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Abstract the problems simultaneously, with the paradigm that the

best correspondences should correspond to the smoothest

In the paper, we study the problem of optimal matching deformations, yielding an automated point matching proce-
of two generalized functions (distributions) via a diffeomor- dure. To match higher dimensional structures (curves and
phic transformation of the ambient space. In the particu- surfaces), the same approach is used, after discretization
lar case of discrete distributions (weighted sums of Dirac and representation by a set of points.
measures), we provide a new algorithm to compare tWo  However, curve and surface matching cannot be con-
arbitrary unlabe”ed sets Of pOintS, a.nd ShOW that |t be' Sidered as ||m|t prob'ems Of point matching (through dis_
haves properly in limit of continuous distributions on sub- cretization), because a given point in the discretized first
manifolds. As a consequence, the algorithm may apply tomanifold should be matched to some point of the second
various matching problems, such as curve or surface match-manifold, but not necessarily belonging to the set of points
ing (via a sub-sampling), or mixings of landmark and curve into which this manifold has been discretized. Our argu-
data. As the solution forbids high energy solutions, itis also ment in this paper is that all these problems (surface, curve
robust towards addition of noise and the technique can be gng unlabeled point matching) all are particular instances of
used for nonlinear projection of datasets. We present 2D 3 more general class of problems, which is matching mea-
and 3D experiments. sures oiR? or R3, and more generally distributions on these
1. Introduction sets (ie. generalized functions)._ For thi_s purpose, we de-

velop a theory based on the action of diffeomorphisms on

Matching embedded geometric structures is of particu- distributions (which we present here in the specific case of
lar importance in many computer vision tasks and medical measures), along the lines of Grenander’s deformable tem-
imaging problems. The setting generally includes two im- plates theory ([12]), and in the large-deformation setting, as
ages or volumes, within which points, curves or surfaces developed in [17, 9, 15, 2, 11].
have been extracted, and formulates the following prob- A significant contribution related to unlabeled point
lems: matching has been provided with the Robust Point Match-

1. Detect suitable correspondences between the maniing algorithm (RPM) [6] and further refinements with the

folds extracted from the firstimage and those extracted Joint Clustering and Matching Algorithm (JCM) [7]. There,
from the second. the approach essentially consists in estimating and match-

ing two probability distributions, modeled as mixtures of
%aussians, with the assumptions that the second one is ob-
tained from the first one by the action of an unknown
In most of the approaches developped for matching (like deformation field on its centers, and that the two unla-
[3, 4, 14, 10, 1, 8, 13, 5]), the considered geometric struc- beled point sets are random samples of these distribu-
tures are points and both problems are solved separatelytions. Such an approach, however, does not incorporate
the second is addressed by elastic matching techniques couhe important constraint that the estimated deforma-
pled with spline interpolation, and the first one (point to tion is smooth and invertible. Moreover, the consistency
point correspondence) is most of the time solved by handissue is not addressed, and very hard to assert: this corre-
(labels being provided by experts), in the absence of a reli-sponds to the limit behavior of the algorithm in the case
able matching procedure. As an exception, [16] addressesvhen the centers of the mixtures of Gaussian are them-

2. Interpolate these correspondences to obtain a dens
displacement field between the two images.



selves obtained by discretizing two curves or surfaces, This norm can be computed as follows. The Riesz rep-
and the limit is taken with respect to the discretization ac- resentation theorem implies that, for all € R?, there
curacy. This is a fundamental issue, which essentially exists an elementi;6, of I such that, for allf € I,
decides of the numerical reliability of the matching algo- f(y) = [ fdé, = (K, f);. This implies that, for all
rithm. we Ms,

2. Mathematical Setup
2.1. Large deformation framework

/ F(w)duly) = / K16y, f)rduy) = { / Kb, du(y). ),

This section provides the required component of the In particular, denotind(; 1« = [ K;d,du(y), and taking the
“large deformation framework” for diffeomorphic match- supremum of both sides over dliwith | f|; = 1, we have
ing. In this setting, the starting object is a Hilbert spate
with norm | |y, of smooth vector fields (at least') de- |
fined on the background spa. This space induces a
sub-groupgy, of diffeomorphisms as follows: to any time-
dependent vector fielst : ¢ — v, is associated the flow
equation

2 = Kl = / Kpu(z)du(z)

which finally yields, denoting:;(y, z) = (K1d,)(x)

