method daitifdation
[Wilkinson]: it aims to provide a list of names from which timglividual may be
identified by accepted methods of identification. Sinceadtsception in the 19century,
two schools of thought have developed in the field. To answer the quésgiiconly one
face be produced from each skull”, facial “approximators’intldghat many facial
variations from the same skull may be produced, whereas paet#iof the other school
of thought attempt to characterised the individual skull morphologyn#éke the
individual recognisable. In recent years, computer-assistednitpies have been
developed following the evolution of medical imaging and computeense. As
presented in the surveys in (Buzug 2006, Clemens 2005, DeGreef 20@5)sovi
2005), computerised approaches are now available with reducednpence timeline
and operator subjectivity.



The first machine-aided methods were inspired by manual methdldswual
reconstruction follows four basic steps, (according to Hel@@03) : Examination of
the Skull, Development of a Reconstruction Plan, Practical &ecilg and Mask Design.
Translated into a computer-assisted framework, these stepsccording to Buzug
(2006) : Computed Tomography Scan of the skull, Matching of aTsdtie Template,
Warping of Template onto Skull Find and Texture Mapping/Virtuak®Up. The first
step aims to extract structural characteristics : formgka key skull dimension for
manual methods or crest-lines (Quatrehomme, 1997 ) for compuisteds ones.
Another example is the location, automatically or by an exgfecephalometric points.
Skulls and facial surfaces have been collected using a vefigdtyand 3-D methods such
as photography (Stratomeier, 2005), video (Evison 1996), laser scd@aesg, 2006),
magnetic resonance imaging (Paysan 2009,Mang 2006,Michael 1996), holography
(Hirsch 2005,Hering 2003), mobile digital ultrasound scanner ((2868), computed
tomography scanning (Jones 2001,Bérar 2006,Tu 2007) .The second steps donsist
compiling all the data obtained during the investigation anidistoft-tissue depths for
specified points of the face in accordance with the individkaender and type of
constitution. This is the equivalent of the “Matching of a Soft ugs¥emplate” step,
which aims at identifying an appropriate soft-tissue tetedi@m a database or inject in
the model the estimated age, body mass index, gender or ancestry.

The third step is either the modeling of the muscles using Wadbowed by the
embedding of eye glass, then by the modeling of the nose, mougyalnds, ... or the
deformation of the face template in order to fit the detiual dowels placed on the
virtual skull on given landmarks. Interactive correction of indivighaats of the face was
usually necessary in the computerized reconstruction andadymithe wax face is
reworked to achieve a natural appearance. The last stestsomsi achieving of a
natural-looking face. In summary, the first machine-aided technigtexs a skin surface
mask to a set of interactively placed virtual dowels ordtggized model of the remains
[Evenhouse 1992, Vanezis 2000, Shahrom 1996]. These techniques did noeémto |
the relationships between bone surfaces and soft-tissue esurfagt to use the
relationships described in soft-tissue depth tables (RI8986, Rhine 1984). Moreover,
skilled operators were necessary in the choice of féemplates, features or sculptural
distortions, thus creating a dependency on the practitioner ngaand subjectivity
(Wilkinson, 2005).

Later technigues have moved away from the manual techniques arnd usationships
between soft-tissue and bone surfaces. Two kinds of method® alistinguished based
on the representation of the bone and soft-tissue volumes. Bhéyfie of techniques
aims to keep the continuous nature of the skull and soft-tissueesirtastimates of the
face are obtained by applying deformations of the space esoaf known bone and
soft tissue surfaces, called reference surfaces. Thésema@tions are learned between
the surface of the dry skull and the surfaces of the referémds and then applied on
the surfaces of the reference faces. They can be paia(eeg B-splines) [Kermi 2007,
Vandermeulen 2006], implicit using variational methods [Mang 2006, N2&QJ] or
volumetric [Nelson, 1998 Quatrehomme 1997]. Depending on the method,ntie fi
estimated face can be either the deformed face whosenmegeskull is the nearest of the
dry skull [Nelson 1998, Quatrehomme 1997] or a combination of all¢fermed soft-



tissue surfaces [Vandermeulen 2006, Tu 2007]. Here, the relapsnbeiween the
surfaces are not learned but conserved through the deformatids fi€b a single dry
skull corresponds as many deformed faces as subjects in thieasks and all the
combinations possible between them (the more common combiregiog the mean).
The generic deformations applied to the templates are notspecgic, but only
“smooth” in a mathematical sense. No problem arisesnwthe differences between the
model and the target skull-based surfaces are small. Howétbese differences are
relatively large, the required deformation will be momdrnmunced, resulting in a
possibly unrealistic, or implausible facial reconstruction.

