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Abstract

We present a matching criterion for curves and integrate it into the large defor-

mation diffeomorphic metric mapping (LDDMM) scheme for computing an optimal

transformation between two curves embedded in Euclidean space Rd. Curves are first

represented as vector-valued measures, which incorporate both location and the first

order geometric structure of the curves. Then, a Hilbert space structure is imposed

on the measures to build the norm for quantifying the closeness between two curves.

We describe a discretized version of this, in which discrete sequences of points along

the curve are represented by vector-valued functionals. This gives a convenient and

practical way to define a matching functional for curves. We derive and implement

the curve matching in the large deformation framework and demonstrate mapping re-

sults of curves in R2 and R3. Behaviors of the curve mapping are discussed using 2D

curves. The applications to shape classification is shown and experiments with 3D

curves extracted from brain cortical surfaces are presented.

1 Introduction

Matching curves embedded in R2 and R3 is important in the fields of medical imaging and

computer vision [1–3]. In medical imaging, the most striking gross morphological features

of the cerebral cortex are the sulcal fissures on the cortical surface [4]. They are selected

as the basis for structural analysis on the internal surface anatomy of the brain because

they separate functionally distinct regions and provide a natural topographic partition of

the anatomy. Even though major sulci consistently appear in all anatomies, they exhibit

variability in size and configurations [4]. A quantitative study of sulcal anatomical structures
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requires developing mathematical models for characterizing shape and geometry of curves,

and for accommodating the variability present across populations [5–8]. Moreover, image

boundary, contours, and skeletons are often used to represent shapes of objects in many

applications of computer vision, such as tracking human body motion in motion tracking,

finding correspondence between maps and terrain images, object recognition and classifica-

tion. All of these formulate two problems: representation of curves and mathematical models

of transformations.

In non-rigid registration problems, desired transformations are often constrained to be

diffeomorphic — one to one (invertible) and smooth with smooth inverse so that connected

sets remain connected, disjoint sets remain disjoint, smoothness of features such as curves

is preserved, and coordinates are transformed consistently. Consequently, many researchers

have paid great attention to such diffeomorphic transformations particularly in the field

of Computational Anatomy for studying the geometric variation of human anatomy (e.g.

[9–17]).

Over the past several years we have been using large deformation diffeomorphic metric

mapping (LDDMM) [13,18,19] to map 3D volume coordinates in the brain as well as in the

heart [20]. This method not only provides a diffeomorphic correspondence φ between shapes

C and S, but defines a metric distance in a shape space as well. The basic diffeomorphic

metric mapping approach taken for understanding structures of object shapes is to place

the set of objects into a metric space. The idea is to model the mapping of one from the

other via a dynamic flow of diffeomorphisms (time dependent deformation) t ∈ [0, 1] of the

ambient space Rd. Instead of working directly in the space of diffeomorphisms, we work with

time dependent vector fields, vt : Rd → Rd for t ∈ [0, 1], which model the infinitesimal efforts
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of the flow. The flow φv
t is then defined via the differential equation

∂φv
t

∂t
= vt(φ

v
t ), (1)

with φv
0(x) = x, and the resulting diffeomorphism is given by the flow at time t = 1, φv

1.

In order to ensure that the resulting solution to this equation is a diffeomorphism, vt must

belong to a space, V , of regular vector fields (see [21, 22] for specific requirements), for

t ∈ [0, 1] with
∫ 1

0
‖vt‖V dt < ∞. V is a Hilbert space with an associated kernel function kV ,

and norm ‖·‖V . This norm models the infinitesimal cost of the flow.

Assume that for any pair objects of C and S, there exists some vector fields vt such that

the diffeomorphism φv
1 transforms shape C to shape S, which we write φv

1 ·C = S. Then one

can look at the optimal vector fields v̂t satisfying φv̂
1 · C = S and minimizing the integral of

the infinitesimal costs. The metric distance between shapes, ρ(C, S), is defined as the length

of the geodesic path φv̂
t · C for t ∈ [0, 1] generated from C to S in the shape space. Such a

metric between C and S has the form

ρ(C, S) = inf
vt

(∫ 1

0

‖vt‖2
V dt

) 1
2

such that φv
1 · C = S . (2)

In practice, we often define an inexact matching problem: find a diffeomorphism φ̂t

between two objects C and S as a minimizer of

JC,S(φt)
.
= γρ(C, φ1 · C)2 + E(φ1 · C, S).
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Equivalently, we have φ̂t = φv̂
t , where the vector fields v̂t minimize the energy

JC,S

(
(vt)t∈[0,1]

) .
= γ

∫ 1

0

‖vt‖2
V dt + E(φv

1 · C, S), (3)

and γ is a trade-off parameter. The first term in (3) is a regularization term to guarantee the

smoothness of deformation fields and the second term is a matching functional to quantify

the mismatching between the objects φv
1 · C and S.

In this LDDMM framework, two matching techniques are commonly used that result

in different models for E(φv
1 · C, S). The first one is volume image matching, which works

directly with the raw 3D volume images, multi-valued vectors, as well as tensor matrices

arising from DTI studies [13, 23–25], but is computationally intensive. The second one

is landmark matching which requires a manual or semi-automated selection of landmarks

on the images [18]. In the case of brain images, however, landmarks are usually not just

isolated points, but lie along sulcal or gyral curves extracted from cortical surfaces which

are themselves segmented from the 3D images. In such a situation, the landmark matching

tool is commonly used [26,27]. It is imperfect, however, because it first requires to select the

same number of points on both source and target curves, and second it specifies arbitrary

correspondences between specific points on these curves, giving artificial constraints to the

registration process. To overcome this issue, some new methods were proposed, e.g. using

level-sets representations of the curves [28]. In [29], an extension of the LDDMM approach in

which shapes are considered as unlabelled sets of landmarks has been proposed. However, as

geometric objects, curves or surfaces should not be treated as a sequences of points because

the higher order information (tangent vectors or curvature) is discarded when reducing 1D
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or 2D manifolds into 0-dimensional point sets. In the case of surfaces, a representation via

currents, or vector-valued measures, has recently been developed [30]. It allows to put into

the metric both location and tangential information of the surfaces. Tools presented in [29]

and [30] actually derive from the same general framework that defines computable metrics

on any m-dimensional submanifolds of Rd with m ≤ d. The case of curves (m = 1) has been

introduced shortly in [31, 32]. It is the purpose of this paper to present a full mathematical

explanation and derivation of this representation of curves in the LDDMM framework.

This model for curve matching is a special case of a general framework for submanifolds,

which could be called measure or current matching, and uses ideas from geometric measure

theory and reproducing kernels while setting up into Grenander’s theory of deformable tem-

plates [9]. Other examples had already been presented: surfaces in [30] and unlabelled point

sets (which correspond to the 0-dimensional case) in [29]. In particular, the study and use of

the metric distance defined in the shape space for shape analysis has received great attention

in computer vision and medical imaging as partly shown here in Section 5. The common

approach consists in defining a Riemannian metric on the tangent space to a curve, i.e.

the space of infinitesimal transformations of a curve, and extending it to the whole space.

