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1 Introdu
tionDeveloping a rigorous, quantitative methodology for 
omparing shape is a 
ontemporary problem inves-tigated in image analysis. A typi
al appli
ation in medi
al imaging � in parti
ular neuroimaging � is
omparison of the shape of anatomi
 stru
tures between two individuals, and development of a statisti-
al theory whi
h allows shape to be studied a
ross populations. This type of investigation is known as
omputational anatomy [?℄. It is motivated by eviden
e (for example [?, ?, ?, ?℄) of shape di�eren
esbetween 
hara
teristi
ally di�erent populations � su
h as males and females � and populations 
hara
-terized by disease, drugs, et
. The hope is that a great deal 
an be learned about disease from studyingshape, and that ultimately this type of investigation will enable some diseases to be 
hara
terized bythe shape of parti
ular anatomi
 stru
tures.Typi
ally the anatomi
 stru
ture of interest is modeled as a 1, 2 or 3 dimensional submanifold of
R

3, su
h as a 
urve (1D), image (2D), surfa
e (2D), or volume (3D). Methodologies for studying shapedi�eren
es are then developed for these models. A main 
omponent in the analysis, after obtaining theindividual model representations for the subje
ts being studied, is the establishment of 
orresponden
eof anatomi
ally homologous substru
tures between the subje
ts. For example, if we are interested in
omparing shape di�eren
es between fa
es of two individuals in images, we would like to ensure that the
oordinates of the left eye in one image 
orrespond to the left eye in the other image. On a �ner s
ale, wewould like to ensure that the left 
orner of the left eye 
orresponds appropriately. This 
orresponden
eshould extend down to the �nest resolution. However, a 
omplete 
orresponden
e at this s
ale usually 
annot be pre
isely attained be
ause of high variability. For example, wrinkles are a 
ommon 
hara
teristi
of elderly people, but the spe
i�
 pattern of wrinkles on any two individuals typi
ally 
an not be mat
hed.One way to pro
eed in establishing a 
orresponden
e is to manually identify a subset of points in the twoimages whi
h deliniate reliable and identi�able features. We refer to these points as landmarks. Then,we use the 
orresponden
e at this subset of points in an optimal way to extend the 
orresponden
eover the entire stru
ture. This pro
ess is 
alled landmark mat
hing. This paper fo
uses on landmarkmat
hing for a parti
ular geometri
 model � the unit sphere � whi
h is the usual 2D submanifold of R
3.The sphere is of interest be
ause it has be
ome a standard 
on�guration onto whi
h the 
erebral 
ortex
an be mapped, thereby providing a 
ommon 
oordinate system for spe
ifying lo
ation on the surfa
e[?, ?℄.The methodology we pursue extends the work of Joshi and Miller [?℄, Camion and Younes [?℄, andMiller and Younes [?℄ on eu
lidean geometries su
h as the plane and 
ube, and the work of Bakir
iogluet al. [?℄ on the sphere. More pre
isely, we are interested in �nding an �optimal� map or transformationof the sphere to the sphere that is 
onstrained at a set of landmarks and whi
h is also 
onstrainedto be a di�eomorphism, i.e. the map must be invertible, and both the map and its inverse must be
ontinuously di�erentiable. Our 
hief 
ontribution is two fold. First, other methods for landmark-basedspheri
al registration [?, ?℄ do not expli
itly in
lude the di�eomorphism 
onstraint in their formulation,without whi
h, it is possible for distin
t points to be mapped to a single point. These methods arereferred to as "small deformation" te
hniques sin
e di�eormophi
 transformations are typi
ally onlypossible for problems in whi
h small deformations are needed to mat
h template and target. Se
ond,our transformations are not simply 
orresponden
e maps. They simultaneously de�ne a metri
, in themathemati
al sense, whi
h represents a natural measure of similarity in shape between the two stru
turesbeing mat
hed. The underlying mathemati
s of our approa
h has been investigated in [?, ?, ?, ?, ?, ?, ?℄.Small deformation landmark mat
hing has been well studied on eu
lidean geometries by Bookstein[?℄ via the thin-plate spline, and generalized to arbitrary one and two dimensional submainfolds byJoshi and 
ollaborators [?, ?℄. A
tive 
ontour methods of [?℄ have been applied to spheri
al landmarkmat
hing in [?℄. However, these methods require a good initial approximation to the solution. Alsorelated is the non-landmark based approa
h of Fis
hl et al. [?℄. It is an extention to the sphere ofthe image mat
hing approa
h 
ommonly applied to eu
lidean geometries, su
h as 2D images and 3Dvolumetri
 images [?℄. Transformations are obtained by minimizing the squared di�eren
e of a s
alarvalued measure of geometry � whi
h the authors refer to as "
onvexity" � between the subje
t andaverage model. Again regularization terms are added to the formulation but do not guarantee thatone-to-one mappings are obtained.The large deformation setting, pioneered by Christensen et. al [?℄ by modeling the deformation3



pro
ess as a vis
ous �uid, is the setting pursued herein. Spe
i�
ally, we seek solutions φ : S2 × [0, 1] →
S2 × [0, 1], where S2 denotes the unit sphere, to the ordinary di�erential equation (ODE)

d

dt
φ(x, t) = v(φ(x, t), t),with initial 
ondition φ(x, 0) = x. Indeed, if v(x, t) is 
ontinuously di�erentiable, then it is proven in[?℄ that the solution φ(x, t) exists, is unique, and is a di�eomorphism from S2 to S2 for ea
h t ∈ [0, 1].Energeti
s on the spa
e of di�eomorphisms are indu
ed via a smoothness 
onstraint on the velo
ity �eldsof the form

E(v) =

∫

S2×[0,1]

〈Lv(x, t), v(x, t)〉dµ(x)dt,where L is a 
onstant 
oe�
ient di�erential operator. In the 
ase of the sphere, the di�
ulty arises inde�ning this smoothness operator. One possibility, proposed in [?℄, is to work in a lo
al 
hart, and de�nea s
alar operator for ea
h 
oordinate. The drawba
k is that, sin
e there is no global 
hart for the sphere,at least one point must be 
hosen to be left invariant by the deformation map. Here the operator L isde�ned globally and no use is made of lo
al 
oordinates. This also yields a simpler numeri
al approa
h.Moreover we introdu
e a se
ond formulation of the problem, whi
h is an extension of the eu
lideanlandmark mat
hing in [?℄ and [?℄ to the sphere.This paper is organized as follows. The mathemati
al setting, notation, and formulation of theminimization problems investigated are presented in se
tion 2. We introdu
e the related ve
tor splineinterpolation problem in se
tion 3, whi
h enables a simpli�ed reformulation of the original minimizationproblems. The reformulations are presented in se
tion 4. Finally, e�e
tive 
omputation and implementa-tion issues are presented in se
tion 5 together with some experimental results with synthesized examples,and a 
on
lusion is found in se
tion 6.2 Mathemati
al setup and notation2.1 Riemannian geometryWe 
onsider the unit sphere S2 as a smooth 2-dimensional submanifold of R
3, equipped with the Rie-mannian metri
 de�ned by restri
ting to ea
h tangent spa
e the ambient inner produ
t of R