8t¢t = V40 ¢y, ¢0($‘) =, (1) \,u

which has a unique solution starting a4 = id when oy — i iohted ¢ Di hi
t — |v|v is integrable and under suitable regularity con- " # = >_; ¢ids, 1s @ weighted sum of Dirac measures, this

ditions on the elements df ([9]). Then Gy, defined by yields

2, = / ko (2, ) dp()dp(y) @)

Gy = { ¢V | |v¢elv € L'}, is a group, which can be ul?. = Zcicjkl(l'hl'j)
equipped with a natural right-invariant geodesic distance i,J
d(¢,¢') = inf{ [y [velvdt | ¢7 0 6 = ¢'}. which is particularly simple whe#y is given.

2.2. Group action on measures 2.3. Variational formulation

Consider the seM of all signed measures (difference
of two finite positive measures) d. The groupGy acts
on M, according to the actio(y, 1) — ¢u with

We define the optimal matchinq}, between two signed
measureg andv as a minimizer off,, . (¢) = d(Id, $)* +
|pu—v|%. /0%, 0% being a trade-off parameter. Introducing

ineti Ly 12 i $ —
oulf) = /f oddu o) thAe kinetic energifo_ |vt\V.dz_f, we get equivalently that =
¢y (cf (1)) wherev is a minimizer of
for any bounded measurable functifnin the case of a dis- 1
= . a;6,, (Whered, is the Dirac mass 2 L
crete measurg = 2. 2:0s, . Tnr )= | Ivlbdt + 1ot —v
at locationz), we havegu = >, ;jdy(,,). The problem 0 ORr
of matching two signed measurgsand v will be formu- An attractive aspect of this variational formulation is its

lri;ed ﬁ]s ﬁ(?grlrt]gi iisgt‘a/maaséglr?ze )a :ui%stsk:gltg t?stréﬁ)lsieg[ Ity ability to handle point sets matching problems for which
pping v H andv are two positive discrete measures and the limit prob-

v, for some metric between measures, both constraints be- . . S
ing represented by penalty terms in a variational problem. lem Qf matching continuous distributions supported by sub-
To specify the metric which is used to compare andv, manifolds.
we introduce a second Hilbert spaEgwith norm| |, con-
taining continuous, boundddnctionsonR¢, with the con-
straint

.

2.4. Existence and consistency results

In this subsection we state, without proofs, two impor-
[floo < elflx ®) tant properties of this variational formulation. The first one
for a givenc. Let I* be the space of continuous linear forms is an existence theorem, which is true under suitable regu-
on I. Assumption (3) implies that integration with respect larity conditions onl/.
to signed measure, which is a continuous linear form on
bounded continuous functions is also continuous for the
Hilbert structure on/, so thatM, can also be considered
as a subset of*. The distance between two signed mea- The second one is the consistency property mentionned in
suresy and i is now taken agy — 1|7+, with the usual  the introduction, still valid under suitable regularity condi-
definition: |v|« = sup([ fdu, f € I, |f|r = 1). tions onV'.

Theorem 1 (Existence)For giveny, v in M there exists
a minimizing solutiorv of (5).




Theorem 2 (Consistency)Let . and v be twoprobability
distributions onR? and letzy,--- , 2, andy,--- ,y, be
iid samples drawn from distributiong and v. Let i, =
LN 6., and iy, = Zj d,, be the associated empiri-
cal measures. Then zﬁ‘(m, n) is a minimizer of/;,, », , al-

most surelyg@(m, n) tends uniformly (up to the extraction of

a subsequence) t, minimizer ofJ,,., whenm,n — oc.
3. Derivation of the algorithm
3.1. Gradient computation for general measures

Our estimation of the optimal matching between two dis-
tributionsy andv is based on the implementation of a gra-
dient algorithm for

J(v) = /|vt|vdt+ e

in L2([0,1],V), the Hilbert space of time-dependent ele-
ments ofV with square integrable norms.

We compute the variations of with respect to a varia-
tion v, = v + hv. For a given quantityl, we denoteA the
variation of A with respect tas, i.e. the derivative of4;, at
h=0.

Since the variation of the first term is straightforward, we
focus on the second terfh= |¢Yu — v|3.. We have

5 < 1H7¢1N >

Let K; : I* — I be the canonical isometry betweén
and its dual spacé* generated by the Riesz representa-
tion theorem i.e. for any € I* andg € I, v(g) =
(Krv,9)r = (v, K7 'g);-. This operator has already been
introduced, as applied to measures, in section 2.1f] et
Kr(¢pYpu—v) el Smceqs € I*, we can write

=20y u(f1) = H(fl 0 ¢Y) = u(dgy f1- o).

