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Abstract. Computing a template in the Large Deformation Diffeomor-
phic Metric Mapping (LDDMM) framework is a key step for the study
of large databases of anatomical surfaces, but can lead to very com-
putationally expensive algorithms in the case of large databases. Here
we present an iterative method to compute a better initialization for
the template estimation method proposed in [1]. The method provides
quickly a centroid of the population in shape space. Using this centroid as
initialization for template estimation can save up to 72% of computation
times.

1 Introduction

Computational anatomy aims at developing tools for the analysis of variabil-
ity of anatomical structures and its variation in healthy and pathological cases
[2]. The Large Deformation Diffeomorphic Metric Mapping (LDDMM) frame-
work [3][4] has been widely used for the study of intra-population variability and
inter-population differences. It focuses the study on the spatial transformations
which can match subjects’ anatomies one to each other, or one to a template
structure which needs to be estimated. Several methods have been proposed to
create template in the LDDMM framework [5][1][6]. The LDDMM framework
is of great interest for anatomical structures analysis but it is computationnally
expensive. Here we are interested in the hippocampus brain structure which
is implicated in neurodegenerative diseases. We use the method presented by
Glaunès et al. [1] which proceeds by optimizing a template composed with all
shapes of the population co-registered, and therefore does not require a priori
on the template topology. However, for heterogeneous populations the method



will need many iterations to converge. For large databases, the method can take
months of computation using a standard CPU implementation. Here we are us-
ing a GPU implemenation, that increases the speed by a factor 200, but for large
database a few days is still needed. A way to lower the number of iterations is
to start with a better initialization. In this paper we propose a new method for
the initialization of template estimation algorithms, which compute iteratively
a sort of centroid of the population. We will show that this new method called
Iterative Centroid, provides a centroid which is already correctly centered within
the population of shapes, which drastically improves performance and conver-
gence of the subsequent template estimation algorithm. This method could be
used as it is, because shape analysis template-based it is a linear approximation
of the population geometry from a shape space point of view. The paper is orga-
nized as follows: first we present the mathematical framework, then the template
estimation method and the Iterative Centroid method. We then present results
of experiments on real and synthetic hippocampi.

2 Notation and mathematical setup

Large Difeomorphics Deformations In the LDDMM framework, deforma-
tions maps ϕ : IR3 → IR3 are generated by integration of time-dependent vector
fields v(x, t), with x ∈ IR3 and t ∈ [0, 1]. If v(x, t) has enough regularity, the

transport equation:

{
dφ
dt (x, t) = v(φv(x, t), t) ∀t ∈ [0, 1]
φv(x, 0) = x ∀x ∈ IR3 has a unique solution

and one sets ϕ = φv(., 1), the diffeomorphism induced by v(x, t). When consider-
ing vector fields (v(., t))t∈[0,1] in L2([0, 1], V ), where V is a Reproducing Kernel
Hilbert Space (R.K.H.S.) embedded in the space of C1 vector fields, the induced
set of diffeomorphisms has a group structure with a right-invariant metric de-
fined by the rule D2(Id, ϕ) = inf {‖v‖V ; v ∈ V, φv(., 1) = ϕ}. Considering two
surfaces S1 and S2, the optimal matching between them is defined in an ideal
setting as the map ϕ that minimizes D(Id, ϕ) under the constraint ϕ(S1) = S2.
In practice such an exact matching is not feasible and one writes inexact uncon-
strained matching functionals. In both cases one can show that the vector fields
v(x, t) which induce the optimal deformation map can be written via a convolu-
tion formula over the surface involving the reproducing kernel KV of the Hilbert
space V . In a discrete setting this writes v(x, t) =

∑n
i=1 KV (xi(t), n)αi(t), with

(xi(t))i∈1;n vertices of the deformed mesh ϕ(S1, t), and αi momentum vectors.

Currents The use of currents was introduced in order to give a dissimilar-
ity measure between surfaces which does not assume point correspondences
between anatomical structures. Any differential m-form ω of IRd can be inte-
grated over an oriented m-submanifold S. Hence one can define a linear form
[S] over the space of m-forms via the rule [S](ω) =

∫
S

ω. [S] is called the m-
current associated to S. Given an appropriate Hilbert structure W on the space
of m-forms, the dual metric can be used to give a measure of the dissimilar-
ity between submanifolds. When S is an oriented surface in IR3, the dual norm



writes ‖[S]‖2
W∗ =

∫
S

∫
S

η(x) ∗ KW (y, x)η(y)ds(y)ds(x). The optimal match be-
tween two currents [S] and [T ] is the diffeomorphism minimizing the functional
J[S],[T ](ϕ) = γD2(Id, ϕ)+‖[ϕ(S)]− [T ]‖2

W∗ . In practice, faster convergence is ob-
tained by using a multiscale approach in which the kernel KW width is decreased
a few number of times during the optimization scheme (each step provides an
initial guess for the next one).