Sharon and Mumford [33] proposed a very elegant mathematical model for closed planar

curves, which can not be generalized. Younes [34] proposed to use an elastic metric that

measures the cost of deformation of the ambient space, which corresponds to the LDDMM

setting described previously and considered in the present paper. Recent works [35–37] have

emphasized the efficiency of the shape space model or developed its mathematical theory [38].

However these constructions require that a smooth transformation actually exists between

any two curves in the space, which usually restricts the study to the subclass of closed, non
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crossing curves. Our approach is different in the sense that we do not claim to find exact

correspondences between curves, but rather find a diffeomorphic transformation that match

two curves up to an acceptable error. What we propose here is a way to compute this error,

i.e. a model for evaluating the differences between shapes that remain after matching. It

allows to compare curves that may present noisy parts, or be composed of different numbers

of connected components, or to match a closed curve to an open curve, etc. Such situations

are common in practical applications, which indicates that the curve mapping presented in

this paper will be more suitable to applications in computer vision and medical imaging

analysis.

This paper is organized as follows. We start with the geometric representation of curves

that incorporates the geometry of the curves due to the sensitivity to both location and their

tangent vectors (the first order local geometric structure) in Section 2.1. In Section 2.2, we

describe that such a representation of curves as mathematical objects provide elements in

a vector space equipped with a computable normed distance. In Section 3, “closeness”

between two curves is then quantified by the norm-square distance between their associated

representations, which serves as matching criterion for finding an optimal transformation

from one curve to the other. In Section 3.2, we integrate this matching functional with a

variational optimization problem of the LDDMM and compute its gradient with respect to

a linear transformation of the velocity, momentum. Appendix B, demonstrates the other

use of the matching functional in the derivation of the similarity transformation (rotation,

translation, and isotropic scaling). In Section 5, we finally demonstrate the application of

this method to curves in R2 and R3 and compare matched results and deformation fields

between this method and the landmark matching method [18] in the LDDMM framework.
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2 Curves as Vector-Valued Measures

We define a norm that quantifies the similarity between two curves by first introducing a

geometric representation of the curve and then inducing its norm in a Hilbert space via a

differential operator.

2.1 Geometric Curve Representation

We follow the approach presented [30] for surfaces. However, we will not use the term

”currents” in this paper, nor use any notion of exterior calculus. Let C ⊂ Rd be an open

or closed curve. We assume that C is both piecewise C0 and piecewise C1, which means

that it may be composed of several disconnected components, and may present a finite

number of angular points. Let γC : [0, 1] → Rd, s 7→ γC(s) = [x1(s), . . . , xd(s)] be a

parametrization of this curve. At almost any point on the curve, the tangent vector is given

by γ′C(s) = [dx1

ds
, . . . , dxd

ds
]. The existence of these tangent vectors along the curve gives us a

natural action of the curve on vector fields w : Rd → Rd by the rule:

〈µC |w〉 .
=

∫ 1

0

γ′C(s) · w(γC(s))ds, (4)

where · denotes the dot product in Rd. Intuitively, 〈µC |w〉 is large when the direction of the

vector field w(x) is close to the tangent vectors γ′C(s) along the curve. It is close to zero

when w(x) is almost perpendicular to the curve, or when w(x) take small values (in norm)

along the curve. Figure 1 demonstrates the evaluation of 〈µC |w〉 in several cases when w(x)

is parallel to the tangents of C (first panel), perpendicular to C (middle panel), and the
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norm of w(x) is close to zero along the curve (last panel).

<mu
C

|w> = 0.59 <mu
C

|w> = 0.06 <mu
C

|w> = 0.013

Figure 1: Evaluation of a vector field (blue arrows), w(x), along a curve (in red), C. Left:
Directions of vectors match those of the tangents to the curve. Middle: Directions are
perpendicular to the curve. Right: Directions match, but norm of vectors are close to zero
along the curve.

Hence both location and tangential information of the curve is integrated in this expres-

sion. Another important point here is that it is invariant under re-parametrization of the

curve, so that if we have a new parameter t = ψ(s), with ψ increasing, it is simple to show

that 〈µC |w〉 is unaffected. However using t = ψ(s) with ψ decreasing will give an opposite

value for 〈µC |w〉, which means that the representation is orientation dependent.

Eq. (4) associates to every oriented curve C a unique representant µC which is a lin-

ear functional acting on vector fields of Rd. Equivalently, µC can be understood as a

vector-valued Borel measure. Linear combinations of measures are defined with the rule

〈αµC + βµS|w〉 = α 〈µC |w〉 + β 〈µS|w〉 for any α, β ∈ R and curves C, S. In general, these

combinations are not associated to any curve, unless |α| = |β| = 1: for example, µC − µS

corresponds to the concatenation of curve C and curve S with opposite orientation.

The advantage here is to embed the curves in a vector space (of vector-valued measures)

on which it is possible to use functional analysis tools to define norms and compare curves
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via these norms. This will be developed in section 2.2.

2.2 Norm on Vector-Valued Measure

We would like to define a norm that computes a geometrical distance between two curves.

For instance, Figure 2 shows two parallel segments C and S with length 1 in R2, separated

Figure 2: Two parallel segments C and S, separated by a small distance ε.

by a small distance ε. We want the norm of the difference µC − µS of the corresponding

vector-valued measures to be small since the segments are close to each other.

This can be achieved if one puts constraints on the variations of the test vector fields w

so that the evaluation of the curve representors µC and µS on w gives close results. To do

so, we define a norm on vector fields in the form of

‖w‖2
W

.
=

∫

Rd

|Lw(x)|2dx , (5)

where L is a linear differential operator of sufficient order such that the following property

on the norm is guaranteed

‖w‖1,∞ = sup
x∈Rd

{
|w(x)|+

d∑
i=1

∣∣∣∣
∂w

∂xi
(x)

∣∣∣∣
}
≤ cW ‖w‖W (6)
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for some fixed constant cW > 0. In this setting, test vector fields w will belong to the Hilbert

space W associated with the norm ‖·‖W .

Proposition 1. If property in Eq. (6) is satisfied, then the linear functional µC defined in

Eq. (4) is a continuous linear functional on W .

Proof. For any w ∈ W ,

| 〈µC |w〉 | ≤
∫ 1

0

|γ′C(s) · w(γC(s))|ds,

≤
∫ 1

0

|γ′C(s)||w(γC(s))|ds,

≤ ‖w‖1,∞

∫ 1

0

|γ′C(s)|ds = ‖w‖1,∞ lC ,

≤ cW ‖w‖W lC ,

where lC is the length of C.