Now, denotingp?, = #Y o (¢¥)~!, the variation of the de-
formation mappy sat|sf|es [2],

1
oY = / dpy @}1.Vi 0 ¢ dt.
0

Therefore,

_ 1
dow f1. 07 = / (d(f1 0 6%).71) 0 B dt,

0
and thus

1
/O oY (d(f1 0 6%).71)dt

/01 (/Rd «(f10¢y1) - Vi(z)d(9} N))
/01 (/ (Va(fio ¢:1>,vt<x>>d<¢:u>) dt

The linear form

STV (frodh) s u / o(f1 0 6%, s (2))d(6Y 1)

is continuous ot/ and therefore belongs 6*. Introduc-
ing, as above, the operatéf,, : V* — V inducing the
canonical isometry, we find

1
g / (Ky (67 ¥ (f1 0 61)), Fo)vet,
0

and the gradient of in L2([0, 1], V') writes

(V) = 2vt<a:>+f%Kv<¢zuv<m<¢m—u>o¢z1>>.

(6)

3.2. Application to Dirac measures

When measureg and v are weighted sums of Dirac
measuresy = Y .-, a;0,, andv = > | b;d,,, the for-
mula for J and its gradient can be rewritten to provide an
explicit formulation of the variational problem. We use the
notationz; (t) = ¢} (x;) and

iIM*V*ZaZ zi(t) — Zb(SZhZZCz Zit
=1
First, the error term off writes

N
%* = Z CZ'CijI(ZZ‘,Zj).

ij=1

= l¢7u—v

Now we use the following remark : when trajectories
x;(t) are fixed, the vector fields of lowest energy take the
form

m

> kv (i(t), w)ei(t),

=1

Vt(IL')

where ky(z,y) is the kernel operator correspond-
ing to space V, which satisfies g*ky(x,y)a
(kv (x,)a, kv (y,-)B)v. This is a general fact for land-
mark matching methods [13, 5].

Thus, the variables of our minimization problem become
the vectorsy; (¢) and the functionall rewrites

./j

a; () kv (@i(t), z;(t))exi(t)

Nz

1
poy Z cicikr(z;, z;) | dt.
ORr;

7,7=1



Next we compute the explicit formulation of the gradient

to be implemented in the matching code. We have

flw) = Ki(@ln—v)@) =3 cibi(z,a),
=1
frodh(@) = 3 eikilz oh (@),
=1
V(foon)@) = 3 eldadhy) Vaki(z:, 6% ().

i=1

Moreover,¢y 1 = Y. | ai0,, 1), SO if we denote by? the
element oft”* such that? (u) = (u(x), o), we have
GV (frooh) =3 a0,
j=1
with 3;(t) = (d.,1yt1)*-B;(1) and

Bi(1) = 3 Vi (20,6 ().

i=1

Q)

The gradient expression is

(VJ)i(z) =2 Z kv (5(1), ) (o (8) + B; (1) /o).

The quantityg; (t) can be computed by numerical integra-

tion, since we have :

Ao, (1) P11 oy @Y (doy )7,
at(ded);,)_l = _(dwj(bz)_l'dxj(t)vh
Ordy; (101 =  —duy(t)Pt1-Aa; (1) Vis

and eventually,

0:f3;(t) = (Opda (1 911)"-B(1) = *(dwj(nw)*ﬂj(t)(s)

Now sincev, = >, kv (zx(t), -)ax(t), we have
dyjyve = Y Dok (wi(t), 2 (t) )k (¢).
k=1

4. Experiments

5. Experiments

This section presents simulations processed on synthetic

examples with a MATLAB implementation of a gradient
descent on the functiondl, as given by formula 7. We have
used kernel& andk; defined or2 = R? and such that

2
by (2.) = fv (':”Uf) 1d

|4

|z —y|?
kl(xay)ff( 0_; )
i.e. ky and k; are isotropic, translation and rotation in-
variant. For functionsfy and f; wa have triedfy (u) =
fr(u) = exp(—u) (gaussian kernels) anfd (v) = fr(u) =
1%“. This second choice gives the best results and has been

selected for the simulations.
The main steps of the gradient descent algorithm are

o |nitialisation
Set initial trajectories:; (t) = x; anda;(t) = 0

e lteration loop :(z, @) — (&, &).
— Computes; (1) with formula 7.
— Computes;(t) by integrating equation 8.
— Seta; () «— a;(t) — AM(2a;(t) + B;(t)) whereX

is the gradient step.