3 A template estimation for large database via LDDMM

3.1 Why building a template ?

A central notion in computational anatomy is the generation of registration
maps, mapping a large set of anatomical data to a common coordinate sys-
tem to study intra-population variability and inter-population differences. In
this paper, we are using the method introduced by Glaunes et al. [1] which
estimates a template given a collection of unlabeled point sets and surfaces
using a representation of points and surfaces as currents [7] . This method is
posed as a minimum mean squared error estimation problem and uses a metric
on the space of diffeomorphisms. Let Si be N surfaces in IR3. Let [Si] be the
corresponding current of Si, or its approximation by a finite sum of vectorial
Diracs. The minimum mean squared error problem for template estimation can
be formulated, in terms of minimization with respect to the diffeomorphisms ϕi

as: {ϕ̂i} = argmin
∑N

i=1

{∥∥∥ 1
N

∑N
j=1 [ϕj(Sj)]− [ϕi(Si)]

∥∥∥2

W∗
+ D2(Id, ϕi)

}
. This

method computes a template for the population described, in the W ∗ space, by
a mean 1

N

∑N
j=1 ϕj [Sj ] of currents, which is a set of shapes from the population

and represents a template for this population. Obtaining a template is useful,
indeed it’s possible to use statistical analysis of the deformations to characterize
the subjects. We can run analysis on momentum vectors like PCA or estimate an
approximation of pairwise distances between subjects using the estimated tem-
plate and the method presented by Yang et al [8] to approximate these distances,
in order to use methods like Isomap [9].

3.2 Iterate Centroid for a template estimation

In order to reduce the time of the template estimation, we present here a way to
give a better initialization for the template estimation method presented in [1].

Method The method shares some similarity with the method Riemannian 1-
center approximation presented by Arnaudon et al. in 2013 [10], and is inspired
of centroid computation in Euclidean space:

∑n
i=1 xi/n = bn satisfies b1 = x1 ,

bk+1 = k/(k + 1) ∗ bk + 1/(k + 1) ∗ xk+1. We have two possibles ways to run the
method and we proceed as follow:

– B1 = S1

– For each i from 1 to N , with N the subject’s number:



• Bi is matched to Si+1 which results in a deformation map φvi(x, t).
• To compute Bi+1 we have two possible ways:

1. set Bi+1 = φvi(Bi,
1

i+1 ) which means we transport Bi along the
geodesic and stop at time t = 1

i+1 .
2. Bi+1 = i

i+1 ∗ [φvi
(Bi,

1
i+1 )] + 1

i+1 [φui
(Si+1,

i
i+1 )], where ui(x, t) =

−vi(x, 1 − t), i.e. φui is the reverse flow map. At each iteration we
add one mesh to Bi+1.

– At the end, we obtain a single mesh (way 1 we will discuss here), or a set of
meshes (way 2) to represent the population’s centroid.

Fig. 1. Illustration of the method.Left image: red stars are population subjects, yellow
star is the final Centroid, and orange stars are iterations of Centroid. Right image:
Final Centroid with the hippocampus population from datas Data1 (red)

Of course the result of the Iterative Centroid (I.C.) does depend on the
ordering of subjects. We will study this dependance in the experimental part.
We will also study the effect on stopping the algorithm before it completes all
iterations. Then we say that the I.C. is at x% if iterations are going to step

x
100 ∗ n

4 Data

We evaluate the method on segmented 95 hippocampi on Magnetic Resonance
Imaging from the European database IMAGEN with the software SACHA [11].
This database is constituated by young (14-16 years old) healthy subjects. This
first database called RealData is composed of 95 meshes with around 2000 ver-
tices (between 1716 and 2256) each one.