We can therefor compare vector-valued measures via the dual norm, defined by:

‖µC‖W ∗
.
= sup

‖w‖W≤1

〈µC |w〉 .

Going back to example of Figure 2, the evaluation of the difference µC − µS is

〈µS − µC |w〉 =

∫ 1

0

γ′S(s) · w(γS(s))− γ′C(s) · w(γC(s)) ds.

With γS(s) = (s, 0), γC(s) = (s, ε), γ′C(s) = γ′S(s) = (1, 0), we get

〈µS − µC |w〉 =

∫ 1

0

(w1(s, 0)− w1(s, ε)) ds,
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where w1(s, 0) denotes the first coordinate of vector w(s, 0). The integrand w1(s, 0)−w1(s, ε)

is bounded by ε ‖w‖1,∞, which in turn is bounded by εcW ‖w‖W from property (6). Hence

the dual norm ‖µS − µC‖W ∗ is bounded by εcW . When ε decreases, the norm ‖µC − µS‖W ∗

goes to zero, as expected.

2.3 Explicit expression of the dual norm with kernels

The explicit expression of the dual norm involves the Green’s function kW (x, y) of the oper-

ator L∗L, where L∗ is the adjoint of L. kW (x, y) is also the reproducing kernel of the space

W . It is defined by the property

∫

Rd

LkW (x, y)ξ · Lw(y) dy = 〈kW (x, ·)ξ, w〉W = w(x) · ξ, (7)

where 〈·, ·〉W represents the inner product of two vector fields in Hilbert space W . Note that

since we are dealing with vector fields, kW (x, y) is a matrix operator, we need to apply it to

a vector ξ ∈ Rd to get a proper definition.

To fix ideas at this point, one may choose L such that L∗L = (Id−α2∇2)k for some con-

stants α > 0 (scale parameter) and integer k, which gives the Sobolev Hk Hilbert space. The

corresponding kernel operator has explicit expression in terms of modified Bessel functions

of the second kind [39].

Lemma 1. The norm of the vector-valued measure µC in the dual space W ∗ is equal to

‖µC‖2
W ∗ =

∫ 1

0

∫ 1

0

[
kW (γC(s), γC(r)) γ′C(s)

]
· γ′C(r) ds dr. (8)
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Proof.

〈µC |w〉 =

∫ 1

0

γ′(s) · w(γ(s))ds

=

∫ 1

0

〈kW (r(s), ·)γ′(s), w〉W ds

=

〈∫ 1

0

kW (r(s), ·)γ′(s)ds, w

〉

W

By Cauchy-Schwartz inequality, this achieves the maximum for ‖w‖W = 1 if

w =

∫ 1

0
kW (γ(s), ·)γ′(s)ds

‖ ∫ 1

0
kW (γ(s), ·)γ′(s)ds‖W

.

Therefore, we have

‖µC‖2
W ∗ =

∥∥∥∥
∫ 1

0

kW (γ(s), ·)γ′(s)ds

∥∥∥∥
2

W

=

∫ 1

0

∫ 1

0

〈kW (γC(s), ·)γ′C(s), kW (γC(r), ·)γ′C(r)〉W ds dr

(a)
=

∫ 1

0

∫ 1

0

[
kW (γC(s), γC(r)) γ′C(s)

]
· γ′C(r) ds dr ,

where (a) follows from the reproducing property of the kernel kW stated in (7).

The expression of the dual norm indicates that the central object in computations is the

kernel kW . Mathematically it is possible to build the Hilbert space W and its dual starting

from a given positive kernel (without any knowledge of operator L), with enough regularity

to satisfy the property in (6). Links between properties of the kernel and properties of

the space in this setting can be found in [40]. In short, kW should be twice differentiable

and vanish at infinity up to order 1. If one additionally requires invariance with respect to
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rigid motions, one can prove that kW is defined by two scalar functions h, h⊥ : R+ → R

such that for every x, y ∈ Rd, kW (x, y)α = h(|x − y|2)α if α is colinear to x − y, and

kW (x, y)α = h⊥(|x− y|2)α if α · (x− y) = 0. For our applications we only consider ”scalar”

kernels kW (x, y) = h(|x − y|2)Id i.e. such that h = h⊥, and in practice we tried Gaussian

h(r2) = e−r2/σ2
W and Cauchy h(r2) = 1

1+r2/σ2
W

kernels. However it would be interesting to

study the effect of using non scalar kernels.

3 Curve matching via deformation maps

3.1 A general variational formulation

In the previous section, we introduced representations of curves by vector-valued measures

and defined a computable norm in the space of measures to compare them. These tools give

us a practical way to define a matching functional between two curves C and S in Rd. Let

φ : Rd → Rd be a deformation map which is supposed to give an approximate correspondence

between C and S. The accuracy of this matching can be measured by:

E(φ(C), S)
.
=

∥∥µφ(C) − µS

∥∥2

W ∗ (9)

which can be rewritten in terms of kernel kW , according to Eq. (8),

E(φ(C), S) =

∫ 1

0

∫ 1

0

[
kW (γφ(C)(s), γφ(C)(r)) γ′φ(C)(s)

]
· γ′φ(C)(r) ds dr

−2

∫ 1

0

∫ 1

0

[
kW (γφ(C)(s), γS(r)) γ′φ(C)(s)

]
· γ′S(r) ds dr

+

∫ 1

0

∫ 1

0

[
kW (γS(s), γS(r)) γ′S(s)

]
· γ′S(r) ds dr.
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The first and last terms are intrinsic energies of the two curves. Roughly, the more curved

they are, the higher energy they possess, since flat shaped parts of the curves tend to vanish

in the space of vector-valued measures. The middle term penalizes to mismatching between

tangent vectors of S and those of φ(C).

Optimal matching between curves will be defined via minimization of a functional com-

posed of the matching term E and optionally a regularization term to guarantee smoothness

of the transformations. We model deformation maps φ in the LDDMM framework. Certainly

any other model of transformations could be directly applied at this point. For instance, the

similarity transformation (rotation, translation, and uniform scale) is derived in Appendix

B.

3.2 Large Deformation Diffeomorphic Metric Curve Mapping

In the LDDMM setting, we define the optimal matching, φ̂ between two curves C and S as

φ̂ = φv̂t
1 , v̂t being the minimizer of the energy

JC,S

(
(vt)t∈[0,1]

) .
= γ

∫ 1

0

‖vt‖2
V dt +

∥∥µφv
1(C) − µS

∥∥2

W ∗ (10)

and φv
1 is defined in (1).

The first term is the regularization term which controls the smoothness of the diffeo-

morphism, and the second term is the data attachment to quantify mismatching between

deformed C and S. A general result [21, 22] guarantees existence of the solution to this

minimization problem.

In [31], such variational problems for 2D curve matching in the large deformation frame-
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work were studied, and precise forms of the optimal solutions were given. In this paper we

will focus on the discrete formulation, leading to a practical matching algorithm.

