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Abstract

This paper presents a methodology and algorithm for generating diffeomorphisms of the sphere onto
itself, given the displacements of a finite set of template landmarks. Deformation maps are constructed
by integration of velocity fields that minimize a quadratic smoothness energy under the specified land-
mark constraints. We present additional formulations of this problem which incorporate a given error
variance in the positions of the landmarks. Finally, some experimental results are presented. This work
has application in brain mapping, where surface data is typically mapped to the sphere as a common
coordinate system.
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1 Introduction

Developing a rigorous, quantitative methodology for comparing shape is a contemporary problem inves-
tigated in image analysis. A typical application in medical imaging — in particular neuroimaging — is
comparison of the shape of anatomic structures between two individuals, and development of a statisti-
cal theory which allows shape to be studied across populations. This type of investigation is known as
computational anatomy [?]. It is motivated by evidence (for example [?,?,?,?]) of shape differences
between characteristically different populations — such as males and females — and populations charac-
terized by disease, drugs, etc. The hope is that a great deal can be learned about disease from studying
shape, and that ultimately this type of investigation will enable some diseases to be characterized by
the shape of particular anatomic structures.

Typically the anatomic structure of interest is modeled as a 1, 2 or 3 dimensional submanifold of
R3, such as a curve (1D), image (2D), surface (2D), or volume (3D). Methodologies for studying shape
differences are then developed for these models. A main component in the analysis, after obtaining the
individual model representations for the subjects being studied, is the establishment of correspondence
of anatomically homologous substructures between the subjects. For example, if we are interested in
comparing shape differences between faces of two individuals in images, we would like to ensure that the
coordinates of the left eye in one image correspond to the left eye in the other image. On a finer scale, we
would like to ensure that the left corner of the left eye corresponds appropriately. This correspondence
should extend down to the finest resolution. However, a complete correspondence at this scale usually can
not be precisely attained because of high variability. For example, wrinkles are a common characteristic
of elderly people, but the specific pattern of wrinkles on any two individuals typically can not be matched.
One way to proceed in establishing a correspondence is to manually identify a subset of points in the two
images which deliniate reliable and identifiable features. We refer to these points as landmarks. Then,
we use the correspondence at this subset of points in an optimal way to extend the correspondence
over the entire structure. This process is called landmark matching. This paper focuses on landmark
matching for a particular geometric model — the unit sphere — which is the usual 2D submanifold of R3.
The sphere is of interest because it has become a standard configuration onto which the cerebral cortex
can be mapped, thereby providing a common coordinate system for specifying location on the surface
[?,7].

The methodology we pursue extends the work of Joshi and Miller [?], Camion and Younes [?], and
Miller and Younes [?] on euclidean geometries such as the plane and cube, and the work of Bakircioglu
et al. [?] on the sphere. More precisely, we are interested in finding an “optimal” map or transformation
of the sphere to the sphere that is constrained at a set of landmarks and which is also constrained
to be a diffeomorphism, i.e. the map must be invertible, and both the map and its inverse must be
continuously differentiable. Our chief contribution is two fold. First, other methods for landmark-based
spherical registration [?,?] do not explicitly include the diffeomorphism constraint in their formulation,
without which, it is possible for distinct points to be mapped to a single point. These methods are
referred to as "small deformation" techniques since diffeormophic transformations are typically only
possible for problems in which small deformations are needed to match template and target. Second,
our transformations are not simply correspondence maps. They simultaneously define a metric, in the
mathematical sense, which represents a natural measure of similarity in shape between the two structures
being matched. The underlying mathematics of our approach has been investigated in [?,7,7,7,7,7,7?].

Small deformation landmark matching has been well studied on euclidean geometries by Bookstein
[?] via the thin-plate spline, and generalized to arbitrary one and two dimensional submainfolds by
Joshi and collaborators [?,?]. Active contour methods of [?] have been applied to spherical landmark
matching in [?]. However, these methods require a good initial approximation to the solution. Also
related is the non-landmark based approach of Fischl et al. [?]. It is an extention to the sphere of
the image matching approach commonly applied to euclidean geometries, such as 2D images and 3D
volumetric images [?]. Transformations are obtained by minimizing the squared difference of a scalar
valued measure of geometry — which the authors refer to as "convexity" — between the subject and
average model. Again regularization terms are added to the formulation but do not guarantee that
one-to-one mappings are obtained.