The second type of approaches chooses to represent individualsausangmon set of
points, like soft-tissue depths were originally measured. s gosition of the
corresponding points for all the individuals can be summarisediables in a table, the
main idea is then to use statistics to decipher thaaelaetween the skull and the soft-
tissue. The common set of points can either be anatomical dksinfiClaes 2006,
Vanezis 2000] or semi-landmarks located following a point cooredgnce procedure
[Berar 2006, Kahler 2003, Paysan 2009]. Semi-landmarks are definmmnés that do
not have names but that match across all the samples of aelaiader a reasonable
model of deformation [Bookstein 1997]. Usually, a small set ofoamaal landmarks is
used to represent the bone surface whereas a larger sehtsfip used to represent the
soft-tissue surface. The larger the set, the more this seapetion of the surface
approaches a real surface. Apart from the practical reamstof the number of
anatomical landmarks that an expert can define and extnacg is no justification of a
chosen number of points used to represent the skull surfaced|ntihee information
given by the position of skull anatomical landmarks is doublet,Rinere is geometric
information given by the coordinates of the points. Then, “anatomic’nrgton is given
by the measures of tissue thickness made on this points. Ténsation is available for
a limited number of points. However, the geometric informagieen by the position of
the point can be completed by automatic methods of landmatkceah. The second
part of the data analysis framework consists in learning dlaionships between the
soft-tissue variables and the bone variables. In current tpes)ia linear model of the
common variability of the positions of the points is learnedovalhg the works made in
statistical atlas, medical or audiovisual speech- callsttestical shape model [Cootes
1995]. Either the variability of the points of the soft-tissue aaaf[Claes 2006, Basso
2005, Tu 2007], or each set of points of each surface [Paysan 20@0ket containing
the points of both surfaces [Berar 2006, Mang 2006] can be ledBtettstical shape
models describe the shape as a mean shape and a setrofdiegtgons around it. Each
of these variations is controlled by the modes of the model, mndndividual can be
described by a set of values of the variations modes, alsdl eariability parameters.
Statistical shape models are an attempt to charaadeheeindividual skull morphology
to make the individual recognizable by the value of the varialphtameters. For facial
reconstruction, the predicted soft-tissue surface will bartstance of the shape model
the nearest to the measured skull landmarks or analogous fatg, p@pending on
which of those points are included in the model.

However, the prediction of the positions of the soft-tissue pointsikigalve positions of
the set of skull landmarks is a regression problem. The skititspwill then be
considered as entries of a regression model and the face wdiriie considered as the



outputs of the model. Several regression methods have been devstmpedsharing the
ideas behind the statistical shape models. Principal Comp&sgmnession will build a
statistical shape model of the shape of the skull and use thiligr parameters of the
model, also known as latent variables, as predictors faretression problem. Another
example of a latent variable regression method is Latent iRgog¢ssion [Gunst 1976,
Vigneau 2002]. Designed to take into account the presence of eotjnén the
variables, in our case the positions of the skull landmarks aihe éd¢e semi-landmarks,
it shares the use of Principal Component Analysis (Joliff 1986)thi&estatistical shape
model and indeed builds a joint statistical shape model oi@lpbints, bone and soft-
tissue alike.

For all facial reconstruction methods, the assessment of theaayg, reliability and
reproducibility of the computer-based systems is of parammpurtance. Practitioners
have relied for a long time on examples of successful forereses or subjective
assessment of resemblance. Databases of surfaces enatdeobgin quantitative
measures of the proximity between the shape of the predicigdvalidation samples.
However, as each database is different, so are each lidagitm and point
correspondence procedures. Comparison of methods is therefo@iltdieind the
guantitative measures of the proximity of surfaces do not ttanalall into a success
rate for identification. Simplified face-pool tests haverbesed in order to estimate the
identification success rate, established generating 2D infagsthe 3D models and
showing them to human observers [Claes 2006]. In the same cegnrespondences
between facial landmarks on the predicted surface and phpltoggacan be researched
[Tu 2007] as a short cut for a possible recognition.

In this paper, we propose facial reconstruction techniquesg usiear regressions
methods and compare the results obtained to those giversthtistical shape model.
The deformation algorithm -used to build the database oftisefte meshes- provides
one last facial reconstruction methodology, where the deformatidesh demputed
between the surface of the dry skull and a bone surface téatreng database will be
applied to the corresponding face surface of the base toabtfacial reconstruction.
The same error criteria will be used to quantitatively gara all the obtained
reconstructed faces. In conjunction, we interrogate the numbekuf landmarks
necessary. Basing our first experimentation on anatomical Iskulinarks extracted by
an expert, we will iteratively add supplementary matheraiaskull landmarks following
the point correspondence technique described in Wang (2000), whiek ol the
geodesic paths between the landmarks to define new landmarkgessten methods
will be used to predict the new points given by each iteraind those results compared
to those of the facial reconstruction methods.

The paper is organized as follows. The material and methograsented in a first
section : Section 1.1 presents the material on which this baglipeen done. Section 1.2
and Section 1.3 focus on resolving the point correspondence prat#sonibing the two
methods used to obtain the two subject-shared descriptiot® dfone and soft-tissue
surfaces. Section 2 presents the statistical methods uged building and use of a
statistical shape model, the Principal Component Regressidrtha multivariate Latent
Root Regression method. Section 3 shows the results obtaingéa lojfferent models
and discusses the influence of the number of skull landmarks andstétisécal method
chosen.



MATERIAL AND METHODS

This study was performed using whole head and skull surfackesmextracted from
whole head CT scanners acquired for a project on faciahs&wction of University
Paris Descartes. In the framework of this study, we focus gnoup of 47 women aged
from 20 to 40 years. Soft-tissue and bone surface meshes é@avebtained following
mathematical and computational processes described inaT({#209). Anatomical skull
landmarks were also manually located on each CT Scan accordiagdca methods of
physical anthropology (13 midpoints and two sets of 13 lajgoalts ). In order to
augment artificially the size of the database, the entrigseodatabase will consist of left
or right halves of each surface meshes. The skull and thedtace have symmetric
shapes, but the relationships between these face and skélssti@ not depend on the
side of the head. The plan minimizing the distances to the aiwalamdpoints has been
chosen as an artificial boundary between the right and l¢foptre shapes.