4 The discrete model

4.1 Representation with vector-valued Dirac functionals

First suppose that the curve C is continuous and discretized in a sequence of points x =

(x1, . . . , xn) such that each xi belongs to the curve: for any parametrization γC we have

xi = xsi
for si ∈ [0, 1]. We do not make any assumption on the way points xi are distributed

along the curve. If C is a closed curve then we assume xn = x1. We can associate to this

sequence of points a specific measure given by vector-valued Diracs:

µx =
n−1∑
i=1

τx,iδcx,i
,

where cx,i = 1
2
(xi+xi+1) is the center between points of xi and xi+1, and τx,i = xi+1−xi gives

an approximate tangent vector. This vector-valued measure is also defined by its pairing with

smooth vector fields w:

〈µx|w〉 =
n−1∑
i=1

τx,i · w(cx,i).

The important point here is that both the curves and their discrete representants (possibly

with different sampling rates) are embedded into the same space of vector-valued measures.

Hence it will be possible to compare them via the dual norm introduced earlier.

If C is piecewise continuous, we build a discrete representation by summing the discrete
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measures µx corresponding to each connected component.

4.2 Expression of the dual norm

The dual norm of the discrete representant µx expresses conveniently in terms of the kernel

kW :

‖µx‖2
W ∗ =

∥∥∥∥∥
n∑

i=1

τx,iδcx,i

∥∥∥∥∥

2

W ∗

=
n∑

i=1

n∑
j=1

[
kW (cx,i, cx,j) τx,i

]
· τx,j. (11)

Note that this is not an approximation of the dual norm, but an exact expression of the

dual norm of the discrete approximation of the curve. The following theorem shows that

this discrete representant is a good approximation of the curve in space W .

Theorem 1. If the length of the piece of curve connecting two consecutive points dC(xi, xi+1) =

∫ si+1

si
|γ′C(s)|ds is bounded by δ, then ‖µx − µC‖W ∗ ≤ cW δlC.

Proof. For any w ∈ W ,

〈µx − µC |w〉 = 〈µx|w〉 − 〈µC |w〉

=
n∑

i=1

τi · w(ci)−
∫ 1

0

γ′C(s) · w(γ′C(s))ds

=
n∑

i=1

(
τi · w(ci)−

∫ si+1

si

γ′C(s) · w(γ′C(s))ds

)
.
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We have τi = γC(si+1)− γC(si) =
∫ si+1

si
γ′C(s)ds, so we can write:

〈µx − µC |w〉 =
n∑

i=1

∫ si+1

si

γ′C(s) · (w(ci)− w(γ′C(s))) ds

≤
n∑

i=1

∫ si+1

si

|γ′C(s)||w(ci)− w(γ′C(s))|ds.

Now |w(ci)− w(γ′C(s))| ≤ |‖w‖1,∞|ci − γ′C(s)| ≤ cW‖w‖W δ, so we get

〈µx − µC |w〉 ≤ cW‖w‖W δ

n∑
i=1

∫ si+1

si

|γ′C(s)|ds

≤ cW‖w‖W δlC .

4.3 Matching functional, discrete case

When curves C and S are discretized by point sequences x = (xi)
n
i=1 and y = (yj)

m
j=1, the

sequence of transformed points z = (φ(xi))
n
i=1 gives a discretization of the deformed curve

φ(C). Here we will derive algorithms based on the following matching functional:

E(z,y)
.
=

∥∥∥∥∥
n∑

i=1

τz,iδcz,i
−

m∑
j=1

τy,jδcy,j

∥∥∥∥∥

2

W ∗

, (12)
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which is explicitly

E(z,y) =
n−1∑
i=1

n−1∑
j=1

[
kW (cz,i, cz,j)τz,i

]
· τz,j − 2

n−1∑
i=1

m−1∑
j=1

[
kW (cz,i, cy,j)τz,i

]
· τy,j

+
m−1∑
i=1

m−1∑
j=1

[
kW (cy,i, cy,j)τy,i

]
· τy,j .

Note that curves C and S are not necessarily discretized into the same number of points

from the above equation. This expression was also given in [32]. We show the derivation of

gradient of E(z,y) with respect to φ in Appendix A.

4.4 LDDMM Variational Formulation in the discrete setting

Let x = (xi)
n
i=1 and y = (yi)

m
i=1 be discrete samples of curves C and S respectively, and define

the trajectories xi(t)
.
= φt(xi) for i = 1, . . . , n. The optimal matching between samples x

and y will be defined as a minimizer of

J = γ

∫ 1

0

‖vt‖2
V dt +

∥∥∥∥∥
n∑

i=1

τz,iδcz,i
−

m∑
j=1

τy,jδcy,j

∥∥∥∥∥

2

W ∗

, (13)

where z = (φ1(xi))
n
i=1 = (xi(1))n

i=1. The second term of J depends only on the positions of

the finite number of points (φ1(xi))
n
i=1. In such a situation, like all point-based matching

problems in the large deformation setting [18, 19], the following reasoning apply: starting

from any arbitrary state v̂t of the time-dependant vector fields, let us find the optimal vector

fields vt that keep trajectories xi(t) = φv̂t
t (xi) unchanged and minimize the functional. Since

trajectories are fixed, in particular the end-points (xi(1)) are also fixed; hence the second

term of J is constant for this sub-problem and we are left to find vector fields which minimize
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the V -norm and satisfy for each time t and each 1 ≤ i ≤ n the constraint vt(xi(t)) = ẋi(t)

where xi(t) are the fixed trajectories. This is a classical interpolation problem in a Hilbert

space setting, for which the solution is expressed as a linear combination of spline vector

fields involving the kernel operator kV :

vt(x) =
n∑

i=1

kV (xi(t), x)αi(t) , (14)

where αk(t) are referred to as momentum vectors. These vectors can be computed from

trajectories xi(t) by solving the system of linear equations

dxi(t)

dt
=

n∑
j=1

kV (xj(t), xi(t))αj(t), i = 1, . . . , n. (15)

Now coming back to the main variational problem, we can restrict the domain of minimiza-

tion to the subspace of vector fields of the form given by expression in Eq. (14), and choose

either trajectories xi(t) or momentum αi(t) as minimization variables. The choice of αi(t)

avoids the inversion of linear systems, since in this case Eq. (15) is seen as an ODE system

in the unknown xi(t). The regularization term can be rewritten as a function of variables

αi(t) and xi(t). From Eq. (14) and the reproducing property of kernel kV , we get

∫ 1

0

‖vt‖2
V dt =

∫ 1

0

n∑
i=1

n∑
j=1

〈kV (xi(t), ·)αi(t), kV (xj(t), ·)αj(t)〉V dt (16)

=

∫ 1

0

n∑
i=1

n∑
j=1

[
kV (xj(t), xi(t))αj(t)

]
· αi(t)dt =

∫ 1

0

n∑
i=1

αi(t) · dxi(t)

dt
dt.(17)
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Hence the explicit expression of functional in Eq. (13) is the following:

J((αi(t))) = γ

∫ 1

0

n∑
i=1

n∑
j=1

[
kV (xj(t), xi(t))αj(t)

]
· αi(t)dt +

n−1∑
i=1

n−1∑
j=1

[
kW (cz,i, cz,j)τz,i

]
· τz,j − 2

n−1∑
i=1

m−1∑
j=1

[
kW (cz,i, cy,j)τz,i

]
· τy,j (18)

+
m−1∑
i=1

m−1∑
j=1

[
kW (cy,i, cy,j)τy,i

]
· τy,j .

