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Abstract

In the paper, we study the problem of optimal matching
of two generalized functions (distributions) via a diffeomor-
phic transformation of the ambient space. In the particu-
lar case of discrete distributions (weighted sums of Dirac
measures), we provide a new algorithm to compare two
arbitrary unlabelled sets of points, and show that it be-
haves properly in limit of continuous distributions on sub-
manifolds. As a consequence, the algorithm may apply to
various matching problems, such as curve or surface match-
ing (via a sub-sampling), or mixings of landmark and curve
data. As the solution forbids high energy solutions, it is also
robust towards addition of noise and the technique can be
used for nonlinear projection of datasets. We present 2D
and 3D experiments.

1.. Introduction

Matching embedded geometric structures is of particu-
lar importance in many computer vision tasks and medical
imaging problems. The setting generally includes two im-
ages or volumes, within which points, curves or surfaces
have been extracted, and formulates the following prob-
lems:

1. Detect suitable correspondences between the mani-
folds extracted from the first image and those extracted
from the second.

2. Interpolate these correspondences to obtain a dense
displacement field between the two images.

In most of the approaches developped for matching (like
[3, 4, 14, 10, 1, 8, 13, 5]), the considered geometric struc-
tures are points and both problems are solved separately:
the second is addressed by elastic matching techniques cou-
pled with spline interpolation, and the first one (point to
point correspondence) is most of the time solved by hand
(labels being provided by experts), in the absence of a reli-
able matching procedure. As an exception, [16] addresses

the problems simultaneously, with the paradigm that the
best correspondences should correspond to the smoothest
deformations, yielding an automated point matching proce-
dure. To match higher dimensional structures (curves and
surfaces), the same approach is used, after discretization
and representation by a set of points.

However, curve and surface matching cannot be con-
sidered as limit problems of point matching (through dis-
cretization), because a given point in the discretized first
manifold should be matched to some point of the second
manifold, but not necessarily belonging to the set of points
into which this manifold has been discretized. Our argu-
ment in this paper is that all these problems (surface, curve
and unlabeled point matching) all are particular instances of
a more general class of problems, which is matching mea-
sures onR2 orR3, and more generally distributions on these
sets (ie. generalized functions). For this purpose, we de-
velop a theory based on the action of diffeomorphisms on
distributions (which we present here in the specific case of
measures), along the lines of Grenander’s deformable tem-
plates theory ([12]), and in the large-deformation setting, as
developed in [17, 9, 15, 2, 11].

A significant contribution related to unlabeled point
matching has been provided with the Robust Point Match-
ing algorithm (RPM) [6] and further refinements with the
Joint Clustering and Matching Algorithm (JCM) [7]. There,
the approach essentially consists in estimating and match-
ing two probability distributions, modeled as mixtures of
Gaussians, with the assumptions that the second one is ob-
tained from the first one by the action of an unknown
deformation field on its centers, and that the two unla-
beled point sets are random samples of these distribu-
tions. Such an approach, however, does not incorporate
the important constraint that the estimated deforma-
tion is smooth and invertible. Moreover, the consistency
issue is not addressed, and very hard to assert: this corre-
sponds to the limit behavior of the algorithm in the case
when the centers of the mixtures of Gaussian are them-



selves obtained by discretizing two curves or surfaces,
and the limit is taken with respect to the discretization ac-
curacy. This is a fundamental issue, which essentially
decides of the numerical reliability of the matching algo-
rithm.

2.. Mathematical Setup

2.1.. Large deformation framework

This section provides the required component of the
“large deformation framework” for diffeomorphic match-
ing. In this setting, the starting object is a Hilbert spaceV ,
with norm | |V , of smooth vector fields (at leastC1) de-
fined on the background spaceRd. This space induces a
sub-groupGV of diffeomorphisms as follows: to any time-
dependent vector fieldv : t → vt, is associated the flow
equation

∂tφt = vt ◦ φt, φ0(x) = x , (1)

which has a unique solution starting atφ0 = id when
t 7→ |vt|V is integrable and under suitable regularity con-
ditions on the elements ofV ([9]). Then GV , defined by
GV = { φv

1 | |vt|V ∈ L1 }, is a group, which can be
equipped with a natural right-invariant geodesic distance
d(φ, φ′) = inf{

∫ 1

0
|vt|V dt | φv

1 ◦ φ = φ′}.