The next step is to establish correspondences between pes sifaeach subject in order
to quantify the anatomical differences between subjects & common step of the
building of statistical shape models or of statisticalsatta According to the elements of
the shape chosen to represent its instances in the statistidal (surface, lines, points),
this problem of correspondence is reduced to a problem #spamdence between sets
of points, lines or surfaces. Points correspondence procedurestegtints which
correspond to the same places on the different individualsorisequences, each skull
or face shape mesh share the same mesh structure wsdmieenumber of vertices. For
example, anatomical landmarks located by the expert establrough mesh for each
subject with a shared structure between the subjects,eadehe variability of the
position of the vertices reflect the anatomical characiesisif each subject. In the
opposite, deforming a common mesh on all the subjects mesheavshare the
structure of the deformed mesh. The location of the verticeadatf deformed mesh will
too reflect the anatomical characteristics of each subjectording to the point
correspondence procedures used, the surfaces will be eitheflowirfg these plan as a
pre-processing step (soft-tissue surfaces) or the autoihatedracted points will
respect this symmetry constraint (bone surfaces). The mhated between the left and
right entries will be located on the boundary plan.

Building Normalised Shapes: Point Correspondence Procedure FoohbeSBrfaces



Figure 1: Iterative extraction of skull landmarks

The anatomical landmarks located by the expert (figure 1,Axblesh a first
correspondence between the skulls. Following the scheme presefteehg (2000), we
define a set of triangular connections between these anatormdaldeks. For each pairs
of connected points, we can extract a set of geodesic cuthedre theses points.
Geodesics are defined to be the shortest path between poitiie curved spaces of the
shape surfaces (see figure 1 B). As the shape surfacedretwo landmarks is different
from a sphere, theses geodesics are unique. At this stepsaegmgsate of curbs on the
surface between the landmarks is build. We then can definelarmmarks as the
midpoints of each geodesics and decompose each triangle inteefedriangles. A more
dense triangulation is then derived as seen figure 1 C. As thtvigeprocess is repeated,
the structure is refined to denser surface points and triangul@tierobtained structures
form meshes, who share the same structure for each indivahghimplicitly solve the
point correspondence problem.

Moreover, the defined structure is symmetric : the two enfieds and right) of the
database share a common substructure and set of midpoose (fL,D). Due to
numerical instabilities, two methods of geodesics computatiosudiace meshes have
been used : Surazhsky algorithm (Surazhsky 2005) and Fast Marétgorithm
algorithm [Sethian 1999], implemented by Peyre in the Geowdwary. For two
iterations of the procedure, it results in three sets of &kullmarks for each individual.
A first set of points composed of the original landmarks : 13poids and 13 lateral
points. A second set composed of 54 points is added by theitéiration of the
procedure (10 midpoints and 44 lateral points) and complethd1®8 new landmarks
by the second iteration (20 midpoints and 178 lateral poifit®.total number of points
for each structure up to 5 iterations is shown Table 1.

Iteration 0 1 2 3 4 5

Number  of 26 | 80 278 | 1034 | 3986 | 15650 |




points

Midpoints 13 23 43 83 163 323

Lateral points | 13 57 235 951 3823 15327

Table 1: Number of points by iteration of the procedure

Figure 2 shows skull meshes corresponding to successive iteraftithves procedure. As

more points are extracted, new levels of details are obta@sgecially in the superior
part of the skull. A limit of this procedure occurs for very Briemgth of one side or

more of the triangles. In this case, the triangle degenardtea point or a segment and
subsequent iteration will extract all supplementary pointeersame location. Moreover,
as the surface encompassed by each triangles becomdsr sthal triangles become
planar. All supplementary points are then situated on tine ggane and the information
given by the supplementary points is less useful.

Figure 2: Skull shape meshes generated for iteration 0 to 5

Building Normalised Shapes : Point Correspondence Procedure FofSdthéssue
Surfaces.

For the soft-tissue surfaces, no landmarks are located. Moreoe@sures of tissue
thickness are not provided : the number of skull landmarks corresgptalsuccessive
iterations of the former point correspondence procedure incréasesiuch to allow
manual measurements to be done. The quality of automatic extrattissue thickness
on landmarks depends on the surface representation: the normas \actibre surface
meshes are sensitive to the triangulation used on the surfas®se Thickness can not be
measured correctly and automatically on all possible landmaitk&t&12009 |.
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Figure 3: Establishing correspondences between the face :f@agree mesh, (b) subject
face surface mesh, ( ¢) subject deformed reference mesh.