3. Lower
ase letters x, y, . . . represent points on the sphere, and we use greek letters to represent tangent ve
torson the sphere, e.g. αx will denote a tangent ve
tor at point x, i.e. an element of the tangent plane at x:
TxS

2. On this tangent spa
e the Eu
lidean s
alar produ
t is denoted 〈·, ·〉, and the norm | · |. We willalso use the notion of 
ovariant derivatives for ve
tor �elds and tensor �elds on manifolds. Sin
e thesphere S2 is embedded in R
3, the 
ovariant derivative 
an be simply de�ned as the orthogonal proje
tionof the usual derivative on the tangent spa
e. Basi
 notions about Riemannian manifolds and 
ovariantderivatives 
an be found in [?℄.2.2 Large deformationsDeformations maps ϕ : S2 → S2 are generated by integration of time-dependant ve
tor �elds v(x, t), x ∈

S2, t ∈ [0, 1]. Thus 
onsider the transport equation:
{

dφv

dt (x, t) = v(φv(x, t), t) ∀t ∈ [0, 1]
φv(x, 0) = x ∀x ∈ S2,

(1)and set ϕ = φv(·, 1). Existen
e and properties of su
h transformations depend of 
ourse on the regularityassumptions we make on the deformation �ows v(x, t). This is des
ribed in the following paragraph.2.3 The energeti
 spa
e VWe denote χ(S2) the spa
e of smooth ve
tor �elds on the sphere, and µ the uniform probability dis-tribution (the normalized Haar measure). We denote H , the Hilbert spa
e of square integrable ve
tor4



�elds on the sphere de�ned by the inner produ
t:
〈u, v〉H =

∫

S2

〈u(x), v(x)〉dµ(x) .Let L : χ(S2) → H be a linear symmetri
 and strongly monotone operator (the strong monotonysays that there exists c > 0 su
h that 〈Lu, u〉H ≥ c〈u, u〉H for any u ∈ χ(S2)). From L, we de�ne theso-
alled energeti
 s
alar produ
t
〈u, v〉V .

= 〈Lu, v〉Hand the asso
iated energeti
 norm ‖ ‖V de�ned on χ(S2). Using the Friedri
hs extension pro
edure(see e.g. [?℄), we de�ne the asso
iated energeti
 spa
e V whi
h is an Hilbert spa
e V ⊂ H uniquelyde�ned as the 
losure of χ(S2) for the energeti
 s
alar produ
t. The spe
i�
s of this 
onstru
tion andthe properties of the spa
e V 
an be found in [?℄. For the spe
ial purpose of landmark mat
hing we willalso require that V be 
ontinuously embedded in the spa
e of ve
tor �elds of 
lass C1, whi
h means :
∃M > 0, ∀u ∈ V sup

x∈S2

|u(x)| + |∇u(x)| ≤M‖u‖V (∗)Of spe
ial interest will be the 
ase L = −∆ or L = ∆2 where ∆ is the Lapla
ian operator on smoothve
tor �elds on S2 - as de�ned by the Hodge theory - sin
e it is invariant under the a
tion of the groupof rotation. For the de�nition of the Lapla
ian in this parti
ular 
ase, see e.g. [?℄.The time-dependent ve
tor �elds v(x, t) 
onsidered herein will be supposed to belong to L2([0, 1], V )i.e. they satisfy E(u)
.
=
∫ 1

0 ‖v(·, t)‖2
V dt <∞. This quantity will be 
alled energy of v(x, t). A
tually theset A of deformation maps generated through (1) by su
h velo
ity �elds 
an be proven to be a group,equipped with a right invariant weak stru
ture of in�nite dimensional manifold whose tangent spa
e at

Id is (V, ‖ · ‖V ). In this setting, a geodesi
 distan
e d on A is de�ned, and satis�es
d(Id, ϕ)2 = inf

v
{E(v), φv(·, 1) = ϕ}.Again, see [?, ?℄ for details of this theory.2.4 Formulation of the Minimization ProblemsWe now state formally the two problems investigated. Exa
t landmark mat
hing refers to the 
asein whi
h the spatial position of the landmarks 
an be identi�ed a

urately, while inexa
t landmarkmat
hing a

ounts for the spatial variability in identifying the landmarks, whi
h is assumed to begaussian with diagonal 
ovarian
e σId. For the inexa
t mat
hing 
ase, we present two formulations.The �rst formulation is the most natural, as it simply in
ludes as a term of the fun
tional the amount oferror in identifying the landmarks (sum of distan
es between the targets and the postion of the landmarksat the end of the �ow). The se
ond formulation is a
tually a generalization of the exa
t mat
hing 
ase,as will be explained in the following.

The landmark mat
hing problem5



Exa
t landmark mat
hing problemLet x1, . . . , xn (the initial landmarks) and y1, . . . , yn (the target landmarks) be distin
t points on S2.The exa
t landmark mat
hing problem on the sphere 
onsists of �nding a time-dependant ve
tor �eld
v(x, t) in L2([0, 1], V ) su
h that(LM) ∫ 1

0

‖v(·, t)‖2
V dt is minimal subje
t to φv(xi, 1) = yi for all i ∈ {1, . . . , n} .The optimal di�eomorphism then is given by ϕ = φv(·, 1).We re
all that φv(x, t) denotes the solution to the transport equation (1). Hen
e this problem 
or-responds to �nding a di�eomorphism ϕ in the group A whi
h mat
h the landmarks and minimizes thegeodesi
 distan
e d(Id, ϕ) Therfore this distan
e 
an also be seen as a distan
e between the two sets oflandmarks (this will be more expli
it in se
tion 4.1).Inexa
t landmark mat
hing problem, �rst formulationSuppose σ > 0. Given n distin
t landmarks (xi) and their targets (yi) as previously, �nd a time-dependent ve
tor �eld v(x, t) su
h that(ILM1) ∫ 1

0

‖v(·, t)‖2
V dt+

1

σ2

n
∑

i=1

ψ(φv(xi, 1), yi)
2 is minimal,where ψ is the geodesi
 distan
e on S2, i.e. the angle between two points on S2. The optimal di�eomor-phism then is given by ϕ = φv(·, 1).Inexa
t landmark mat
hing problem, se
ond formulationSuppose σ > 0. Given n distin
t landmarks (xi) and their targets (yi) as previously, �nd a time-dependent ve
tor �eld v(x, t) and traje
tories xi(t) on the sphere, su
h that(ILM2) ∫ 1