— Compute new trajectories (t) by integrating

m

0udts(8) = D kv (w(t), &:(t)); (1),

i=1

— Compute new vector§;(t) by inverting the lin-
ear systems

Oi(t) = kv (&5(t), 2:(t))a,(t).
=1
The two last steps are actually needed to ensure that
during minimization, trajectories;(¢) are kept equal to
¢ (x;), wherev is computed fromy; (¢).
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Figure 1. Matching with two pairs curves (see
text for details).

Figure 1 shows the result of matching two pairs of
smapled curves. Initial landmark points (lowest and right-
most curves) are drawn as diamonds and targets as stars.
Note that these are the only information given to the algo-
rithm for the minimization process. In particular, the algo-
rithm does not "know” that there are two curves. On the
right frame (final state) are drawn the target curve and the



deformation of the whole initial curve which superimpose
almost exactly.

Figure 1 shows the result of a matching process between
two pairs of curves given by their sampling. Initial land- -
mark points are drawn as diamonds and targets as stars.”
Note that these are the only information given to the algo-
rithm for the minimization process. In particular, the algo- -
rithm do not "know” that there are two curves. On the right

frame (final state) are drawn the target curve and the defor- .
mation of the whole initial curve.

sigmav=0.5, sigmal=0.1, sigmaR=0.001, 300 itérations

sigmaV=0.5, sigmal=0.1, sigmaR=0.001, 210 itérations
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Figure 2. Experiment with one curve and two
landmarks (see text for details).

Figure 3. Robustness against outliers (0, 20,
40 and 60 outlier points added)

Experiment 2 illustrates the possibility to perform a
matching with both of landmark and curve data. For the
simulation we have assigned a weightlo8 for each of

the 2 landmarkand the curve, which means each of the 12
sample points of the curve has weigh86; thus equal im-
portance is given to the three items. )
Experiment 3 explores the robustness of the algorithm
against the presence of outliers. It shows how the deforma-
tion varies when more and more random points are added
both to the initial and target datasets. The conclusion is that, ..
while the global deformation may be affected by the noise,

sigmav=0.5, sigmal=0.5, sigmaR=0.01, 300 itérations
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its effect on the initial curve remains essentially constant.

Next (figures 3,4,5,6) we have processed a series of ex- sampling rates 10 and 10

periments of matching a circle to a deformed closed curve.
The only curve which is drawn is the image of the initial cir-
cle under the current deformation map (The initial circle is
locates on the lower-left part of the grid). !
In figure 4 we sample the curves at various rates and pro-
cess the algorithm with the same parameters. When sam-
pling rates are equal, the algorithm matches exactly pairs of *
landmarks. The interesting case comes with different sam-
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pling rates : in this case the deformed data fits along the

. . e - sampling rates 10 and 2
target curve without matching specifically any of its land-

marks. This illustrates the consistency of the algorithm, as

1

o 05

2

sampling rates 2 and 2

) . . Figure 4. Comparing different sampling rates.
explained in the section 2.4. 9 paring Ping

In figure 5 a gaussian noise is added to the positions

of the target landmarks, with increasing variance. The de-
formed curve remains remarkably stable, finding an aver-
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Figure 5. Analyzing the effect of noisy data
(variances of noise are 0, 0.01, 0.03, and 0.1)

Figure 6. Testing different kernel sizes on
noisy data.

age position within the target points, even for significantly

large noise.

In figure 6 we vary the parametess ando; and pro-
cess a noisy data sample (the third one in figure 5). When
these parameters decrease, the deformation map becomes
more sensitive to local variations of the data.

In figure 7, the matching algorithm was processed on A.
Rangarajan’s dataset, available on his website. In the fish
experiment, data needed to be translated on the x-axis be-
fore processing to produce good results (our method does
not yet implement affine registration).

6. Conclusion

The algorithm introduced in this work present several in-
teresting features. Mathematically, it has the advantage to
imbed the problem of submanifold matching in a general
framework, measure matching, in which convergence and
consistency results express naturally. On a more practical
level, we model both deformations fields and measures as
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