Instead of facial points analogous to the anatomical skull pewet&xtract a set of semi-
landmarks for each individuals neither really dense or sparserkiMy on the “half”
surfaces previously defined, the point correspondence procedureeregyiseference
mesh (see figure 3,A) on the individual soft-tissue surface igseghfigure 3,B) resulting
on a deformed reference mesh (see figure 3,C). The reigistiatmade computing an
elastic deformation between the reference mesh and safetisurface meshes of the
database. The deformed meshes of each entry of the dabhavasthe same number of
vertices (1741 for the mesh of an half face). The assumpfigemi landmarks is then
assumed : each vertex of the deformed reference meshelemdhe same point for
every individual. The 3D to 3D meshes matching algorithm used is aietbdérsion of
Szeliski algorithm (Szeliski 1996). A first modification hasebbemade to take into
account the difference of density between the reference mmesitha high-density
meshes of the soft-tissue surfaces. The second modificatianesrtbat each vertex of
the boundary of the deformed reference meshes is shared hghhand left meshes.
The mesh used as the reference mesh correspond to the otthenface of head mesh
modelled by F. Pighin (1999), where the density of verticesmortant in zones with
high bend and small in zones with low bend. This dissimildréween the soft-tissue
surface meshes and the reference meshes have consequencestanitesdirom the
vertices of deformed reference mesh to its associatkdissue surface mesh are null.
However, the distances from the vertices of the soft-tissegh surface to the deformed
reference mesh are not null, as it can seen on figurbethighest distances (superior to
3 mm) correspond to parts of the soft-tissue surfaces wduchot have corresponding
regions in the reference surface. Other distances correspoedidos like the forehead
or the cheeks where the difference of the density of verticdsvated. Vertices with no
direct counterparts can be as far as 2 mm from the sudafined by the deformed
reference mesh. A good measure of the error introduced during thicpoegépondence
step is the median of the distances, which does not take icdardgdhe large distances
generated by the lack of correspondence on the boundaries. Upssmmgdles of the
database, the mean median of distances is 0.22 mm (with staled&tion of 0.04 mm).



Individual correspondence error range from 0.17 mm to 0.34 mm, whbaeeaxlividual
mean of the distances range from 0.54 mm to 2.66 mm.



STATISTICAL METHODS

The variable!X | respectively Y are obtained from the positions of the N skull points,
respectively L soft-tissue points of subject i :

x=[sisys; sisysi] (v,
yi=[FXFyFL FiFyFi] (2).

Two geometrically averaged templa x ;and ¥y are computed and the data centered :

Xj= X+X; (3),
V=YY (4).

The data table X |, respectivelyY , of size n x N, respectively n x L, encompass the
variables corresponding to the n centred san X; :@nd ¥; in the learning database. In
the following paragraphs, the transposition of the mi X «will be notec X" .

Principal Components Analysis

Principal Components Analysis [Joliff 1986] performed on the tilk X extracts a
correlation-ranked set of statistically independent modes wfipal variations from the
set of subjects described in the data t: X : These principal modes are vectors of 3D
coordinates (of size 3N) defined as linear combinations of positipns, they capture
the variations observed over all subjects in the databasandties are sometimes also
called variability parameters. These vectors are the eigemrgeof the covariance matrix
X'X associated to the eigenvallli i sorted such al:  >l, O . The eigenvectors
are orthogonal.

lig;=X"Xg (5).

Every entry Xi in the database can now be represented as a weighted éndzination
of these eigenvectors :
Xi=  C;a; (6)

where € is the weight attached to sami and eigenvectj , also called the principal
component of samfi on axis of variabilit j . As the modes are correlation-ranked, the
first modes are responsible for the greatest part of tkeredd variance of the data. In
most cases, only a small number of modes is necessaryréserpmost of the observed
data. A classical criterion is to choose the number of mt Jlesorder to represent 95%
of the observed variance. A good approximation of each sasphemn given using the
first t components :

10



Xi=  ¢a(7)

For a new entr X, , each weight can be extracted as the projection of thdesam@ach
axis of variability :
COj:Xgaj (8)

A new sample can be build from these components and the vieyiakis.

X =

0 Cp@

i

A measure of the generalisation power of the model is the regotsh error, which we
will call re-synthesis error to avoid confusion with (facialjaestruction :
Ess X X (9),

which consists in the distance between the re-synthesisetesamdgthe original.
Principal Components Regressions

Principal Components Regression (PCR) is a linear regressathod. The multi-

response linear regression model for centred data is defined as
Y=XB+E (10),

where B is 3N x 3L matrix of regression coefficients i E is a noise matrix of size n x
3L. The elements of the mat E are assumed to be normally distributed with mean E[E]
=~0 and variance var[E] = S. Given a new sar Xo 3 an estimate ¢ Yo is:

Yo=B'Xq (11).
The mean square estimation of the coefficier B ¢f given by
B= X'X X'y (12).

However, in case where the predictors (x) present a lob-tihearity, this estimation is
not optimal and a common way is to substitute the predidigrthe first t principal
components corresponding to the samples of the database, regimoupatix C . As
the axis of variability are orthogonal, there are no co-lineanitthe new predictors. A
mean square estimation of the regression coefficients hetthheecomponentsC and
Y is build :

1
Gpe= C'C C'Y (13)
which can be used to estimate the regression coeffidignithe matri: A regroup the t
first axis of variability) :

B.c=A C'C 'C'Y (14)

11



This kind of methods originates from chemiometrics were a smatiber of predictors
must predict a great number of outputs. It is then partigudaidpted to the ratio between
a small number of skull landmarks and the great number of f@icespHowever, the
statistical model presented here will take into account dvyskull data (X), and so will
the regression model. How can we take into account the obseavidbility of the
known face shapes (Y) ?