0

‖v(t)‖2
V dt+

1

σ2

n
∑

i=1

∫ 1

0

|ẋi(t) − v(xi, t)|2dt is minimalsubje
t to xi(0) = xi and xi(1) = yi for all i ∈ {1, . . . , n} ,where ẋi(t) = dxi

dt (t). The optimal di�eomorphism then is given by ϕ = φv(·, 1).At the heart of ea
h of these landmark mat
hing problems, and the key to their simpli�
ation,is a simple minimum norm problem whi
h is equivalent to a generalization of the well known splineinterpolation problem [?℄. Thus, we present the related ve
tor spline interpolation problem and itssolution in the next se
tion.3 Ve
tor spline interpolationBookstein ([?℄, see also [?℄) introdu
ed a spline interpolation method for solving the landmark mat
hingproblem in the eu
lidean 
ase, inspired by methods in approximation theory 
alled Radial Basis Fun
tionsor variational splines [?℄. These methods model the deformation map between the landmarks and theirtargets by a ve
tor �eld v su
h that yi = xi + v(xi), this ve
tor �eld being a sum of spline ve
tor �elds
entered at ea
h point xi. This spline interpolation problem led to a simple linear system. In the 
ase6



of the sphere this method alone 
annot solve the landmark mat
hing problem, but it 
an be seen asan in�nitesimal version of it, providing a method for the interpolation of ve
tor �elds on S2, and usedas �rst step in the building of our deformation maps. The theory of Radial Basis Fun
tions has beenwidely studied, even in the general 
ase of manifolds (see [?℄, [?℄ and [?℄ for results on the sphere)but apparently only for fun
tional approximation. On the other hand, �ow interpolation has numerousappli
ations in �uid dynami
s (see e.g. [?℄ for meteorologi
al issues).3.1 Problem statementThe spline problem states as follows:Ve
tor Spline Interpolation problem Given n distin
t landmarks xi on the sphere, and asso
iatedtangent ve
tors γi ∈ Txi
S2, �nd v ∈ V su
h that

(V SI) ‖v‖V is minimal subje
t to v(xi) = γi ∀i ∈ {1, . . . , n}.As in the previous se
tion, we have an inexa
t statement of this problem.Inexa
t Ve
tor Spline Interpolation problem Given n landmarks xi on the sphere, and asso
iatedtangent ve
tors γi ∈ Txi
S2, �nd v ∈ V su
h that

(IV SI) J(v) = ‖v‖2
V +

1

σ2

n
∑

i=1

|v(xi) − γi|2 is minimal.
3.2 The Reprodu
ing KernelNotation In the following we will 
onsider the n landmarks as an element of the produ
t manifold
(S2)n and write x = (x1, . . . , xn) ∈ (S2)n. A tangent ve
tor at x will be denoted α = (α1, . . . , αn) ∈
Tx(S2)n and 〈·, ·〉 will also denote the s
alar produ
t on Tx(S2)n :

〈α,β〉 =

n
∑

i=1

〈αi, βi〉.From assumption (*) made on the energeti
 spa
e V , it dire
tly follows that V is a reprodu
ingkernel Hilbert spa
e: for ea
h point x ∈ S2, and ea
h tangent ve
tor αx ∈ TxS
2 the linear form

δαx
x : v 7→ 〈v(x), αx〉 is 
ontinuous on V . Then by the Riesz representation property, there exists
δ̂αx
x ∈ V su
h that

〈δ̂αx
x , v〉V = 〈v(x), αx〉 ∀v ∈ VDe�nition a) We 
all K, the reprodu
ing kernel, whi
h asso
iates to every x, y ∈ S2 the linearoperator a
ting on the tangent spa
es K(x, y) : TxS

2 → TyS
2 and de�ned by the formula

K(x, y)αx
.
= δ̂αx

x (y).b) For x = (x1, . . . , xn) ∈ (S2)n we denote K(x) the linear endomorphism of Tx(S2)n de�ned by:
K(x)α

.
=

(

n
∑

i=1

K(xi, x1)αi, . . . ,

n
∑

i=1

K(xi, xn)αi

)

.7



We denote also Kσ(x) = K(x) + σ2I for every σ > 0, where I is the identity map of Tx(S2)n.The linearity of K(x, y), i.e. linearity of δ̂αx
x with respe
t to αx ∈ TxS

2, follows from the linearity ofthe inner produ
t.Now the following result gives us the solution to (VSI) and (IVSI) problems.Proposition 1 a) The solution to (VSI) is unique and given by
vopt

.
= δ̂α

x

.
=

n
∑

i=1

δ̂αi
xi

=
n
∑

i=1

K(xi, ·)αiwhere the αi ∈ Txi
S2 are solutions to the 2n-dimensional linear system K(x)α = γ, or more expli
itely:

n
∑

j=1

K(xj , xi)αj = γi ∀i ∈ {1, . . . , n}.Moreover, J(vopt) = ‖vopt‖2
V =

∑n
i=1〈αi, γi〉.b) For every σ > 0, the solution to (IVSI) is unique and given by

vopt
.
= δ̂α

x

.
=

n
∑

i=1

δ̂αi
xiwhere the αi are solutions to K(x)α + σ2α = γ i.e.

n
∑

j=1

K(xj , xi)αj + σ2αi = γi ∀i ∈ {1, . . . , n}.Moreover, J(vopt) =
∑n

i=1〈αi, γi〉.So, we may write the solution to both spline interpolation problems as Kσ(x)α = γ with J(vopt) =
〈γ,Kσ(x)−1γ〉, where σ = 0 for the exa
t mat
hing 
ase.It is evident from this expression that the solution depends on L only through K. Therefore, if thereprodu
ing kernel is known, then expli
it knowledge of the operator L is not needed. In fa
t, insteadof 
hosing an operator L to de�ne the spa
e V , we 
ould 
hoose a spe
i�
 operator K(x, y) with theappropriate properties as a starting point and dedu
e the operator L from it.Proof of proposition 1a) For any β ∈ TxS

2, let us de�ne Vβ = {v ∈ V : v(xi) = βi, i = 1, . . . , n}. In parti
ular the spa
eof admissible ve
tor �elds is Vγ . Note that Vβ is non empty sin
e the landmarks are distin
t and χ(S2)is in
luded in V . Moreover, if vβ ∈ Vβ then Vβ = vβ + V0, i.e. Vβ is an a�ne subspa
e, namely atranslation of V0. Now 
onsider the subspa
e D = {v ∈ V : v =
∑n

i=1 δ̂
αi
xi
, αi ∈ Txi

S2}. In fa
t, theorthogonal 
omplement of D, written D⊥ is exa
tly V0, for if u =
∑n

i=1 δ̂
αi
xi

and v ∈ V0, we have
〈u, v〉V =

n
∑

i=1

〈δ̂αi
xi
, v〉V =

n
∑

i=1

〈v(xi), αi〉 = 0,and if v /∈ V0 then 
learly we may 
hoose a u ∈ D su
h that 〈u, v〉V 6= 0. Thus, V0 is 
losed, and sin
e Vγis a translation of V0, the solution vopt exists, is unique, and is orthogonal to V0 = D⊥ by the proje
tiontheorem. But, sin
e D is �nite dimensional, it is 
losed and it follows that V ⊥
0