The large deformation setting, pioneered by Christensen et. al [?] by modeling the deformation



process as a viscous fluid, is the setting pursued herein. Specifically, we seek solutions ¢ : S? x [0,1] —
52 x [0, 1], where S? denotes the unit sphere, to the ordinary differential equation (ODE)

7 (z,t) = v(g(z,1),1),

with initial condition ¢(x,0) = z. Indeed, if v(x,t) is continuously differentiable, then it is proven in
[?] that the solution ¢(x,t) exists, is unique, and is a diffeomorphism from S? to S? for each ¢ € [0, 1].
Energetics on the space of diffeomorphisms are induced via a smoothness constraint on the velocity fields
of the form

B(v) = / (Lo(z, £), (@, 1)) dpu(x)dt,
S2x[0,1]

where L is a constant coefficient differential operator. In the case of the sphere, the difficulty arises in
defining this smoothness operator. One possibility, proposed in [?], is to work in a local chart, and define
a scalar operator for each coordinate. The drawback is that, since there is no global chart for the sphere,
at least one point must be chosen to be left invariant by the deformation map. Here the operator L is
defined globally and no use is made of local coordinates. This also yields a simpler numerical approach.
Moreover we introduce a second formulation of the problem, which is an extension of the euclidean
landmark matching in [?] and [?] to the sphere.

This paper is organized as follows. The mathematical setting, notation, and formulation of the
minimization problems investigated are presented in section 2. We introduce the related vector spline
interpolation problem in section 3, which enables a simplified reformulation of the original minimization
problems. The reformulations are presented in section 4. Finally, effective computation and implementa-
tion issues are presented in section 5 together with some experimental results with synthesized examples,
and a conclusion is found in section 6.

2 Mathematical setup and notation

2.1 Riemannian geometry

We consider the unit sphere S? as a smooth 2-dimensional submanifold of R3, equipped with the Rie-
mannian metric defined by restricting to each tangent space the ambient inner product of R3. Lower
case letters x,y, . .. represent points on the sphere, and we use greek letters to represent tangent vectors
on the sphere, e.g. «, will denote a tangent vector at point z, i.e. an element of the tangent plane at z:
T,S?. On this tangent space the Euclidean scalar product is denoted (-,-), and the norm | -|. We will
also use the notion of covariant derivatives for vector fields and tensor fields on manifolds. Since the
sphere S? is embedded in R?, the covariant derivative can be simply defined as the orthogonal projection
of the usual derivative on the tangent space. Basic notions about Riemannian manifolds and covariant
derivatives can be found in [?].

2.2 Large deformations

Deformations maps ¢ : S? — S? are generated by integration of time-dependant vector fields v(z,t), =« &
S2, t€0,1]. Thus consider the transport equation:

{ 20 (2,1) = v(gy(2,1),t) V€ [0,1] 0
Go(2,0) =2 V€ 82,

and set ¢ = ¢, (-, 1). Existence and properties of such transformations depend of course on the regularity
assumptions we make on the deformation flows v(x,¢). This is described in the following paragraph.

2.3 The energetic space V

We denote x(S?) the space of smooth vector fields on the sphere, and u the uniform probability dis-
tribution (the normalized Haar measure). We denote H, the Hilbert space of square integrable vector



fields on the sphere defined by the inner product:
() = [ (o). v(@)duta).

Let L : x(S?) — H be a linear symmetric and strongly monotone operator (the strong monotony
says that there exists ¢ > 0 such that (Lu,u)y > c{u,u)y for any u € x(S?)). From L, we define the
so-called energetic scalar product

<ua U>V = <L'LL, U>H

and the associated energetic norm || ||y defined on x(S?). Using the Friedrichs extension procedure
(see e.g. [?]), we define the associated energetic space V which is an Hilbert space V' C H uniquely
defined as the closure of x(S?) for the energetic scalar product. The specifics of this construction and
the properties of the space V' can be found in [?]. For the special purpose of landmark matching we will
also require that V be continuously embedded in the space of vector fields of class C!, which means :

IM >0, YueV sup u(z)|+ |Vu(z) < Mlulv (%)
€S2

Of special interest will be the case L = —A or L = A? where A is the Laplacian operator on smooth
vector fields on S? - as defined by the Hodge theory - since it is invariant under the action of the group
of rotation. For the definition of the Laplacian in this particular case, see e.g. [?].