A Common Statistical Shape Model

Consider the matri Z formed by merging data tabl X and Y and perform Principal
Component Analysis 0 Z . The result of this PCA is still a correlation-ranked set of
statistically independent modes of principal variatid; , vectors of size 3(N+L). Each
eigenvectord; with positive eigenvalue obtained by PCA can be decompasétiea
juxtaposition of two vector d;=[V; W] , with Vi of size 3N ancW, of size 3L. Each
part X, and Y; of entry Z, can be expressed sharing the same we bij sand the
vectorsV, andWw,; :

X= bV (15)

yi=  byw; (16)

For facial reconstruction, we search the best model fit irtsance 2= X, Yo| of the
model the nearer from the measured skull landm X, 5 As Z, can be represented
using the parametric representation of the statistical nmaslal set of weight bo,- , the
problem is resolved finding successively each w: by, for which the distance between

the measured skull landmarks and the points of the model correspaodisigull
landmarks is the smallest :

bOj:argminbOj bOj Vi X (17).
The solution is given

Xq V.
-0 "
=—— (18
0j Vj Vj (18)

b

and the facial reconstruction is obtained by :

Yo=t  byw; (19)

Latent Root Regression

Latent Root Regression (LRR) is a linear regression meth&R i& similar to Principal
Component Regression (PCR) (and Partial Least Square (Fdgsgssion), with

comparable results in the literature. Single response LReot Regression (Hawkins
73, Webster et al. 74) use the same ve(V, ‘s the common statistical shape model to
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estimate B . As theses vectors are not necessary orthogonal, an itenaioexpre build
upon the first latent variable is necessary as in mudporsee PLS (PLS2) (see Vigneau
& Qannari 2002 for details) for Multi-Response Latent Root Regmes# results in a
sequence of orthogonal vect(V; which enables us to compute regression coefficients,
following the formula :

Blrr= viﬁvf Xty (20)

RESULTS

Validation

The validation of the proposed statistical methods for craci@f reconstruction is
obtained by a leave-one-out cross-validation procedure. Eachnomes iturn, two
couples, left and right, of skull and soft-tissue sampleser®ved from the database
and used as test cases, the remaining entries are useat® the statistical model. The
skull points of each couple are used as separate entridhef statistical model. The
resulting location of the face points are then compared tivtin real location. However,
the location of the face points is the result of the deformaifoa common reference
mesh. The distance between the location of each prediatedptant and the original
soft-tissue surface mesh of the test case -which ister lagtproximation of the ground
truth- can be computed and is a more acute measure.

How Many Skull Landmarks ?

In order to assess the number of necessary skull landmarksnuese the hierarchical
nature of the extraction procedure presented in section 1.Zhanstatistical methods
presented in Section 2. Each landmark set of inferior I@aitaining less landmarks)
can be used to predict the position of the landmarks of sugesiel. If one set can
predict the positions of all points of all subjects of the folimMevel with a very good
accuracy, then there is no information added by the supplememiatg. Therefore, it is
not necessary to use more points for the description of thestlage. However, we can
first remark that the answer given by this experiment ballrelated but different to the
answer to a question on the number of necessary skull landmasksaiaréconstruction.
A common interrogation will be : is all the information givbg the skull shape
necessary to predict the shape of the face ? Secondly, bmegiees described here can
be used when the skull is fragmented to predict missing #agrof the skull from the
remaining parts.

For each set of landmarks, we build a PCA model. It giveslinear model of the shape
variations, as described by the set of landmarks. This matlddemused to predict the
position of the supplementary points in upper level sets, UBimgripal Components
Regression. However, we first test the generalisation dgpatithese models by
projecting the landmarks of a test subject into the modelektracting its variability
parameters, and then re-synthesising the landmarks using thed®litsaparameters. If
a model has a good generalisation capacity, then the locatibe md-synthesised points
will be very close to the location of the points of the sestject. These errors correspond

13



to the accuracy of the prediction by model based upon NO pdiatstape described by
NO points, up to the accuracy of the prediction by model N& Nb-shape. These first

results are shown in the diagonal of the Table 2.

Next, we use principal components regression (PCR) to préuiclocation of the
supplementary points. If the prediction of these points is atsuthen the supplementary
points do not add any information that can't be extrapolatedrijnasing the previous
set of points. Table 2 presents the mean prediction errting @oints introduced by each
successive level of the procedure. For example, the model baséd points is used for
the prediction of shapes described by N2, N3, N4 and N5 points.

Sets  0fNO (26) N1 (80) N2 (278) | N3(1034) N4 (3986) N5 (1565
points
NO 0,04mm (43) 0,23mm (37) 2,55mm 4,29mm 4,56mm 4.58 mm
(18) (13) (10) (12)
N1 _ 0,16mm (43) 3,09mm |4,47mm 4,61mm 4.58 mm
(29) (14) (20) (12)
N2 _ _ 0,86mm | 1,44mm 1,40mm 4.60 mim
(92) (79) (79) (20)
N3 _ _ _ 1,13mm | 1,16mm 1.17 mm
(92) (92) (92)
N4 _ _ _ _ 1.13mm [1.60 mm
(92) (92)
NS _ _ _ _ _ 1.09mm
(92)

Table 2: Accuracy of the

used)

prediction

of landmarks (mm) (numbereébility modes

First, the generalisation capacity of the different modehaasured by the re-synthesis
error decreases as the number of points increases (from18630) : the ratio between
the number of points and subjects becomes unbalanced. For aeNf@pdtlel is built on
96 subjects for 3*26=78 coordinates, whereas for N5, the modeildsdn 92 subjects
for 3*15650 coordinates. More subjects are necessary to takecowont the variability
of the data, as the optimal number of modes corresponds toakienam number of
modes. For N3, N4 and N5, the generalisation capacity of thelsnsd®ot as good, but
there are no significant differences between the errors (1n993911.13 mm).
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We can then observe that the model based on NO pointsmerés well as the model
based on N1 points, whatever the number of points describinghéipee to predict, and
uses the same number of principal components, even for shapabeateby N1 points.
Moreover, models based on NO and N1 points are not sufficienbtel the variability
of the shapes of the upper levels, as shown by the prediatiors.eThis seems to
validate the use of a greater number of points than 100.