= D⊥⊥ = D. Therefore,the solution is of the asserted form, and sin
e the linear 
onstraints must be satis�ed, the solution 
anbe found by simply solving the linear system K(x)α = γ for α. Finally,
J(vopt) = ‖vopt‖2

V =

n
∑

i=1

〈δ̂αi
xi
, vopt〉V =

n
∑

i=1

〈v(xi), αi〉 =

n
∑

i=1

〈γi, αi〉

= 〈γ,α〉. 8



b) Note that on ea
h Vβ , the se
ond term of the fun
tional J(v) is 
onstant and equal to 1
σ2

∑n
i=1 |βi−

γi|2. Thus, the fun
tional is minimal when ‖v‖2
V is minimal. This proves that a solution to the inexa
tproblem ne
essarily belongs to D. On this subspa
e, we 
an rewrite J(v) as a quadrati
 fun
tion of thevariables αi, where v =

∑n
i=1 δ̂

αi
xi

:
J(v) = ‖v‖2

V +
1

σ2

n
∑

i=1

|v(xi) − γi|2

=

n
∑

i=1

〈δ̂αi
xi
, v〉V +

1

σ2

n
∑

i=1

|γi − v(xi)|2

=

n
∑

i=1

〈αi, v(xi)〉 +
1

σ2

n
∑

i=1

|γi − v(xi)|2

= 〈α,K(x)α〉 +
1

σ2
|γ −K(x)α|2

= 〈α,K(x)α〉 +
1

σ2

(

|γ|2 + |K(x)α|2 − 2〈γ,K(x)α〉
)

.Hen
e J(v) has a unique minimum on D, whi
h we obtain by 
omputing its gradient as a fun
tion of α.Using the symmetry of K(x) we have
∇J (v) = 2

(

K (x) α +
1

σ2
K(x)2α − 1

σ2
K(x)γ

)

= 2K(x)

(

α +
1

σ2
K(x)α − 1

σ2
γ

)

.Finally, we �nd that this gradient vanishes if and only if σ2α +K(x)α = γ, or more expli
itely
σ2αj +

n
∑

i=1

K(xi, xj)αi = γj for all i = 1, . . . , n.So the solution is given by solving the linear system Kσ(x)α = K(x)α + σ2α. Furthermore, we have
J(vopt) = 〈α,K(x)α〉 +

1

σ2
|γ −K(x)α|2 = 〈α,K(x)α〉 + σ2|α|2 = 〈α,Kσ(x)α〉,hen
e J(vopt) = 〈α,γ〉.4 Landmark mat
hing via large deformations4.1 Reformulation of the minimization problemsWe now return to the landmark mat
hing problems as they were stated at the beginning of the paper.We reformulate the minimization equations, taking advantage of the spline interpolation theory of theprevious se
tion. The idea is to noti
e that in the three stated problems, the mat
hing 
onditions onlyinvolve the ve
tor �elds v(x, t) along spe
i�
 paths : the images φv(xi, t) for (LM) and (ILM1), and thetraje
tories xi(t) for (ILM2). In order to use a uni�ed notation we will denote these spe
i�
 paths inthe three 
ases by xi(t).

• (LM) and (ILM1) problems: In these 
ases we have ẋi(t) = v(xi(t), t), thus for �xed traje
tories
xi(t) the energy of v(x, t) is minimal if at ea
h time t, v(·, t) is the solution to (VSI) with γi = ẋi(t).

• (ILM2) problem: For �xed traje
tories xi(t) the (ILM2) fun
tional is minimal if at ea
h time t,
v(·, t) is the solution to (IVSI) with γi = ẋi(t).9



These remarks lead us to reformulate the landmark mat
hing problems as minimisation problems ex-pressed with respe
t to these traje
tories instead of the velo
ity �elds.Exa
t landmark mat
hing problemGiven n distin
t landmarks (xi) and their targets (yi) �nd traje
tories x(t) = (xi(t)) on the sphere su
hthat
J(x) =

∫ 1

0

〈ẋ(t),K(x(t))−1
ẋ(t)〉dt is minimal subje
t to xi(0) = xi, and xi(1) = yi ∀i.In other words, �nd a minimizing geodesi
 between (xi) and (yi) on the manifold (S2)n equipped withthe metri
 tensor K−1.Inexa
t landmark mat
hing problem, �rst formulationSuppose σ > 0. Given n distin
t landmarks xi and their targets yi, �nd traje
tories xi(t) su
h that

J(x) =

∫ 1

0

〈ẋ(t),K(x(t))−1
ẋ(t)〉dt +

1

σ2

n
∑

i=1

ψ(xi(1), yi)
2 is minimal subje
t to xi(0) = xi ∀i.

Inexa
t landmark mat
hing problem, se
ond formulationSuppose σ > 0. Given n distin
t landmarks xi and their targets yi, �nd traje
tories xi(t) su
h that
J(x) =

∫ 1

0

〈ẋ(t),Kσ(x(t))−1
ẋ(t)〉dt is minimal subje
t to xi(0) = xi and xi(1) = yi ∀i.In other words, �nd a minimizing geodesi
 between (xi) and (yi) on the manifold (S2)n equipped withthe metri
 tensor K−1

σ .In ea
h 
ase, the optimal di�eomorphism is given by ϕ = φv(·, 1) with v(x, t) =
∑n

i=1K(xi(t), x)αi(t)and α(t) = K(x(t))−1
ẋ(t).Thus we are led to perform a minimization with respe
t to the variables xi(t) instead of the ve
tor�elds, v(x, t), over the entire spa
e. We also remark that the exa
t mat
hing problem be
omes aparti
ular 
ase of (ILM2) with σ = 0. This justi�es a posteriori the introdu
tion of (ILM2). These twoformulations ((LM) and (ILM2)) provide the de�nition of a true metri
 between sets oflandmarks on the sphere, given by the formula d((xi), (yi)) =

∫ 1

0

√

〈ẋ(t),Kσ(x(t))−1
ẋ(t)〉dt at
onvergen
e. This is not the 
ase for (ILM1).4.2 Variation of the fun
tionalWe now 
ompute the variation of the fun
tional J in ea
h 
ase.4.2.1 First formulationWe have

J(x) =

∫ 1

0

〈ẋ(t),α(t)〉dt +
1

σ2

n
∑

i=1

ψ2(yi, xi(1)).Let η(t) be a dire
tion of variation of x(t), i.e. an element of Tx(t)(S
2)n, with the 
ondition η(0) = 0.