2.2.. Group action on measures

Consider the setMs of all signed measures (difference
of two finite positive measures) onRd. The groupGV acts
onMs according to the action(φ, µ)→ φµ with

φµ(f) =
∫

f ◦ φdµ (2)

for any bounded measurable functionf . In the case of a dis-
crete measureµ =

∑
i αiδxi (whereδx is the Dirac mass

at locationx), we haveφµ =
∑

i αiδφ(xi). The problem
of matching two signed measuresµ andν will be formu-
lated as findinĝφ ∈ GV as close as possible to the identity
mapping (for the distanced onGV ) such that̂φµ is close to
ν, for some metric between measures, both constraints be-
ing represented by penalty terms in a variational problem.
To specify the metric which is used to compareφ̂µ andν,
we introduce a second Hilbert spaceI, with norm| |I , con-
taining continuous, boundedfunctionsonRd, with the con-
straint

|f |∞ ≤ c|f |I (3)

for a givenc. Let I∗ be the space of continuous linear forms
on I. Assumption (3) implies that integration with respect
to signed measure, which is a continuous linear form on
bounded continuous functions is also continuous for the
Hilbert structure onI, so thatMs can also be considered
as a subset ofI∗. The distance between two signed mea-
suresµ andµ′ is now taken as|µ − µ′|I∗ , with the usual
definition:|ν|I∗ = sup(

∫
fdµ, f ∈ I, |f |I = 1).

This norm can be computed as follows. The Riesz rep-
resentation theorem implies that, for ally ∈ Rd, there
exists an element,KIδy of I such that, for allf ∈ I,
f(y) =

∫
fdδy = 〈KIδy, f〉I . This implies that, for all

µ ∈Ms,∫
f(y)dµ(y) =

∫
〈KIδy, f〉Idµ(y) =

〈 ∫
KIδydµ(y), f

〉
I

In particular, denotingKIµ =
∫

KIδydµ(y), and taking the
supremum of both sides over allf with |f |I = 1, we have

|µ|2I∗ = |KIµ|2I =
∫

KIµ(x)dµ(x)

which finally yields, denotingkI(y, x) = (KIδy)(x)

|µ|2I∗ =
∫

kI(x, y)dµ(x)dµ(y) (4)

If µ =
∑

i ciδxi is a weighted sum of Dirac measures, this
yields

|µ|2I∗ =
∑
i,j

cicjkI(xi, xj)

which is particularly simple whenkI is given.

2.3.. Variational formulation

We define the optimal matching,̂φ between two signed
measuresµ andν as a minimizer ofJµ,ν(φ) .= d(Id, φ)2 +
|φµ−ν|2I∗/σ2

R, σ2
R being a trade-off parameter. Introducing

the kinetic energy
∫ 1

0
|vt|2V dt, we get equivalently that̂φ =

φv̂
1 (cf (1)) wherev̂ is a minimizer of

Jµ,ν(v) =
∫ 1

0

|vt|2V dt +
1

σ2
R

|φv
1µ− ν|2I∗ (5)

An attractive aspect of this variational formulation is its
ability to handle point sets matching problems for whichµ
andν are two positive discrete measures and the limit prob-
lem of matching continuous distributions supported by sub-
manifolds.

2.4.. Existence and consistency results

In this subsection we state, without proofs, two impor-
tant properties of this variational formulation. The first one
is an existence theorem, which is true under suitable regu-
larity conditions onV .

Theorem 1 (Existence)For givenµ, ν inMs there exists
a minimizing solution̂v of (5).

The second one is the consistency property mentionned in
the introduction, still valid under suitable regularity condi-
tions onV .