The derivation of the gradient of J with respect to αi(t) is given in appendix D.

4.5 Algorithm

We used a conjugate gradient routine to perform the minimization of functional J in (18)

with respect to variables αi(t). Of course any other optimization scheme could be considered

at this point. The different steps required to compute the functional and its gradient for

each iteration are the following:

1. from momentum vectors αi(t), compute trajectories xi(t) by integrating the system of

ordinary differential equations (ODE) using Eq. (15).

2. evaluate J from Eq. (18)

3. compute vectors ηi(t) by integrating the system of ODE in Eq. (28) in Appendix D.

4. compute gradient (∇J)i(t) = 2γαi(t) + ηi(t).

All time-dependant variables were evaluated on a uniform grid t1 = 0, . . . , tT = 1 and

a predictor/corrector centered Euler scheme was used to solve the systems of ODE in Eq.
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(15) and (28). The complexity of each iteration is of order dTN2, where N = max(n,m).

To speed up computations when N is large, all convolutions by kernels kV and kW are

accelerated with a multipole method [41], which reduces the complexity to dTN log(N).

5 Results

In our experiments, we first used the similarity transformation to transform curves into

the same orientation and scale, as described in Appendix B. Then, we applied the curve

matching under the LDDMM setting to deform one curve to the other. Kernels of kV (x, y)

and kW (x, y) were radial with the form e−
|y−x|2

σ2 Id, where Id is the d× d identity matrix. σV

and σW represent the kernel sizes of kV and kW , respectively. They were experimentally

adjusted.

5.1 2D Curve Matching

Examples

Shown in Figure 3 are two-dimensional examples where the shape of curves represent

bones (the first row), or birds (the second row), or hands (the third row). In this experiment,

we chose σV = 0.25 and σW = 0.1 and deformed source shapes to target shapes. The first

column shows the target shape, while the rest columns show source shapes. In each panel

of the second and third rows, the blue curve represents the source shape before the curve

matching and the green curve represents the deformed source shape after the curve matching.

The background grid shows the deformation field. Figure 4 shows the time sequence of

deformation of the source configuration. The first panel shows the source hand in green and
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Figure 3: Examples for plane curve matching. Bone, bird, and hand examples are respec-
tively shown in rows. The first column shows target shapes. The second and third columns
show source shapes. Blue curves are source shapes, while green curves are deformed source
shapes.

the target hand in red. The last panel illustrates how close the deformed source curve (green)

are to the target curve (red) after the curve matching. The middle panels demonstrate the

smooth deformation as the source hand moves to the target hand along the time.

Robustness Against Noise

One application of studying transformations is to classify objects into different shape
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Figure 4: Panels from the left to the right depict the sequence of geodesic mappings connect-
ing the source hand to the target hand at time t = 0, 0.2, 0.4, 0.6, 0.8, 1. The source shape
and target shape are respectively represented in green and red.

groups. In our LDDMM framework, the velocity vectors transform one object to the other

object and give the shortest geodesic path connecting these two objects. The length of the

geodesic path defines a metric distance given in (2) and feature in classification. As the pur-

pose of classification, the metric distance should be robust against noise to achieve accurate

classification. In this section, we claim that the curve matching provides a more accurate

metric distance measurement and overcomes noise effect on matching results compared with

the landmark matching [18,42] when outliers are chosen as landmark points.

Example A in Figure 5 shows boats without and with a mast as the source and target

curves in panels (a,b), respectively. The curve and landmark matchings are applied to

transforming the source boat to the target boat and results are shown in panels (c,d). The

matching term in (18) for the template is near to zero in the region of the mast so that

there is no force to drive the source boat to match the mast. The peak point of the mast is

chosen as landmark in the landmark matching procedure so the source boat is deformed to

the target boat at the mast. However, the metric distance (1.63) in the landmark matching

is significantly larger than the one (0.13) in the curve matching. If a threshold is selected

to classify these boats, the landmark matching probably considers them in different shape

categories while the curve matching recognizes them as boats. When classifying shapes this
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problem typically arises as the result of imperfect extraction. The curve matching has less

noise effect on the metric distance compared with the landmark matching. A similar example

is given in Figure 5 B, one curve without a gap (source shape) and the other with a small

gap (target shape). The metric distance (1.37) in the landmark matching is larger than the

one (0.72) in the curve matching.

Box bump experiment

To study the behaviour of our curve matching algorithm, we computed matchings between

two shapes (cyan and red curves in Figure 6) composed of a box with a semi-circle. Each row

in Figure 6 shows one example representing the time evolution of the optimal diffeomorphism

by green curve in each panel. The desired behaviour, in which the bump slides along the

edge, occurs only when the bumps locations on the two shapes are close (see the top row

of Figure 6). Otherwise the deformation that flattens one bump and reforms the other one

is prefered, because the deformation cost is lower (see the bottom row of Figure 6. Note

again that our algorithm matches shapes up to a small error, measured by the metric W ∗.

Avoiding such solutions would require to put higher-order (typically curvature) information

into the metric W ∗, while our metric only relies on tangential information.

Computing all pairwise matchings between 17 shapes composed of a box with a semi-

circle when the locations of the bump on each curve subsequently moves further away, we

mapped the resulting distance matrix into a 2-dimensional coordinate system using classical

multidimensional scaling (MDS) [43]. Figure 7 shows the locations of each shape in the

first two scaling dimensions. This confirms the previous analysis: while shapes are correctly

ordered into a sequence, they seem to follow a highly curved path, because the ”flatten and

reform” solutions bound the metric distances between shapes.
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Classification

We demonstrate pattern classification of metric distances among curves shown in Figure

8. The shapes in Figure 8 were chosen from hand (10), dude (10), turtle (7), and fish (5) .

Special cases (hands and dudes with noise effect) are shown in the last two columns of rows

(a,b), which are similar cases as in Figure 5. The reason for choosing fish and turtles is that

some of fish are outliers which are similar to turtles.

Our classification approach has three steps: map any two curves to each other and

compute metric distances between them using (2), map metric distances into Euclidean

space via MDS [43], classify shapes via K-means clustering. Figure 9 shows the scatter plot

of the curves in the features spaces generated from MDS. The numbers (1,2,3,4) give the

classification results and respectively denote the categories of hand, turtle, fish, and dude.