∇η will denote for the 
ovariant derivative in the dire
tion η(t), and the dot notation applied to tangentve
tors (α̇, η̇,. . . ) refers to 
ovariant derivatives in the dire
tion ẋ = ∂x

∂t . We 
onsider a variation10



xr = (xr,1, . . . , xr,n) of x su
h that ∂xr(t)
∂r |r=0 = η(t). Leaving out the variable t, we have, withderivatives taken at r = 0:

J(xr) =

∫ 1

0

〈ẋr ,K(xr)
−1

ẋr〉dt+
1

σ2

n
∑

i=1

ψ2(yi, xr,i(1)).

dJ(xr)

dr
=

∫ 1

0

∂〈ẋr,αr〉
∂r

dt+
1

σ2

n
∑

i=1

dψ2(yi, xr,i(1))

dr
.Now,

∂〈ẋr ,αr〉
∂r

=
∂〈ẋr,K(xr)

−1
ẋr〉

∂r

= 〈∇ηẋ,K(x)−1
ẋ〉 + 〈ẋ,∇η{K(x)−1}ẋ〉 + 〈ẋ,K(x)−1∇ηẋ〉

= 2〈η̇,K(x)−1
ẋ〉 + 〈ẋ,∇η{K(x)−1}ẋ〉be
ause ∇ηẋ = ∇ẋη = η̇ (
ovariant derivative) and K(x)−1 is symmetri
. Therefore we have

dJ(xr)

dr
= A+B + Cwith

A = 2

∫ 1

0

〈α, η̇〉

B =

∫ 1

0

〈ẋ,∇ηK(x)−1
ẋ〉dt

C =
1

σ2

n
∑

i=1

dψ2(yi, xr,n(1))

dr
.Computation of ASin
e η(0) = 0 and η(1) = 0 we have

A = 2〈α(1),η(1)〉 − 2

∫ 1

0

〈α̇,η〉dt.Computation of B
B = −

∫ 1

0

〈

ẋ,K(x)−1∇ηK(x)α
〉

dt

= −
∫ 1

0

〈

K(x)−1
ẋ,∇ηK(x)α

〉

dt

= −
∫ 1

0

〈α,∇ηK(x)α〉 dt.Thus we have to 
ompute ∇ηK(x), 
ovariant derivative of the operator K(x). K(x) is a linearoperator in Tx1
S2 × · · · × Txn

S2. If πx

i is the ith 
anoni
al proje
tion
πx

i : Tx1
S2 × · · · × Txn

S2 → Txi
S2,we 
an write, dire
tly from the de�nition of K(x):

K(x)i
.
= πx

i ◦K(x) =

n
∑

j=1

Kji(x) ◦ πx

j11



with
Kji(x) = K(xj , xi).Now,

∇ηK(x)i =
n
∑

j=1

∇ηKji(x) ◦ πx

j

∇ηKji = ∇ηj
Kji + ∇ηi

Kji.The 
omputation of the derivatives of the reprodu
ing kernel are given in annex B. Eventually we get
B =

∫ 1

0

n
∑

i=1

〈ηi, β
x

i (α)〉dtwith
βx

i (α) = 2





n
∑

j=1

k′(ψij)〈αi, Tjiαj〉eij + k(ψij)

(

cosψij − 1

sinψij

)

〈αi, T
⊥
jiαj〉fij



where Tji = T (xj , xi), ψij = ψ(xi, xj) and (eij , fij) is the mutual basis of (xi, xj).Computation of C
C =

1

σ2

n
∑

i=1

dψ2(yi, xr,n(1))

drLet (·, ·) denote the usual dot produ
t on R
3. We have ψ(x, y) = Arccos(x, y), hen
e

C = − 1

σ2

n
∑

i=1

2ψ(yi, xi(1))
√

1 − (yi, xi(1))

〈

Πxi(1)(yi), ηi(1)
〉where Πxi(1)yi is the proje
tion of yi ∈ S2 ⊂ R

3 on Txi(1)S
2 ⊂ R

3 the tangent spa
e at xi(1).4.2.2 Se
ond formulationWe in
lude here the 
ase of exa
t mat
hing, whi
h 
orrespond to σ = 0. Here we 
onsider variations ηwith two endpoint 
onditions η(0) = 0 and η(1) = 0. The variation of the fun
tional is
dJ(xr)

dr
= A+Bwith

A = 2

∫ 1

0

〈α, η̇〉 = −2

∫ 1

0

〈α̇,η〉dt,and
B = −

∫ 1

0

〈α,∇ηKσ(x)α〉 dt.But sin
e Kσ(x) = K(x) + σ2I, we have ∇ηKσ(x) = ∇ηK(x), and thus the previous formula holds for
B :

B =

∫ 1

0

n
∑

i=1

〈ηi, β
x

i (α)〉dt.

12



4.3 Gradient of the fun
tionalTo write a gradient of J we must spe
ify a s
alar produ
t on the spa
e of in�nitesimal deformationsof the paths. A
tually the expresion of the fun
tional requires that the paths be of H1 regularity, andtherefore we will 
hoose :
〈η, ξ〉 .=

∫ 1

0

〈η̇, ξ̇〉dt.4.3.1 First formulationHere the in�nitesimal variations η and ξ are su
h that η(0) = ξ(0) = 0. We have
〈η, ξ〉 = 〈η̇(1), ξ(1)〉 −

∫ 1

0

〈η̈, ξ〉dt

=

n
∑

i=1

〈η̇i(1), ξi(1)〉 −
∫ 1

0

n
∑

i=1

〈η̈i(t), ξi(t)〉dt.The i-th 
omponent of the gradient is then given by
∇̈J(x)i(t) = 2α̇i(t) − βx

i (α)with the two initial 
onditions
∇̇J(x)i(1) = − 1

σ2

2ψ(yi, xi(1))
√

1 − (yi, xi(1))
Πxi(1)(yi) + 2αi(1),

∇J(x)i(0) = 0.This gradient 
an be 
omputed by numeri
al integration.4.3.2 Se
ond formulationHere we have η(0) = ξ(0) = 0 and η(1) = ξ(1) = 0. We in
lude the 
ase of exa
t mat
hing (σ = 0).
〈η, ξ〉 = −

∫ 1

0

〈η̈, ξ〉dt

= −
∫ 1

0

n
∑

i=1

〈η̈i(t), ξi(t)〉dt.Then
∇̈J(x)i(t) = 2α̇i(t) − βx

i (α)with the two initial 
onditions ∇J(x)i(0) = 0 and ∇J(x)i(0) = 0.5 Implementation and experiments5.1 Computation of the ve
tor spline interpolationWe now turn to the problem of e�e
tive 
omputation of the reprodu
ing kernel and of the solution to(VSI) and (IVSI). We show that in the 
ase of L = ∆2 these 
omputations are greatly simpli�ed andredu
e to applying parallel transport operators to the tangent ve
tors.
13



5.1.1 Mutual basis and parallel transport on the sphereGiven two points x, y ∈ S2 we de�ne the basis (exy, fxy) of tangent spa
e TxS
2 and (eyx, fyx) of TyS

2by the formulas :
fxy =

x ∧ y
‖x ∧ y‖

exy = fxy ∧ xand
fyx =

y ∧ x
‖y ∧ x‖ (= −fxy)

eyx = fyx ∧ ywhere ∧ denotes the ve
tor 
ross-produ
t (here points and ve
tors are 
onsidered as ve
tors in R
3).These basis 
an be refered to as mutual basis of the pair (x, y) (see �gure 5.1.1). Note that they arenot de�ned when y = x and when y is at the antipode of x.