Theorem 2 (Consistency)Let µ andν be twoprobability
distributions onRd and letx1, · · · , xm andy1, · · · , yn be
iid samples drawn from distributionsµ and ν. Let µ̂m =
1
m

∑
i δxi

and ν̂n = 1
n

∑
j δyj

be the associated empiri-

cal measures. Then if̂φ(m,n) is a minimizer ofJµ̂m,ν̂n
, al-

most surely,̂φ(m,n) tends uniformly (up to the extraction of
a subsequence) tôφ, minimizer ofJµ,ν , whenm,n→∞.

3.. Derivation of the algorithm

3.1.. Gradient computation for general measures

Our estimation of the optimal matching between two dis-
tributionsµ andν is based on the implementation of a gra-
dient algorithm for

J(v) =
∫ 1

0

|vt|2V dt +
1

σ2
R

|φv
1µ− ν|2I∗

in L2([0, 1], V ), the Hilbert space of time-dependent ele-
ments ofV with square integrable norms.

We compute the variations ofJ with respect to a varia-
tion vh = v + hṽ. For a given quantityA, we denoteÃ the
variation ofA with respect toh, i.e. the derivative ofAh at
h = 0.

Since the variation of the first term is straightforward, we
focus on the second termE = |φv

1µ− ν|2I∗ . We have

Ẽ = 2〈φ̃v
1µ, φv

1µ− ν〉I∗

Let KI : I∗ → I be the canonical isometry betweenI
and its dual spaceI∗ generated by the Riesz representa-
tion theorem i.e. for anyν ∈ I∗ and g ∈ I, ν(g) =
〈KIν, g〉I = 〈ν,K−1

I g〉I∗ . This operator has already been
introduced, as applied to measures, in section 2.1. Letf1 =
KI(φv

1µ− ν) ∈ I. Sinceφ̃v
1µ ∈ I∗, we can write

Ẽ = 2φ̃v
1µ(f1) = µ(f̃1 ◦ φv

1 ) = µ(dφv
1
f1.φ̃v

1 ).

Now, denotingφv
st = φv

t ◦ (φv
s )−1, the variation of the de-

formation mapφv
1 satisfies [2],

φ̃v
1 =

∫ 1

0

dφv
t
φv

t1.ṽt ◦ φv
t dt.

Therefore,

dφv
1
f1.φ̃v

1 =
∫ 1

0

(d(f1 ◦ φv
t1).ṽt) ◦ φv

t dt,

and thus

Ẽ =
∫ 1

0

φv
t µ(d(f1 ◦ φv

t1).ṽt)dt

=
∫ 1

0

(∫
Rd

dx(f1 ◦ φv
t1).ṽt(x)d(φv

t µ)
)

dt

=
∫ 1

0

(∫
Rd

〈∇x(f1 ◦ φv
t1), ṽt(x)〉d(φv

t µ)
)

dt.

The linear form

φv
t µ∇(f1 ◦ φv

t1) : u 7→
∫

Rd

〈∇x(f1 ◦ φv
t1),ut(x)〉d(φv

t µ)

is continuous onV and therefore belongs toV ∗. Introduc-
ing, as above, the operatorKV : V ∗ → V inducing the
canonical isometry, we find

Ẽ =
∫ 1

0

〈KV (φv
t µ∇(f1 ◦ φv

t1)), ṽt〉V dt,

and the gradient ofJ in L2([0, 1], V ) writes

(∇J)t(x) = 2vt(x)+
2

σ2
R

KV (φv
t µ∇(KI(φv

1µ−ν)◦φv
t1)).

(6)

3.2.. Application to Dirac measures

When measuresµ and ν are weighted sums of Dirac
measures,µ =

∑m
i=1 aiδxi

andν =
∑n

i=1 biδyi
, the for-

mula for J and its gradient can be rewritten to provide an
explicit formulation of the variational problem. We use the
notationxi(t) = φv

t (xi) and

φv
1µ− ν =

m∑
i=1

aiδxi(t) −
n∑

i=1

biδyi
=

nz∑
i=1

ciδzi
.

First, the error term ofJ writes

E = |φv
1µ− ν|2I∗ =

nz∑
i,j=1

cicjkI(zi, zj).