The models based on N2 and N3 points perform as well feynthesis than for the
prediction of the supplementary points. It is particulanhe in this experiment for the
model based on N3 points, which perform as well on predittiam the models based on
N4 and N5 points on re-synthesis (1.16 mm vs 1.13 mm, 1.17 m%$nn)). For the
prediction of a really great number of points (N5), the modeled on N2 points
performs the same as the model based on less than a hundogdf p

Given our number of subjects in the database, one thousand pesms $0 be a
sufficient number of points to model the shape of the skull. udk & number of points
can't be located manually by an expert without being tiomswumptive, semi-automatic
or fully automatic location methods for the landmarks are therefessary.

Facial Reconstruction : Results

The cross-validation procedure was performed on the availatdbada resulting in 47
successive test cases. As the database is composed pahalfof the bone and skin
surface, as much as 92 modes can be used for the predicttonlotation of the points
of the soft-tissue surface. The other limiting factor of th&imam number of modes is
the number of known points per entries. For NO = 26, the total nushlsemponents of
the known points is 78 and is inferior to the size of thenlagrbase. For the successive
level, it won't be an issue as the total numbers of comporseBtimes the number of
points : the maximum number of modes is the number of learningesu®2).

PCR PCA JSSM LRR
NO 3.09 + 0.68 mm (11)] 4,09 +1.28 mm (4 3,08 + 0.73 mm (13)
N1 3.08 + 0.67 mm (18) 3.93+1.12 mm (4 3.17 +0.72 mm (12)
N2 3.05+ 0.69 mm (19) 3.87 + 1.05 mm (4 3,14 + 0.72 mm (12)
N3 3.07 + 0.69 mm (19)] 3.69 +0.94 mm (4 3,13+ 0.70 mm (12)
N4 3.08 +0.70 mm (19) 3.36 + 0.87 mm (6 3.09 + 0.71 mm (14)
NS 3.09+0.70mm (19) 3.19+0.73 mm (13) 3.10 + 0.70 mm (20)
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Table 3: Accuracy of the prediction of the semi-landmarks ((nomber of variability
modes used)

For the three presented methods, the mean location error s igivieable 2. Figure 4
shows the evolution of the error for the first 25 modes. In a iiing, twe can observe that
proper methods of regression (PCR, LRR) give better refsulthe task of prediction
than the use of a joint statistical shape model. For this méa#@a JSSM), more points
correspond to a better prediction of the location of the facelaenmarks : from a mean
prediction error of 4,09 mm with NO points to a mean ptemicerror 3.19 mm with N5
points . However, even with N5 points, the prediction ersostill higher than for the
regression methods : 3.19 mm.

The results given by the regression methods are equivalentedpet@eh methods, and
the benefits given by the number of points is less obserasbthe values of the mean
prediction error are very close whatever the number of poibetween 3.05 mm and
3.17 mm. The results given by the PCR method are consistdntheittest realised to
decipher the number of skull landmarks, with the best predigii@n for N2 (then N3)
points. Remember that for N5 points, most of the supplemeptants locations can be
predicted using N3 points. The number of face points to baigbed (14616) is in the
same range than N5, but the relationships between the potsoarin these case
concerning the interior of a triangle surface patch. For latentregression, who shares a
common scheme with the joint statistical shape model, the pmdnts the more precise
the prediction, except for the NO shape and N5 shape. Nluenced by the good
prediction of one of the case, as the standard deviation (0.78miMND point is higher
for any other results.

The results presented here plead for the use of a regressibad, but which one choose
? PCR performs slightly better than LRR and is lessi@nited by the number of skull
points used in the model. For the moment, it seems that aent laariable linear
regression can be chosen without great difference. The idealenwipoints is to be in
the range of a thousand.

This mean points location error is very influenced by the mamespondence procedure
used for the soft-tissue surfaces. As the objective oflfeetanstruction is to provide a
prediction of the shape of the soft-tissue surface, a begasure would be the mean
distance between the predicted points and the soft-tisstaxesueconstructed from the
original scan images. Moreover, the points-to-surface errtreisneasure used in most
works in facial reconstruction. Table 4 presents the resulthé points-to-surface error.
The results observed follow the same pattern than the gouptsints error and with a
new order of magnitude of 1.4 mm, slightly modified by the pragaabperation on the
surfaces.

PCR PCA JSSM LRR
NO 1,31+0.28 mm (23) 1,89 + 0.50 mm (4) 1,33 + 0.26 mm (13)
N1 1,33+0.28 mm (19) 1,77 + 0.50 mm (4) 1,38 + 0.27 mm (13)
N2 1,30+0.26 mm (17) 1,74 + 0.41 mm (4) 1,36 + 0.25 mm (16)
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N3

1,31+0.26 mm (18)

1,64 + 0.37 mm (8)

1,34 + 0.25 mm (16)

N4

1,32+0.26mm (17)

1,48 + 0.29 mm (9)

1,33 + 0.24 mm (15)

N5

1,33 +0.27 mm (17)

1,39 + 0.29 mm (18)

1.35 + 0.26 mm (20)

Table 4: Mean points-to-surface error (mm) (number of variakilitdes used)

An example of facial reconstruction is presented figure 4L®®R method, with the
associated distance cards. At each face landmark, a cel@associated following the
prediction error giving us a spatial map of the reconstruaroor. This reconstruction
corresponds to the following global errors : 2.50 + 0.87 mm(R-B% + 0.84 mm (P-
S). The range of prediction error for a point is 0.007 mm to 4@81ithe highest
reconstruction errors are located on the side of the face mabkseter region. The others
regions with high errors correspond to the nose and the lowed.ej&ie that the
predictions and distance cards for each halve of the falgldly different, as the face
and the skull landmarks are not symmetric. However, each reactestihalf face shares
many common features.