xy

yx

xy

y

e

f

e

fyx

xψ

Figure 1: The mutual basisNow de�ne by T (x, y) the parallel transport 1 of tangent ve
tors on S2 along the great 
ir
le 
onne
t-ing x and y. T (x, y) is a linear operator from TxS
2 to TyS

2. Its matrix expressed in the basis (exy, fxy)and (eyx, fyx) is −Id.5.1.2 Computation of K(x, y)From assumptions made on V , we have that the inje
tion V →֒ H is 
ompa
t and that the map
L−1 : H → H is a 
ompa
t, self-adjoint operator [?℄. Hen
e L−1, and thus also L, 
an be diagonalizedin an Hilbertian basis of L2 [?℄. Now the reprodu
ing kernel 
an be 
omputed with the use of thefollowing formula :Proposition 2 Let λm, m ≥ 0 be the eigenvalues of L, with Im the asso
iated eigenspa
es. We note
dm = dim(Im) and Eml ∈ Im for 1 ≤ l ≤ dm the orthonormalized eigenve
tors for the L2 s
alar produ
t.If x,y are points on S2, αx ∈ TxS

2 a tangent ve
tor, then
K(x, y).αx =

∑

m≥0

1

λm

dm
∑

l=1

〈Eml(x), αx〉Eml(y).1If v ∈ TxS2, x, y ∈ S2 and α : [0, 1] → S2 is a smooth 
urve on the sphere with α(0) = x and α(1) = y, then there existsa unique ve
tor �eld w along α with w(0) = v, w(t) ∈ Tα(t)S
2 for all t, and the 
ovariant derivative of w(t) equal to 0 for all

t. w(1) ∈ TyS2 is said to be the parallel transport of v along α.14



Proof The ve
tor �eld δαx
x ∈ V ⊂ H 
an be de
omposed in the basis (Eml)ofH : δαx

x =
∑

m,l〈Eml, δ
αx
x 〉HEml.Now 〈Eml, δ

αx
x 〉H = 1

λm
〈LEml, δ

αx
x 〉H = 1

λm
〈Eml, δ

αx
x 〉V = 1

λm
〈Eml(x), αx〉V .Now we fo
us on the 
ase L = ∆2. Again, note that ∆ is the lapla
ian operator de�ned on ve
tor�elds, whi
h is not the usual s
alar spheri
al lapla
ian applied to ea
h spheri
al 
oordinate, as it wouldbe in an eu
lidean setting. The eigenve
tors for this operator are given by taking the gradients of thespheri
al harmoni
s (see [?℄): we have, for m ≥ 1,











λm = m2(m+ 1)2

Eml1 = 1√
m(m+1)

∇Yml

Eml2 = 1√
m(m+1)

(∇Yml)
⊥,where Yml are the usual spheri
al harmoni
s and ⊥ denotes the π
2 -rotation on TxS

2.Proposition 3 When L = ∆2 the reprodu
ing kernel satis�es
K(x, y) = k(ψ(x, y))T (x, y)where k(ψ) is a s
alar valued fun
tion of the angle between two points on the sphere.Proof The full 
omputation is given in annex A. It provides an expli
it formula for k(ψ). This fun
tionis plotted on �gure 3.This expression for K is very 
onvenient for numeri
al purpose sin
e we only need to store the s
alarfun
tion k. The operator T (x, y) 
an be 
omputed easily on
e the mutual basis of (x, y) is de�ned.Figures 2 and 4 show visual representations of the ve
tor �elds T (x, ·)αx and K(x, ·)αx. The ve
tor

αx is represented by the arrow.

Figure 2: Parallel transport T (x, ·)αx of a ve
tor αx. Front view and ba
k viewThe resulting shape of the kernel fun
tion k(ψ) is dire
tly related to the initial 
hoi
e of V . One 
anadjust this shape by 
hanging the eigenvalues of the operator L, obtaining various types of deformationmappings.5.1.3 Numeri
al solution to the spline interpolationThe spline interpolation problem leads to a 2n-dimensional linear system, as stated above. Writingthe matrix of this linear system would require that we work 
oordinate frames on the sphere, e.g. the
oordinate frames obtained by stereographi
 proje
tion at north and south poles as in Bakir
ioglu etal. [?℄. But as we have seen, the operator K(x, y) has a very simple expression and 
an be 
omputeddire
tly using 
artesian 
oordinates. This fa
t has led us to 
hoose a 
onjugate gradient algorithm to15



Figure 3: Graph of fun
tion k(ψ) for L = ∆2

Figure 4: Computation of the ve
tor �eld K(x, ·)αx. Front view and ba
k viewsolve the linear system without 
omputing its matrix, and enables us to use only 
artesian representationfor both points and tangent ve
tors.Figure 5 represents the solution to a spline interpolation problem with n = 4. The ve
tors γi arerepresented by the arrows.5.2 Implementation of the landmark mat
hing problemsAlgorithms to solve (LM), (ILM1) and (ILM2) problems have been written in the C programminglanguage. The method used to minimize the fun
tional J is a simple gradient des
ent: at ea
h iterationthe traje
tory x is repla
ed by x − λ∇J , whi
h is then proje
ted on the sphere. The s
alar 
oe�
ient
λ is adaptively adjusted to ensure minimization of the fun
tional.The main steps of the algorithm are the following :

• Compute the mutual basis of the n landmarks xn,t for ea
h dis
rete time step t ∈ {1, . . . , T}. Thesebasis are the key elements for the 
omputation of the reprodu
ing kernel.
• For ea
h time step t, 
ompute the solution to the spline interpolation problem by solving the linearsystem K(xt)αt = ẋt, where ẋt is an appropriate dis
retisation of the time derivative of xt. Thisis done by a 
onjugate gradient algorithm. Again, the advantage of su
h a method is that it doesnot require the expli
it matrix form of K(xt), whi
h would require that we work with 
oordinate
harts instead of 
artesian 
oordinates.
• Compute J(x) and its gradient ∇J(x).
• Compute x̃ = x−λ∇J(x) and reproje
t on the sphere, with di�erent values of λ, until J(x̃) < J(x).The mutual bases are re
al
ulated and the 
orresponding linear system is solved at ea
h time step.
• Set x = x̃ at 
onvergen
e. 16