Now we use the following remark : when trajectories
xi(t) are fixed, the vector fields of lowest energy take the
form

vt(x) =
m∑

i=1

kV (xi(t), x)αi(t),

where kV (x, y) is the kernel operator correspond-
ing to space V , which satisfies β∗kV (x, y)α =
〈kV (x, ·)α, kV (y, ·)β〉V . This is a general fact for land-
mark matching methods [13, 5].

Thus, the variables of our minimization problem become
the vectorsαi(t) and the functionalJ rewrites

J =
∫ 1

0

 m∑
i,j=1

αj(t)∗kV (xi(t), xj(t))αi(t)

+
1

σ2
R

nz∑
i,j=1

cicjkI(zi, zj)

 dt.



Next we compute the explicit formulation of the gradient
to be implemented in the matching code. We have

f1(x) = KI(φv
1µ− ν)(x) =

nz∑
i=1

cikI(zi, x),

f1 ◦ φv
t1(x) =

nz∑
i=1

cikI(zi, φ
v
t1(x)),

∇(f1 ◦ φv
t1)(x) =

nz∑
i=1

ci(dxφv
t1)

∗.∇2kI(zi, φ
v
t1(x)).

Moreover,φv
t µ =

∑m
i=1 aiδxi(t), so if we denote byδα

x the
element ofV ∗ such thatδα

x (u) = 〈u(x), α〉, we have

φv
t µ∇(f1 ◦ φv

t1) =
m∑

j=1

ajδ
βj(t)

xj(t)
,

with βj(t) = (dxj(t)φ
v
t1)

∗.βj(1) and

βj(1) =
nz∑
i=1

ci∇2kI(zi, φ
v
1 (xj)). (7)

The gradient expression is

(∇J)t(x) = 2
m∑

j=1

kV (xj(t), x)(αj(t) + βj(t)/σ2
R).

The quantityβj(t) can be computed by numerical integra-
tion, since we have :

dxj(t)φ
v
t1 = dxj

φv
1 .(dxj

φv
t )−1,

∂t(dxj
φv

t )−1 = −(dxj
φv

t )−1.dxj(t)vt,

∂tdxj(t)φ
v
t1 = −dxj(t)φ

v
t1.dxj(t)vt,

and eventually,

∂tβj(t) = (∂tdxj(t)φ
v
t1)

∗.βj(1) = −(dxj(t)vt)∗.βj(t).
(8)

Now sincevt =
∑m

k=1 kV (xk(t), ·)αk(t), we have

dxj(t)vt =
nx∑

k=1

∂2kV (xk(t), xj(t))αk(t).

4. Experiments

5. Experiments

This section presents simulations processed on synthetic
examples with a MATLAB implementation of a gradient
descent on the functionalJ , as given by formula 7. We have
used kernelskV andkI defined onΩ = R2 and such that

kV (x, y) = fV

(
|x− y|2

σ2
V

)
Id

kI(x, y) = fI

(
|x− y|2

σ2
I

)
,

i.e. kV and kI are isotropic, translation and rotation in-
variant. For functionsfV and fI wa have triedfV (u) =
fI(u) = exp(−u) (gaussian kernels) andfV (u) = fI(u) =

1
1+u . This second choice gives the best results and has been
selected for the simulations.

The main steps of the gradient descent algorithm are

• Initialisation
Set initial trajectoriesxi(t) = xi andαi(t) = 0

• Iteration loop :(x, α)→ (x̂, α̂).

– Computeβj(1) with formula 7.

– Computeβj(t) by integrating equation 8.

– Setαi(t) ← αi(t) − λ(2αi(t) + βi(t)) whereλ
is the gradient step.

– Compute new trajectorieŝxi(t) by integrating

∂tx̂i(t) =
m∑

i=1

kV (xj(t), x̂i(t))αj(t).

– Compute new vectorŝαi(t) by inverting the lin-
ear systems

∂tx̂i(t) =
m∑

i=1

kV (x̂j(t), x̂i(t))α̂j(t).