Figure 4: Example of facial reconstruction for LRR method.Lefiginal face surface
(right), reconstructed face (right)Right : distance card of phediction of the left and

right halves of the soft-tissue surface.
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For each method, points number and components number, we camteatoelan and
standard deviation for each predicted point of the mask. Houdting spatial maps of the
quality of the reconstruction procedure for the optimal numberrahpeters can be seen
figures 5 for the local mean. The mean local errors ranges @r5 mm to 3 mm.
Whatever the method, the facial areas with the highest recarstrecror are the outer
limits of the mask and are for a part an artefact opthiet correspondence step : there is
no explicit correspondence to fix the limits of the mask iselmones. In the interior part
of the mask, the region with highest reconstruction error arenéisseter region. These
regions have few skull landmarks and the bones does not support ttiesseftfor a
large part of the cheeks. The regions with the smallestse(0.75 mm to 1 mm) are
concentrated toward the middle of the face, a part where the nofrddeill landmarks is
important and where the inter-subjects correspondence betheémce meshes is more
constrained. The effect of the increase in the number of skdkinarks can be observed
in the difference in the error cards shown Figure 5. The zowsscted by the increase
are the nose and the side of the forehead above the temple.

Figure 5: Mean error by points for NO / LRR (left) and diffeeentmean error cards ft
subsequent level of number of points (right)

The mesh-matching algorithm used to provide the point correspondenaebdhe soft-
tissue surfaces can be used in a facial reconstructiohothdty deformation. The
deformation field computed between a source skull surface destimation skull can be
applied to the soft-tissue surface of the source. A coupdeuwf and soft-tissue surfaces
can be chosen as the closest skull surface or each suwtagds of the database can be
used and every deformed soft-tissue surface computed and cedsi@eara second time,
a mean soft-tissue surface can be computed, merging allfrendd soft-tissue surfaces
obtained by computing the mean location of the facial sandrharks. The accuracy of
the deformation field depends on the number of points, as ttexiami behind the
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computation of the deformation is the distance between thesuviaces. If a surface is
defined with very few points.

NO N1 N2 N3 N4
Mean 2.61 mm 2.64 mm 2.78 mm 2.86 mm 2.88 mm
Closest Skull| 1.94 mm 1.81 mm 2.04 mm 2.16 mm 2.15 mm

Table 5: Mean points-to-surface reconstruction error for deforomathethods.

Table 5 presents the mean points-to-surface error obtaismg the different skull

shapes for computing the deformation field. As we try toapxiate the deformations
fields for the deformation of the face surfaces, a veryiggedeformation field is not a
benefit as seen with the increase of the error followifagge increase in the number of
points.

Comparison with other methods

We compare our results to those of Claes (2006) and Vanderm@@@6). Among
reconstruction techniques, the technique described in Claes (2@0id40 ours, with a
supplementary deformation phase after the statistical gii@uli The statistical step
consists in finding the instance of a face statistical facdel coinciding with “dowels”
of tissue thickness placed upon the skull landmarks. It corresporigls joint statistical
model method for a small number of skull landmarks (in the oridsilg. The study is
conducted on a database of 118 samples. The reconstruction emesponds roughly to
our point-to-surface errors. The mean reconstruction error isrri4with a standard
deviation of 1.04 mm. The highest reconstruction errors (4 men)oaated in the chin
and eyes regions, with errors for the region of the cheeks anmtb#ee(except the tip)
toward 2 mm. In regard to the smaller database and efier in the points
correspondence step and artefacts generated, we seemMie laekdeve similar results
with a generally simpler methodology, I.e. without supplementagriak@tion phase.
The technique developed in Vandermeulen (2006) is based on the usatiolious
surface and the study conducted on 20 samples. The mean recamsgurcr is 1.9 mm
with a standard deviation of 1.7 mm. The largest reconstruetioors (2-3 mm on
average) occurs on the nostrils and masseter region. We appeatperforms those
results, however based on a smaller database. We carkrdnaiathe regions with large
reconstruction errors coincide. Tilotta (2007) propose a locathad of facial
reconstruction combining prediction obtained on surface patcdeSmited by
landmarks. The study has been performed on two regions : theagise and the chin
region. For our methodology, the mean reconstruction error for thasbst) mm with
a standard deviation of 0.25 mm and figure 8 presents the |stabudiion of the error.
The mean reconstruction for the chin region is of 1.51 mrh @i67 mm standard
deviation. The results presented in this report outperfbiset estimation with a mean
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reconstruction error of 0.99 mm, which motivates us to considez taoal procedure in
the reconstruction process.