Figure 5: Solution to a spline interpolation problem with n = 45.3 ExperimentsSome results of the algorithms des
ribed above are presented here. Figures 7 to 10 show visual repre-sentations of the 
omputed deformation maps. On ea
h �gure are plotted the initial (
ir
les) and targetlandmarks (
rosses), the traje
tories xi(·), the �owed landmarks positions φ(xi, t) (diamonds), and thedeformation of a regular grid through the a
tion of the di�eomorphism at di�erent times t ∈ [0, 1].The initial traje
tories (before minimization) are set to be the se
tions of the great 
ir
le 
onne
tingthe landmarks to their targets. Note that this initialization already provides a true di�eomorphismmat
hing the landmarks. In the experiments with 5 and 10 landmarks, the positions of the landmarksand their targets were 
hosen at random.For ea
h experiment, we have also plotted the energy (squared V -norm) of the time-dependantve
tor �eld v(x, t). As we have seen, the landmark mat
hing problem 
an be reformulated in terms ofgeodesi
s on the manifold (S2)n. Therefore this energy must be 
onstant for all time at the end of theminimization. In the (LM) and (ILM2) 
ases, its square root gives the distan
e between the two sets oflandmarks (whi
h is also d(Id, ϕ)).In the �rst example (�gure 7), there is a large di�eren
e between traje
tories before and after min-imization: they tend to move away from ea
h other sin
e at �rst they 
ross with opposite dire
tions,whi
h has very high 
ost. Conversely, in �gure 8, traje
tories tend to draw near. Note also the substan-tial regularization a
hieved by the minimization in �gure 7. In �gures 9 and 10 some of the landmarktraje
tories 
ross one another, whi
h may seem 
ounter intuitive to a sequen
e of transformations thatare di�eomorphi
. However, the �ow of the parti
les whi
h these traje
tories represent, do not 
rossat the same time and therefore the parti
les from two di�erented traje
tories never o

upy the sameposition at the same time.6 Con
lusionWe have presented three formulations of the landmark mat
hing problem on the sphere � the solution toea
h provides a di�eomorphism of the sphere to itself, with landmark 
onstraints. In the experiments,we have seen good performan
e of the algorithm. In parti
ular, the algorithm a
hieved di�eomorphi
mappings for severe landmark 
onstraints, for whi
h other landmarks mat
hing te
hniques would 
learlyfail to maintain the topology of the manifold (see Joshi [?℄ for a pathologi
al example). A metri
 betweensets of landmarks is simultaneously generated from the mapping, whi
h provides a natural setting forstatisti
al 
omparison and �ts the framework of [?℄. In future work, we plan to apply the algorithm tobrain mapping studies, and to extend the large deformation setting to a broader 
lass of manifolds.
17
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Figure 6: Experiment with two landmarks
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AppendixA Proof of Proposition 3 - Computation of the reprodu
ing ker-nelSin
e ∆ is rotation invariant, K(x, y) is also rotation invariant, and it only depends on the angle between
x and y. Thus we need only to 
ompute it in a spe
ial 
ase, say θx = π

2 , ϕx = 0 and θx = π
2 , ϕx = ϕin polar 
oordinates (θ is the 
olatitude and ϕ the longitude). We will note (∂x

θ , ∂
x
ϕ) (resp. (∂y

θ , ∂
y
ϕ))the 
oordinate frames at x (resp. y). Note that in this spe
ial 
ase these are orthonormal basis of TxS

2(resp. TyS
2).

Figure 11: Positions of points x and yThere are 2m+ 1 spheri
al harmoni
s of order m for m ≥ 0 whi
h are, in polar 
oordinates (see [?℄)
Ym0(θ, ϕ) = km0Pm(cos θ)for m ≥ 0, and

Y c
ml(θ, ϕ) = kmlP

l
m(cos θ) cos lϕ

Y s
ml(θ, ϕ) = kmlP

l
m(cos θ) sin lϕfor m ≥ 1 and 1 ≤ l ≤ m, with







km0

√

2m+1
4π m ≥ 0

kml =
√

2m+1
2π

(m−l)!
(m+l)! m ≥ 1, 1 ≤ l ≤ m.

Pm are the Legendre polynomials
Pm(x) =

1

2mm!

dm

dxm
(x2 − 1)m

=
∑

m
2
≤k≤m

(−1)m−k (2k − 1)!!

(m− k)!(2k −m)!2m−k
x2k−mand P l

m the asso
iated Legendre fun
tions :
P l

m(x) = (−1)l(1 − x2)l/2 d
l

dxl
Pm(x)

= (−1)m+l(1 − x2)l/2
∑

m+l
2

≤k≤m

(−1)k (2k − 1)!!

(m− k)!(2k − (m+ l))!2m−k
x2k−(m+l).24



We use the notation (2n + 1)!! = 1 ∗ 3 ∗ · · · ∗ (2n + 1) and (2n)!! = 2 ∗ 4 ∗ · · · ∗ (2n) with the rule
0!! = (−1)!! = 1. Now we have, for m ≥ 1 and 1 ≤ l ≤ m :

∇Ym0(x) = −km0P
′
m(0) ∂x

θ

∇Ym0(x)
⊥ = −km0P

′
m(0) ∂x

ϕ

∇Y c
ml(x) = −kmlP

l′
m(0) ∂x

θ

∇Y c
ml(x)

⊥ = −kmlP
l′
m(0) ∂x

ϕ

∇Y s
ml(x) = kmlP

l
m(0)l ∂x

ϕ

∇Y s
ml(x)

⊥ = −kmlP
l
m(0)l ∂x

θand
∇Ym0(y) = −km0P

′
m(0) ∂y

θ

∇Ym0(y)
⊥ = −km0P

′
m(0) ∂y

ϕ

∇Y c
ml(y) = −kmlP

l′
m(0) cos lϕ ∂y

θ − kmlP
l
m(0)l sin lϕ ∂y

ϕ

∇Y c
ml(y)

⊥ = kmlP
l
m(0)l sin lϕ ∂y

θ − kmlP
l′
m(0) cos lϕ ∂y

ϕ

∇Y s
ml(y) = −kmlP

l′
m(0) sin lϕ ∂y

θ + kmlP
l
m(0)l cos lϕ ∂y

ϕ

∇Y s
ml(y)

⊥ = −kmlP
l
m(0)l cos lϕ ∂y

θ − kmlP
l′
m(0) sin lϕ ∂y

ϕremark Sin
e Y00 is 
onstant, its gradient vanishes, and 
onsequently there is no eigenve
tor for
m = 0.The expli
it formula for Pm entails that P l

m(0) = 0 when m− l is odd while P l′
m(0) = 0 when m− lis even. Thus P l

m(0)P l′
m(0) = 0 for all m and l. Finally we get, for αx ∈ TxS

2,
K(x, y).αx =

∑

m≥1

1

m3(m+ 1)3

m
∑

l=0

βl
m cos lϕ

(

〈αx, ∂
x
θ 〉∂y

θ + 〈αx, ∂
x
ϕ〉∂y

ϕ

)

.The 
oe�
ients βl
m are

βl
m = k2

ml(P
l′
m(0)2 + l2P l

m(0)2).We �nd
βl

m =























2m+1
4π

(

m!!
(m−1)!!

)2 when l = 0, m odd
0 when l = 0, m even
2m+1

2π
(m+l)!!

(m+l−1)!!
(m−l)!!

(m−l−1)!! when l 6= 0, m+ l odd
2m+1

2π l2 (m+l−1)!!
(m+l)!!