The two last steps are actually needed to ensure that
during minimization, trajectoriesxi(t) are kept equal to
φv

t (xi), wherev is computed fromαi(t).
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Figure 1. Matching with two pairs curves (see
text for details).

Figure 1 shows the result of matching two pairs of
smapled curves. Initial landmark points (lowest and right-
most curves) are drawn as diamonds and targets as stars.
Note that these are the only information given to the algo-
rithm for the minimization process. In particular, the algo-
rithm does not ”know” that there are two curves. On the
right frame (final state) are drawn the target curve and the



deformation of the whole initial curve which superimpose
almost exactly.

Figure 1 shows the result of a matching process between
two pairs of curves given by their sampling. Initial land-
mark points are drawn as diamonds and targets as stars.
Note that these are the only information given to the algo-
rithm for the minimization process. In particular, the algo-
rithm do not ”know” that there are two curves. On the right
frame (final state) are drawn the target curve and the defor-
mation of the whole initial curve.
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Figure 2. Experiment with one curve and two
landmarks (see text for details).

Experiment 2 illustrates the possibility to perform a
matching with both of landmark and curve data. For the
simulation we have assigned a weight of1/3 for each of
the 2 landmarksand the curve, which means each of the 12
sample points of the curve has weight1/36; thus equal im-
portance is given to the three items.

Experiment 3 explores the robustness of the algorithm
against the presence of outliers. It shows how the deforma-
tion varies when more and more random points are added
both to the initial and target datasets. The conclusion is that,
while the global deformation may be affected by the noise,
its effect on the initial curve remains essentially constant.

Next (figures 3,4,5,6) we have processed a series of ex-
periments of matching a circle to a deformed closed curve.
The only curve which is drawn is the image of the initial cir-
cle under the current deformation map (The initial circle is
locates on the lower-left part of the grid).

In figure 4 we sample the curves at various rates and pro-
cess the algorithm with the same parameters. When sam-
pling rates are equal, the algorithm matches exactly pairs of
landmarks. The interesting case comes with different sam-
pling rates : in this case the deformed data fits along the
target curve without matching specifically any of its land-
marks. This illustrates the consistency of the algorithm, as
explained in the section 2.4.

In figure 5 a gaussian noise is added to the positions
of the target landmarks, with increasing variance. The de-
formed curve remains remarkably stable, finding an aver-

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
sigmaV=0.5, sigmaI=0.1, sigmaR=0.001, 300 itérations

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sigmaV=0.5, sigmaI=0.1, sigmaR=0.001, 210 itérations

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sigmaV=0.5, sigmaI=0.1, sigmaR=0.001, 300 itérations

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sigmaV=0.5, sigmaI=0.1, sigmaR=0.001, 300 itérations

Figure 3. Robustness against outliers (0, 20,
40 and 60 outlier points added)
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Figure 4. Comparing different sampling rates.
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Figure 5. Analyzing the effect of noisy data
(variances of noise are 0, 0.01, 0.03, and 0.1)

age position within the target points, even for significantly
large noise.

In figure 6 we vary the parametersσV andσI and pro-
cess a noisy data sample (the third one in figure 5). When
these parameters decrease, the deformation map becomes
more sensitive to local variations of the data.

In figure 7, the matching algorithm was processed on A.
Rangarajan’s dataset, available on his website. In the fish
experiment, data needed to be translated on the x-axis be-
fore processing to produce good results (our method does
not yet implement affine registration).

6. Conclusion

The algorithm introduced in this work present several in-
teresting features. Mathematically, it has the advantage to
imbed the problem of submanifold matching in a general
framework, measure matching, in which convergence and
consistency results express naturally. On a more practical
level, we model both deformations fields and measures as
linear sums of kernels functions which sizes can be adjusted
to work at a given spatial scale. The synthetic experiments
allowed us to demonstrate several good properties, such as
robustness against noise and outliers, or against different re-
samplings of the curves. Since the first redaction of this re-
port, experiments on brain 3D data have been started, with
promising results. A preliminar example is provided in fig-
ure 8.
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Figure 6. Testing different kernel sizes on
noisy data.
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