Statistical Shape Models And The Correction Of The Shape ONbke

As seen in the previous section, each of these statifgtaial reconstruction are based on
statistical shape models, either common or separated. ¢fonemlel, we can observe the
variations of the shape of the face caused by the variatimmsaarh variability modes.
For example, figure 6 presents the variations of the face siaqmeding to the 7 first
modes of LRR and PCR models for parameters of value 3 staadard deviation. The
strength of the variations is given by the color scheme antlesnas to locate the parts
of the face associated to each mode. The first paraactteupon the shape of the lower
part of the face, with the shape of the chin as the moseimted part of the face for both
regression methods. For LRR and PCA JSSM, the second paranuetels the higher
part of the face, particularly the outer edge of the maskyealethe third parameter
influences variations of the skull width. For PCR, the second mdesnmodels the
difference between compressed and elongated faces alongte¢heraposterior axis and
these variations corresponds roughly to the third mode of the L&kImwhereas the
third is linked to the high of the face. As LRR and PCANMS38ke into account the
observed variability of the face points, the second pamnreproduces the large
variability of the frontier of the face mask, variabiligst observed in the skull points
for the PCR model. The fourth parameter concerns the tememian for all models.
Beginning with fifth mode, each part of the model is desdriléferently for each
methods.
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Figure 6: Variations of the shape of face according to the $esen modes of the

There exists as much parameters than the minimum betWweemumber of subjects or
the number of points coordinates. However, as only the first paeasnwill be selected
by the cross-validation procedure, if the parameters acping the variation of shape of
the nose are later modes, no variation of the shape wilidakcped for any test subject.
All reconstructed faces will then share the same shapkeohdse. Which parameters
affect the shape of the nose and which skull landmarks correspahne prediction of
the shape of the nose, can be answered by the observatlen\ariations of the shape
according to the modes. In the LRR case, the first parawéte consequences for the
shape of the nose is thé" parameter. The joint statistical shape model distribute
variations on the shape of the nose between thanl the 8 parameters. PCR do not
present any modes in the twenty first that influences only the sifidipe nose.

As we know that our methods perform badly for this region, we aféer several
predictions with different shapes of nose, corresponding to elifferalues of the “nose”
parameters of the model. For example for the reconstructeslitgsct presented figure 3
shows a very different shape of the nose than the original suBjsdt modification on
the value of a parameter will increase the facial recorgirucerror as defined
previously, but perhaps offer better recognition chances.
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CONCLUSIONS

We proposed a statistical method for 3D computerised fioréasial reconstruction. It
relies on the use of a common set of points for the deiseript the individuals. In this
set of points, anatomical skull landmarks are completedbyslocated upon geodesic
curbs linking the anatomical landmarks. Facial landmarks am@nelot using a mesh-
matching algorithm between a common reference mesh and thveduadi soft-tissue
surface meshes. The facial reconstruction problem isvexsdily the building of a linear
regression model following either Latent Root regression method Principal
Component Regression method for equivalent results. The accuracyheof
reconstructions made by the method was measured by leave-onmssrvalidation
tests and compared to the use of a joint statistical shagdel of both skull and face and
a facial reconstruction method based on deformation fieldseTiesults were discussed
in regard to the results of other facial reconstruction metbodiifferent databases and
the problem of the shape of the nose. In conjunction, we havesaddréhe practical
problem of the choice of the number of skull landmarks. Dependintheostatistical
method used and taking into account the size of the databasénearichits of the
extraction procedure, the necessary number range from two hundredtt@osend.

Some extensions can be proposed to the reconstruction methsidofFall, having a
larger database will increases the flexibility of the moddle more examples of the
surfaces the model has, the better the relationships bethedwo surfaces are learned
and the better the models based on a great number of skull kksdmid perform.
Secondly, a better control of the point correspondence procedure faofthissue
meshes is necessary in order to soften the errors obsartteel outer boundaries of the
face mask. Then, an automatic extraction of the anatomicdimiarks from the skull
would make the complete reconstruction pipeline automaticlyl.ast complete the
computer-aided facial reconstruction procedure as a tool of giemecd possible faces
associated to an unknown skull, some graphic oriented computécatippls must be
added. A first one is the use of textures for the skin and tbgratton in the generated
meshes of artificial eyes and hairs -which corresponds toththfstep of reconstruction
procedures (Mask Design / Virtual Make-Up). With these adielaires, a computerised
facial reconstruction approach can compete with manual cpodsi A second part
would be the animation of the face using movements learned orplexafiime main
principles applies for learning the movement of one face antkdoning the variability
of shapes observed between subjects. Numerous studies anekidate the field of
audiovisual speech (Bailly 2003, Cohen 2002, Lee 1995, Pandzic 2002, €z8Ka),
where the main goal is to create “talking heads” of subjeOther related and
collaborative problems for facial reconstruction could d&sofound in maxillo-facial
surgery ( Marécaux 2003, Payan 2002, Schramm 2006, Zachow 2006), wheatesoite t
predict the shape of face following an ablation of the jaw bones.
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KEY TERMS & DEFINITIONS

Landmark
An anatomical structure used as a point of orientation in locathey structures.

Regression

A functional relationship between two or more correlated abdes that is often
empirically determined from data and is used especialfyr¢dict values of one variable
when given values of the others <the regressignoofx is linear>;

Template

A template can be thought of as an exemplary instance afbjleet, containing all the
information required to measure and analyze the object. The cooshon dataset in
orthodontics is related to analysis of a lateral cephalogranc@mdins the conventional
cephalometric points and measurements. However, templatesompletely user-
definable, so they can be created for whatever purposesised. Examples include
templates for measuring dental casts, facial photographgussseuctures from CTs,
etc.
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