We also made two synthetic populations of hippocampi meshes, in order to
have a larger and simpler dataset, having less noisy data than RealData.
Data1: We chose one subject S0 that we decimate (down to 135 vertices) and
deform using geodesic shooting in random directions composed with small trans-
lations and rotations to build 500 different shapes. Data1 is composed of a pop-
ulation of 500 shapes with the same mesh (135 vertices per shape with the same
connections between them), which provides a large database with simple meshes
and mainly global deformations.
Data2: Using the mesh of S0, but this time keeping 1001 vertices. We match this
new mesh via LDDMM on each subject of the dataset RealData (n = 95). Then



we have a new population with more local deformation than in Data1, which is
closer to the anatomical truth constituted by the same mesh (so we have less
noise than in RealData). Examples of subjects resulting from these dataset are
seen on Fig. 2.

Fig. 2. Left to Right: two meshes from Data1, Data2 and RealData

5 Experiments Results

Effect of subject ordering For testing the method, we compared results in
the space of currents, i.e. for comparing two surfaces S and T , we computed
the norm ‖ [S] − [T ] ‖2

W∗ . For studying the influence of the ordering of sub-
jects, we compared several centroids computed until the last iteration (Centroid
at 100%) with different orderings. For each database 3 different centroids were
computed. On each database, we computed 3 different I.C. Cz

1 Cz
2 and Cz

3 with
z ∈ {data1, data2, realdata}. We show, for each database, in Tab. 1 the distances
between centroids, and distances between centroids and all the subjects of the
database. For each database, means, variances, minimums and maximums are
almost identical and the distances between centroids are very small compared
to the population. In database Data2 and RealData, datasets are closer to cen-

Table 1. Comparison between Cz
i and the population, and distances between Cz

i and
Cz

j , with i, j ∈ {1, 3} and z ∈ {data1, data2, realdata}
distance : mean std max min to Cdata1

1 to Cdata1
2 to Cdata1

3

Cdata1
1 160.249 32.2907 250.2365 60.9317 0 0.5784 0.8294

Cdata1
2 160.247 32.3882 250.2270 60.9540 0.5784 0 0.6417

Cdata1
3 160.233 22.3800 250.2957 60.9423 0.8294 0.6417 0

distance : mean std max min to Cdata2
1 to Cdata2

2 to Cdata2
3

Cdata2
1 55.2038 13.4862 103.7798 32.7979 0 1.0631 1.4788

Cdata2
2 55.4303 13.4417 104.0364 32.9868 1.0631 0 1.4193

Cdata2
3 55.3049 13.3439 103.5822 33.0183 1.4788 1.4193 0

distance : mean std max min to Crealdata
1 to Crealdata

2 to Crealdata
3

Crealdata
1 57.7548 14.6558 108.5300 34.4756 0 3.6142 3.6658

Crealdata
2 57.7488 14.5384 108.1334 34.7786 3.6142 0 3.3797

Crealdata
3 57.7504 14.5733 108.2680 34.6085 3.6658 3.3797 0

troids, since in theses populations there is less global diffeomorphic deformations
between shapes. Data1 and Data2 are less noisy than RealData, so the centroids
are closer to each others. In RealData, centroids have different meshes due to
the different initalizations.



Effects of initialization and ordering on estimated template We compute
the distance in W ∗ between a template initialized with a standard initialization
(the whole population) noted as T (t0 = z) and a template initialized by a I.C.
noted as T (t0 = Cz

i ) , and the distance between two templates initialized by two
different Iterative Centroids. So we can note that the choice of the centroid does
not influence the result of the template (see Tab. 2). For T (t0 = z) distances are
more important. As seen in Fig. 3A, the orange template converged, surfaces are
close to each other but less than for templates from T (t0 = Cz

i ) (Fig. 3B).

Table 2. Comparison between T (t0 = Cz
i ) and T (t0 = z), and between T (t0 = Cz

i )
and T (t0 = Cz

i ), with z ∈ {data1, data2, realdata}

distance: T (t0 = data1) T (t0 = Cdata1
1 ) T (t0 = Cdata1

2 ) T (t0 = Cdata1
3 )

T (t0 = Cdata1
1 ) 41.0594 0 0.6669 1.1657

T (t0 = Cdata1
2 ) 41.113 0.6669 0 1.1085

T (t0 = Cdata1
3 ) 40.6269 1.1657 1.1085 0

distance: T (t0 = data2) T (t0 = Cdata2
1 ) T (t0 = Cdata2

2 ) T (t0 = Cdata2
3 )

T (t0 = Cdata2
1 ) 20.4625 0 0.5280 0.6660

T (t0 = Cdata2
2 ) 20.1764 0.5280 0 0.8381

T (t0 = Cdata2
3 ) 20.6301 0.6660 0.8381 0

distance: T (t0 = realdata) T (t0 = Crealdat
1 ) T (t0 = Crealdat

2 ) T (t0 = Crealdat
3 )

T (t0 = Crealdata
1 ) 27.4166 0 7.0284 6.2362

T (t0 = Crealdata
2 ) 26.6960 7.0284 0 1.8560

T (t0 = Crealdata
3 ) 26.5063 6.2362 1.8560 0

Fig. 3. A: the template T (t0 = data2) with a zoom B: Blue: T (t0 = Cdata2
1 ) with zoom,

Yellow: T (t0 = Cdata2
2 ) Red: T (t0 = Cdata2

3 ), and the last one is the superposition.