Only two curves were wrongly classified as turtles. One is the hand shown in the second

column from the right in row (a), the other is the fish shown in the last column of row

(d). As we mentioned in the previous section, the small noise (e.g. the hand and dude in

the last column of rows (a,b)) does not inference the classification using the curve matching

approach. The successful performance rate of our classification approach is 93.75%.

5.2 3D Curve matching

In this section, we illustrate matching results of 3D curves. All curves were extracted from

brain cortical surfaces and matched to the template curve. For the purpose of visualiza-

tion, we show deformed brain surfaces where the deformation fields obtained from the curve

matching were interpolated.
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Examples

One major application of the curve matching in medical imaging is to transform one

anatomical structure to the other using anatomical curve information. For instance, curves

in the brain anatomy can be sulci or gyri that are conventional boundaries of cortical regions.

In this experiment, we demonstrate how to warp one cortical surface to the other using the

curve matching method. Cortical surfaces shown in the following were generated from MRI

image volumes. A 3D subvolume encompassing the region of interest (ROI) was defined

manually in each volume. A Bayesian segmentation using the expectation-maximization

algorithm to fit the compartmental statistics was used to label voxels in the subvolume

as gray matter (GM), white matter (WM), or cerebrospinal fluid (CSF) [44, 45]. Surfaces

were then generated at the GM/WM interface using a topology-correction method and a

connectivity-consistent isosurface algorithm [46,47].

Figure 10(a) shows the target of planum temporale (PT) surface located on the superior

temporal gyrus (STG) posterior to the Heschl’s sulcus (HS) and extending to Sylvian fissure

(SF). The structure of PT can be determined by three principal curves (STG, HS, SF)

tracked by dynamic programming [48]. In this experiment, we fixed one surface as the target

PT surface shown in Figure 10(a). We extracted the three curves from twenty PT surfaces

as curve objects and registered them with the curves on the target curves using our curve

matching algorithm. Finally, the deformation field was interpolated to the interior region of

PTs. The columns from left to right on rows (a)-(d) in Figure 11 respectively illustrate the

source PT surface, deformed source PT, source PT superimposed with the target PT, and

deformed source PT with the target PT. As shown in Figure 11, the performance for this

dataset was quite good. Panel (a) in Figure 13 shows cumulative distance distributions before
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and after the matching process. The cumulative distance distribution plots the percentage

of vertices whose distance to the target surface is less than d as a function of distance d.

Gray curves correspond to the source surfaces, while black curves are for the deformed source

surfaces after the matching. Red curves are the mean surface distance graphs before and

after the matching process from the bottom to the top, respectively. It is obvious that more

vertices move close to the target surface after the matching.

We applied the same strategy to match ten cingulate gyri (CG) to the target CG shown

in panel (d) of Figure 12. CG is a part of the limbic cortex and has functions related to

symptoms of Schizophrenia and Alzheimer’s disease. Panel (b) in Figure 10 shows the six

curves defined on the target CG. Each curve is color coded with the index in the same color

scheme. Panels (a)-(c) in Figure 12 give examples of the source CG surfaces and their de-

formed versions. To validate the matched results, we also computed the cumulative distance

distributions shown in panel (b) of Figure 13. This set of the CG curve mapping results have

been used to detect the group differences in the CG thickness between healthy comparison

controls and patients with schizophrenia, which illustrated a successful application of the

curve mapping in neuroimaging studies [32].

Comparison with Landmark Matching

The first purpose of this section is to compare the matched results of PT surfaces via

the curve matching algorithm with those from the landmark matching algorithm. Twenty

PTs were used in this experiment. As for the PT structure, three corner points and three

boundary curves of the PT are defined as point and curve objects across the population.

In the landmark matching process, five points equally spaced on each boundary and the

three corner points were chosen as point landmarks on each PT surface. Then, the landmark
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matching algorithm [18,42] was applied to PTs to obtain the deformation field that was used

to deform PT surfaces to the template. Since the PT structure is relatively flat and simple

compared with other structures of the brain, the cumulative distance distribution between

deformed source and target surfaces, as described in the previous section, can be used as

quantitative validation measurement. Figure 14 shows the averages for the original source

surfaces (solid line), deformed ones via the landmark matching (dashdot line), and deformed

ones via the curve matching (dash line). This figure suggests that the cumulative distance

distribution from the curve matching algorithm is above that from the landmark matching

algorithm, which implies that the curve matching algorithm introduced here significantly

improves matching results in terms of the surface distance measurement compared to those

from the landmark matching method.

The second aim of this section is to compare deformation fields of CG surfaces from the

landmark and curve matching algorithms. Landmark matching methods have been used to

map curves and surfaces by extracting a pair labeled point sets from the curves as landmarks.

However, manually labeling landmarks is labor-intensive as well as highly variable, and

landmark matching methods are sensitive to the labeling. Consequently, it may result in

giving incorrect mapping. In this experiment, we give such an example to show matching

results and deformation fields via both landmark [18,42] and curve matching methods under

the LDDMM framework. In the landmark matching process, seventy two landmarks were

selected from the six curves shown in panel (b) of Figure 10, twelve landmarks per curve [49].

After the landmark matching, the deformation field was interpolated for the other vertices on

the CG. Figures 15 and 16 give examples what the deformation fields are from the landmark

and curve matchings. Panels (a)-(d) in both figures respectively show the target, source,
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deformed source CG surface after the landmark matching, and deformed source CG surface

after the curve matching. Two red points are marked on the target surface in Figures 15(a)

and 16(a). Compared to the positions of these two points on the source surface, the relative

positions are changed after the landmark matching process, which can be observed in panel

(f) on both figures (zoom in version of the column in the triangulated mesh format). However,

we do not observe such a change in the curve matching shown in panels (g) of Figure 15 and

16. Thus, we conclude that the curve matching gives more proper deformation field due to

incorporating the geometry information of the curves.

6 Conclusion

In this work we have proposed a mathematical framework in which both curves and their

discrete samples are represented as vector-valued measures and embedded in a Hilbert space

structure. Coupled with a model of deformations of the ambient space, we designed vari-

ational problems for curve matching takes convenient explicit formulations due to the use

of the kernel of the Hilbert norm. We derived the case of the large deformations, given

by integration of time-dependant vector fields. We also derived the case of the similitude

transformation in Appendix B. We presented experiments for 2D and 3D curve mappings,

and validated the accuracy of matching as well as demonstrated the behaviors of the curve

mapping. Results indicate that the curve matching gives good matching and proper de-

formation fields compared to the landmark matching algorithm [18]. We also proposed to

apply this technique for shape classification using the metric distances provided by the large

deformation framework.
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Appendix

A Gradient of E

As the first step, we compute the derivative of the dissimilarity measure between two se-

quences of points (zi)
n
i=1 and (yj)

m
j=1 with respect to z, given in (19):

E = ‖µz − µy‖2
W ∗ =

n−1∑
i=1

n−1∑
j=1

[
kW (cz,i, cz,j)τz,i

]
· τz,j − 2

n−1∑
i=1

m−1∑
j=1

[
kW (cz,i, cy,j)τz,i

]
· τy,j

+
m−1∑
i=1

m−1∑
j=1

[
kW (cy,i, cy,j)τy,i

]
· τy,j .