(m−l−1)!!
(m−l)!! when l 6= 0, m+ l evenNote that in this spe
ial 
ase, the parallel transport of ve
tor αx pre
isly writes: T (x, y)αx =

(

〈αx, ∂
x
θ 〉∂

y
θ + 〈αx, ∂

x
ϕ〉∂y

ϕ

)Therefore the above formula 
an be written
K(x, y).αx = k(ϕ)T (x, y).αxwhere

k(ϕ) =
∑

l≥0





∑

m≥l

βl
m

m3(m+ 1)3



 cos(lϕ).

k(ϕ) is a trigonometri
 series whi
h 
an be 
omputed rapidly on
e its 
oe�
ients are stored. Theeigenvalues m2(m+ 1)2 
an be modi�ed to adjust the smoothing properties of the operator. This wouldonly 
hange the 
oe�
ients of the fun
tion k.Now in the general 
ase, be
ause of rotation invarian
e, we 
an 
on
lude that
K(x, y) = k(ψ(x, y))T (x, y).25



B Derivatives of the reprodu
ing kernelHere we 
ompute the two partial 
oderivatives of K(x, y) for every x, y ∈ S2, ηx ∈ TxS
2 and ηy ∈ TyS

2.We have
K(x, y) = k(ψ)T (x, y)

∇ηx
K(x, y) = k′(ψ)

∂ψ

∂x
.ηx T (x, y) + k(ψ) ∇ηx

T (x, y).Now we use the mutual basis (exy, fxy) and (eyx, fyx) introdu
ed before. First
∂ψ

∂x
.ηx = −〈ηx, exy〉 .= −ηe

x.The parallel transport operator T (x, y) 
an be written:
T (x, y) = −e∗xy ⊗ eyx − f∗

xy ⊗ fyx.We have also the following results (see annex C):
∇exy

exy = ∇exy
fxy = 0

∇exy
eyx = ∇exy

fyx = 0

∇fxy
exy = − cotψfxy

∇fxy
fxy = cotψexy

∇fxy
eyx = − 1

sinψ
fyx

∇fxy
fyx =

1

sinψ
eyx.Consequently, ∇exy

T (x, y) = 0 and
∇fxy

T (x, y) = −(∇fxy
exy)

∗ ⊗ eyx − e∗xy ⊗∇fxy
eyx

−(∇fxy
fxy)

∗ ⊗ fyx − f∗
xy ⊗∇fxy

fyx

=

(

cosψ − 1

sinψ

)

(f∗
xy ⊗ eyx − e∗xy ⊗ fyx)

=

(

cosψ − 1

sinψ

)

T (x, y)⊥.

T (x, y)⊥ is the parallel transport T (x, y) 
omposed with a π/2-rotation on the tangent spa
e at y:
T (x, y)⊥ = R(y)T (x, y)(also equal to T (x, y)R(x)). Thus,

∇ηx
K(x, y) = −ηe

xk
′(ψ)T (x, y) + ηf

xk(ψ)

(

cosψ − 1

sinψ

)

T (x, y)⊥.For ∇ηy
K(x, y) we have ∇eyx

T (x, y) = 0 and
∇fyx

T (x, y) = −(∇fyx
exy)

∗ ⊗ eyx − e∗xy ⊗∇fyx
eyx

−(∇fyx
fxy)

∗ ⊗ fyx − f∗
xy ⊗∇fyx

fyx

=

(

cosψ − 1

sinψ

)

(e∗xy ⊗ fyx − f∗
xy ⊗ eyx)

= −
(

cosψ − 1

sinψ

)

T (x, y)⊥.and then
∇ηy

K(x, y) = −ηe
yk

′(ψ)T (x, y) − ηf
yk(ψ)

(

cosψ − 1

sinψ

)

T (x, y)⊥.26



This 
ould also have been dedu
ed from the formula
K(x, y) = K(y, x)Twhi
h implies

∇ηy
K(x, y) = (∇ηy

K(y, x))T

= −ηe
yk

′(ψ)T (y, x)T + ηf
yk(ψ)

(

cosψ − 1

sinψ

)

(T (y, x)⊥)T .But we have T (y, x)T = T (x, y) and
(T (y, x)⊥)T = (R(x)T (y, x))T = T (x, y)R(x)T = −T (x, y)R(x) = −T (x, y)⊥; hen
e we get the sameresult.C Covariant derivatives of the mutual basisComputation in a spe
ial 
aseWe must obtain the 
oderivatives of the tangent ve
tors exy,fxy, eyx and fyx with respe
t to exy and
fxy, for every x, y ∈ S2. Using the rotational invarian
e of these basis, we will 
onsider a spe
ial 
ase.Let y be the North Pole, ie the point (0, 0, 1) in 
artesian 
oordinates, and x another point with spheri
al
oordinates (θ, ϕ), (eθ, eϕ) being the orthonormal basis asso
iated on TyS

2.
θ

θ

xy

yx

xy

y

x

e

e
e

f

e

f

ϕ

ϕ

yx

Figure 12: Positions of points x and yIn 
artesian 
oordinates we have:
exy = −eθ =





− cos(θ) cos(ϕ)
− cos(θ) sin(ϕ)

sin(θ)



 fxy = −eϕ =





sin(ϕ)
− cos(ϕ)

0





eyx =





cosϕ
sinϕ

0



 fyx =





− sinϕ
cosϕ

0



 .
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Now,
∂θexy =





sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)



 ⇒ ∇exy
exy = ∇∂θ

exy = 0

∂θfxy =





0
0
0



 ⇒ ∇exy
fxy = ∇∂θ

fxy = 0

∂θeyx =





0
0
0



 ⇒ ∇exy
eyx = ∇∂θ

eyx = 0

∂θfyx =





0
0
0



 ⇒ ∇exy
fyx = ∇∂θ

fyx = 0and
∂ϕexy =





cos(θ) sin(ϕ)
− cos(θ) cos(ϕ)

0



 ⇒ ∇fxy
exy = − 1

sin θ
∇∂ϕ

exy = − cot θfxy

∂ϕfxy =





cos(ϕ)
sin(ϕ)

0



 ⇒ ∇fxy
fxy = − 1

sin θ
∇∂ϕ

fxy = cot θfxy

∂ϕeyx =





− sin(ϕ)
cos(ϕ)

0



 ⇒ ∇fxy
eyx = − 1

sin θ
∇∂ϕ

eyx = − 1

sin θ
fyx

∂ϕfyx =





− cos(ϕ)
− sin(ϕ)

0



 ⇒ ∇fxy
fyx = − 1

sin θ
∇∂ϕ

fyx =
1

sin θ
eyx.General 
aseUsing rotational invarian
e property, we dedu
e the formulae in the general 
ase.

∇exy
exy = 0 ∇fxy

exy = − cotψxyfxy

∇exy
fxy = 0 ∇fxy

fxy = cotψxyexy

∇exy
eyx = 0 ∇fxy

eyx = − 1

sinψxy
fyx

∇exy
fyx = 0 ∇fxy

fyx =
1

sinψxy
eyx,where ψxy = ψ(x, y).
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