In order to check that the computed template is on the center of the pop-
ulation, we calculated the ratio of the norm of the means of initial momentum
vectors from the template to each subjects by the mean of the norms of ini-
tial momentum vectors. For Data1, the ratio of T (t0 = Cdata1

1 ) = 0.0062,
of T (t0 = Cdata1

2 ) = 0.0056, of T (t0 = Cdata1
3 ) = 0.0059 and of T (t0 =

data1) = 0.0212. For Data2 we have, for the ratio, T (t0 = data2) = 0.0206,
T (t0 = Cdata2

1 ) = 0.0077, for T (t0 = Cdata2
2 ) = 0.0086, and for T (t0 = Cdata2

3 )
we obtain 0.0060. For RealData the ratio of T (t0 = Crealdata

1 ) = 0.0073, of
T (t0 = Crealdata

2 ) = 0.0060, of T (t0 = Crealdata
3 ) = 0.0088 and of T (t0 =

realdata) = 0.0094. As an illustation, Fig. 3 shows the almost similarity of 3
templates of Data2 (95 surfaces per template) initialized by theses 3 different
centroids. We can observe that for all databases, the templates initialized by I.C.
are more centered than templates with standard initialization. All templates are
centered, a little more for T (t0 = Cz

i ).



Effect of the iteration number We tested the influence of computing only
a fraction of the Iterative Centroid, what brings each step of I.C. to the con-
struction of the final centroid. Figure 4 shows that after processing 40% of the
population, the I.C. covers more than 80% of the distance to the final centroid.
We can ask if computing an I.C. at 40% could be enough to initialize a tem-
plate estimation, but experiments show that it lowers significantly the quality
of the resulting template, as well as it slows down convergence of the template
estimation, as we will see next.

Fig. 4. Curves of distances for Cdata1
i Cdata2

i and Crealdata
i . The blue (Cz

1 ) yellow (Cz
2 )

and red(Cz
3 ) curves show the distance between the I.C. at x% and the final which

correspond to 100%. each point represent 10%.

Computation time We present some results of computation time. We use a
GPU implementation for the computation of kernel convolutions, which consti-
tute the time-consuming part of such LDDMM algorithms. These computations
were processed on a Nvidia Tesla C1060 card. On Data1, Computing a tem-
plate with standard initialization takes 96 hours. Computing a template from
I.C. takes in total 26.6 hours in average (1, 8h for the I.C. and 24.8h for the
template). Likewise, for Data2, computing an Iterative Centroid, and then use
it as initialization for template estimation takes about (1.5 + 12) = 13.5 hours
against 20.6 hours without using I.C.. For RealData, computing an Iterative
Centroid, and then use it as initialization for template estimation takes about
(2.7+25.4) = 28.1 hours against 99 hours without using I.C.. In average we save
up 59.4% of computation time. 72.3% for Data1, 34.5% for Data2 and 71.6% for
RealData.
Computing a T (t0 = 40%Cz

i ) takes 23.6 hours for Data1, 10.0 hours for data2
and 40.2 for RealData. So in total, for a template T (t0 = 40%Cz

i ) there is no
saving time and results are not better or equivalent to T (t0 = Cz

i ).
To increase the speed of the template estimation method, we can add at each

end of iteration, a Matching Pursuit on currents as described in [12].

6 Discussion and conclusion

We proposed a new method for the initialization of tempate estimation algo-
rithms. We showed that the Iterative Centroid method, regardless of the order-



ing of subjects, provides a centroid which is correctly centered in the population.
Using this centroid as initialization for the template estimation method speeds
up the convergence and can save up 72% of computation time.
This method can also be seen as a cheap alternative for template estimation, and
could certainly be used to initialized others methods of template estimation, like
the method presented by Durrleman in 2008 [6], which actually use an ellipsoid
as initialization.
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