Let 1 ≤ q ≤ n and zq + εz̃q be a small perturbation of point zq ∈ Rd, with other points

fixed. Since cz,i = 1
2
(zi + zi+1) and τz,i = zi+1 − zi, we have

∂cz,i

∂ε
=





1
2
z̃q if i = q or i = q − 1

0 otherwise

∂τz,i

∂ε
=





z̃q if i = q − 1

−z̃q if i = q

0 otherwise.

We consider kernels of the form kW (x, y) = h(|x−y|2) and we note hx,y,i,j = h(|cx,i−cy,j|2) ∈

R and h′x,y,i,j =
∂h(|cx,i−cy,j |2)

∂cx,i
= 2h′(|cx,i − cy,j|2)(cx,i − cy,j) ∈ Rd for any sequences of points
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x,y and indices i, j. We get

∂E

∂ε
=

n−1∑
j=1

(
h′z,z,q,j · z̃q

)
(τz,q · τz,j) +

n−1∑
j=1

(
h′z,z,q−1,j · z̃q

)
(τz,q−1 · τz,j)

+2
n−1∑
j=1

(hz,z,q−1,j − hz,z,q,j)(z̃q · τz,j)− 2
n−1∑
j=1

(hz,y,q−1,j − hz,y,q,j)(z̃q · τy,j)

−
m−1∑
j=1

(
h′z,y,q,j · z̃q

)
(τz,q · τy,j)−

m−1∑
j=1

(
h′z,y,q−1,j · z̃q

)
(τz,q−1 · τy,j).

Hence the gradient of E with respect to zq is given by

∇zqE =
n−1∑
j=1

(τz,q · τz,j)h
′
z,z,q,j +

n−1∑
j=1

(τz,q−1 · τz,j)h
′
z,z,q−1,j (19)

+2
n−1∑
j=1

(hz,z,q−1,j − hz,z,q,j)τz,j − 2
n−1∑
j=1

(hz,y,q−1,j − hz,y,q,j)τy,j

−
m−1∑
j=1

(τz,q · τy,j)h
′
z,y,q,j −

m−1∑
j=1

(τz,q−1 · τy,j)h
′
z,y,q−1,j.

B Similarity Transformation

B.1 Quaternion Representation of Similitude Transformation

Here we set d = 3 and look at transformations of the form φ(x) = Rx + b, where R is

a similitude matrix defined by the direct product of uniform scale with orthogonal spatial

rotation and b is a translation vector. The algebra of quaternions is a useful mathematical

tool for formulating the composition of arbitrary spatial rotations, and establishing the

32



correctness of algorithms founded upon such compositions. Here, we use the quaternion

q = [a, s] to represent a similitude transformation, where a is a vector with three entries

a1, a2, a3 to describe spatial rotation and s is a scalar. We do not restrict the length of q to

1 so that the scaling factor is also considered.

The group (Q, ◦) is defined as the set of quaternions Q with the law of composition ◦:

Q×Q → Q, given by

q1 ◦ q2 = [a1 × a2 + s1a2 + s2a1, s1s2 − a1 · a2] . (20)

The inverse of q is q−1 = 1
s2+a·aq

∗, where q∗ is the conjugate of q defined as q∗ = [−a, s].

According to the law of composition in (20), the similitude operation R on x ∈ R3 is described

as [Rx, 0] = q ◦ [x, 0] ◦ q∗, where

Rx = 2sa× x + 2(a · x)a + (s2 − |a|2)x . (21)

B.2 Similarity alignment of curves

In the continuous setting, the alignment of two curves C and S is performed through mini-

mization of the following functional:

J(s, a,b) = E(φ(C), S) =
∥∥µφ(C) − µS

∥∥2

W ∗ ,

where φ(x) = Rx + b, with R parametrized by variables s and a via formula (21). When

curves C and S are discretized via sequences x = (xi)
n
i=1 and y = (yj)

m
j=1, we consider the
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functional

J(s, a,b) = E(z,y) =

∥∥∥∥∥
n∑

i=1

τz,iδcz,i
−

m∑
j=1

τy,jδcy,j

∥∥∥∥∥

2

W ∗

,

where zi = Rxi + b. The derivative of this functional is computed in appendix C.

C Gradient of a matching functional with respect to

parameters of similarity transformations

We need to compute the gradient of a dissimilarity functional

J(s, a,b) = E(z,y),

where z = (zi)
n
i=1 = (φ(xi))

n
i=1 and φ(x) = Rx + b, R computed from parameters s and a

via formula (21): Rx = 2sa× x + 2(a · x)a + (s2 − |a|2)x. Let first compute the gradient of

J with respect to parameter s. We have

∇sJ =
n∑

i=1

∂φ(xi)

∂s
· ∇φ(xi)E =

n∑
i=1

(2sxi + 2a× xi) · ∇φ(xi)E . (22)

The gradient of J with respect to parameters a can be computed as follows. Let aε =
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a + εã and take derivatives at ε = 0. We have

∂εJ =
n∑

i=1

∂ε(φ(xi)) · ∇φ(xi)E

=
n∑

i=1

−2(a · ã)(xi · ∇φ(xi)E) + 2s(ã× xi) · ∇φ(xi)E +

2(ã · xi)(a · ∇φ(xi)E) + 2(a · xi)(ã · ∇φ(xi)E) .

Since (ã× xi) · ∇φ(xi)E = (xi ×∇φ(xi)E) · ã, we obtain

∂εJ =
n∑

i=1

ã · [−2(xi · ∇φ(xi)E)a + 2s(xi ×∇φ(xi)E) + 2(a · ∇φ(xi)E)xi + 2(a · xi)∇φ(xi)E)] .

The first and third terms form a double wedge product: −(xi · ∇φ(xi)E)a+ (a · ∇φ(xi)E)xi =

(a× xi)×∇φ(xi)E so finally the gradient is

∇aJ =
n∑

i=1

2(a× xi)×∇φ(xi)E + 2s(xi ×∇φ(xi)E) + 2(a · xi)∇φ(xi)E . (23)

We can compute the derivative of the gradient of J with respect to translation b in the

same way as for s and get

∇bJ =
n∑

i=1

∇φ(xi)E . (24)

The gradients with respect to s, a, and b in (22, 23, 24) all involve the term ∇φ(xi)E

given in (19) (with zi = φ(xi)).
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D Gradient of a point-based matching functional in

the large deformation setting

We rewrite J into a matrix form

J = γ

∫ 1

0

αt · kV (xt,xt)αt + E(x1,y) , (25)

where αt and xt are vectors of momentum and coordinates of vertices at time t. E denotes

the matching functional.

Lemma 2. The gradient of J with respect to momentum αt with metric given by ma-

trix kV (xt,xt) at time t is of the form (∇J)t = 2γαt + ηt, where vector ηt = ∇x1E +

∫ 1

t
(∂xs [kV (xs,xs)αs])

∗(ηs + γαs)ds and ∇x1E is given in (19).

Proof. Our first goal is to compute variation of velocity fields vt and trajectories xt given a

variation αε = α + εα̃.

We have

vt(x) =
N∑

k=1

kV (xk(t), x)αk(t) = kV (xt, x)αt , and (26)

xt = x +

∫ t

0

kV (xs,xs)αsds . (27)

For a variation αε = α + εα̃, computing the derivative with respect to ε in (26) yields the

corresponding variation of velocity field ṽ = ∂εv
ε as the form

ṽt(x) = ∂xt [kV (xt, x)αt]x̃t + kV (xt, x)α̃t ,
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where ∂i is the derivative with respect to the ith variable in kV . Similarly, the corresponding

variation of trajectory x̃t = ∂εφ
vε

t (x) from (15) is of the form

x̃t =

∫ t

0

∂xs [kV (xs,xs)αs]x̃s + kV (xs,xs)α̃sds .

To obtain x̃t a manipulation is needed. The above equation can be rewritten as

dx̃t

dt
= ∂xt [kV (xt,xt)αt]x̃t + kV (xt,xt)α̃t ,

which is a linear differential equation in variable x̃t. By the variation of constants method,

we are able to write the solution of x̃t as

x̃t =

∫ t

0

RstkV (xs,xs)α̃sds ,

where operator Rst gives the solution of the homogeneous equation

dRst

dt
= ∂xt [kV (xt,xt)αt]Rst .

It remains to express the variation of the energy ∂εJ in the form

∂εJ = 2γ

∫ 1

0

α̃t · kV (xt,xt)αtdt + γ

∫ 1

0

αt · ∂ε(kV (xε
t,x

ε
t)αt)dt + dx1E∂ε(x

ε
1) .
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Substituting ṽt(x) and x̃t in ∂εJ , we have the second term as

∫ 1

0

αt · ∂ε(kV (xε
t,x

ε
t)αt)dt =

∫ 1

0

( ∫ 1

t

R∗
ts∂xs [kV (xs,xs)αs]

∗ds
) · kV (xt,xt)α̃tdt .

The third term can be rewritten as

dx1E∂ε(x
ε
1) =

∫ 1

0

dx1ERt1kV (xt,xt)α̃tdt .

We finally obtain

∂εJ =

∫ 1

0

kV (xt,xt)
(
2γαt + ηt

) · α̃tdt .

The gradient ∇J ∈ L2([0, 1], (Rd)n) at time t is given

(∇J)t = kV (xt,xt)
(
2γαt + ηt

)
.

Vector ηt = γ
∫ 1

0
R∗

ts∂xs [kV (xs,xs)αs]
∗ds + R∗

t1∇x1E and it can be written in the backward

integral equation

ηt = ∇x1E +

∫ 1

t

(∂xs [kV (xs,xs)αs])
∗(ηs + γαs)ds . (28)

The choice of the metric over momentum αt in the space of L2 is arbitrary. A reasonable

choice of metric is given by kV (xt,xt) with two-fold advantages of being closer to the metric

inducing the space of velocity field v and simplifying the formula for the gradient. Therefore,
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the gradient (∇J)t can be simplified as

(∇J)t = 2γαt + ηt .
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a.       source b.      target

c.   curve matching d.   landmark matching

a.       source b.      target

c.   curve matching d.   landmark matching
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source

target

deformed

source

Figure 5: Comparison between the landmark and curve matchings. In each example (A)
or (B), panels (a,b) show the source and target curves. Panels (c,d) show results from the
curve and landmark matchings, respectively. The target and the deformed source shapes are
respectively shown in red and blue.
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t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 6: Box bump experiments. Each row shows one mapping from a template (cyan
curve) to a target (red curve) with evolution of φv̂

t at different times t ∈ [0, 1]
denoted by green curves. Top row: first experiment when two bumps on the template and
target curves are close to each othter. Bottom row: second experiment when two bumps on
the template and target curves are further from each other.
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Figure 7: 2-dimensional scaling plot of the distance matrix computed from pairwise match-
ings of 17 box bumps shapes

Figure 8: Rows (a-d) respectively show hand, dude, turtle, and fish.
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Figure 9: A scatter plot of feature dimensions from multidimensional scaling. 1:hand, 2:tur-
tle, 3:fish, 4:dude.
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Figure 10: Panel (a) shows the curve defined as boundary curve for planum temporale
cortical surface. Panel (b) depicts six curves describing the main shape of cingulate gyrus.
Each curve is colored differently with indices in the same color scheme. The surfaces are
colored by the curvature information
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Figure 11: Three-dimensional deformation of planum temporale cortical surface. Panels (a)-
(d) depict the deformation applied to planum temporale cortical surfaces. From the left to
the right, panels respectively show the source and deformed source surfaces as well as the
source and deformed source surfaces overlaying with the target surface in red. Panel (e)
shows the target of planum temporale surface.
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source deformed source
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Figure 12: Three-dimensional deformation of cingulate cortical surface. Panels (a)-(c) depict
the deformation applied to cingulate cortical surfaces. In each panel, the top row respectively
shows the source and deformed source surfaces from the left to the right; the bottom shows
the source and deformed source surfaces overlaying with the target surface in red, which is
shown on panel (d).
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Figure 13: Panels (a) and (b) depict the cumulative distance distributions for planum tem-
porale and cingulate surfaces. The cumulative distance distributions for the source surfaces
are in gray, while the distributions for the deformed source surface are in black. Red curves
are the mean distributions for the source and deformed source surfaces.
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Figure 14: Comparison of the cumulative distance distributions between the landmark and
curve matchings. Solid, dashdot, and dash lines represent average cumulative distance dis-
tributions over the original source, deformed source surfaces via the landmark and curve
matchings, respectively.
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Figure 15: Comparison of deformation fields between the landmark and curve matchings.
Panels (a-d) show the target, source, deformed source surface after the landmark matching,
deformed source surface after the curve matching. Red dots represents paired landmarks on
the target and source surfaces. Panels (e-g) show triangulated meshes respectively corre-
sponding to the surfaces in panels (b-d).
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Figure 16: Comparison of deformation fields between the landmark and curve matchings.
Panels (a-d) show the target, source, deformed source surface after the landmark matching,
deformed source surface after the curve matching. Red dots represents paired landmarks on
the target and source surfaces. Panels (e-g) show triangulated meshes respectively corre-
sponding to the surfaces in panels (b-d).
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