The time-dependent vector fields v(z,t) considered herein will be supposed to belong to L?([0,1],V)
i.e. they satisfy E(u) = fol lo(-,t)||3dt < oo. This quantity will be called energy of v(z,t). Actually the
set A of deformation maps generated through (1) by such velocity fields can be proven to be a group,
equipped with a right invariant weak structure of infinite dimensional manifold whose tangent space at
Idis (V] - |v)- In this setting, a geodesic distance d on A is defined, and satisfies

d(Ida 50)2 = Hl}f{E('U), ¢v('7 ]-) = 50}

Again, see [?,?] for details of this theory.

2.4 Formulation of the Minimization Problems

We now state formally the two problems investigated. Exact landmark matching refers to the case
in which the spatial position of the landmarks can be identified accurately, while inexact landmark
matching accounts for the spatial variability in identifying the landmarks, which is assumed to be
gaussian with diagonal covariance old. For the inexact matching case, we present two formulations.
The first formulation is the most natural, as it simply includes as a term of the functional the amount of
error in identifying the landmarks (sum of distances between the targets and the postion of the landmarks
at the end of the flow). The second formulation is actually a generalization of the exact matching case,
as will be explained in the following.

B(x2,1)

The landmark matching problem



Exact landmark matching problem

Let xy,...,x, (the initial landmarks) and y1,...,y, (the target landmarks) be distinct points on S2.
The exact landmark matching problem on the sphere consists of finding a time-dependant vector field
v(z,t) in L?([0,1],V) such that

1
(LM) / llo(-, t)||%dt is minimal subject to Ou(ri 1) =y, forall 1€{l,...,n}.
0
The optimal diffeornorphism then is given by ¢ = ¢, (-, 1).

We recall that ¢, (z,t) denotes the solution to the transport equation (1). Hence this problem cor-
responds to finding a diffeomorphism ¢ in the group A which match the landmarks and minimizes the
geodesic distance d(Id, ¢) Therfore this distance can also be seen as a distance between the two sets of
landmarks (this will be more explicit in section 4.1).

Inexact landmark matching problem, first formulation

Suppose o > 0. Given n distinct landmarks (x;) and their targets (y;) as previously, find a time-
dependent vector field v(x,t) such that

(ILM1) / lv(-, t)||3dt + — Zw(gbv(a:i, 1), 5:)? is minimal,

0 o 1

i=

where 1 is the geodesic distance on S?, i.e. the angle between two points on S%. The optimal diffeomor-
phism then is given by p = ¢, (-, 1).

Inexact landmark matching problem, second formulation

Suppose o > 0. Given n distinct landmarks (x;) and their targets (y;) as previously, find a time-
dependent vector field v(x,t) and trajectories x;(t) on the sphere, such that

1 1 n 1
/0 o)t + ;/0 (3 (8) — v(as, £)|2dt is minimal

(ILM2)
subject to x;(0)=x; and x;(1)=y; forall ie€{l,...,n},
where 2,;(t) = dd? (t). The optimal diffeomorphism then is given by ¢ = ¢, (-, 1).

At the heart of each of these landmark matching problems, and the key to their simplification,
is a simple minimum norm problem which is equivalent to a generalization of the well known spline
interpolation problem [?]. Thus, we present the related vector spline interpolation problem and its
solution in the next section.

3 Vector spline interpolation

Bookstein ([?], see also [?]) introduced a spline interpolation method for solving the landmark matching
problem in the euclidean case, inspired by methods in approximation theory called Radial Basis Functions
or variational splines [?]. These methods model the deformation map between the landmarks and their
targets by a vector field v such that y; = x; + v(x;), this vector field being a sum of spline vector fields
centered at each point xz;. This spline interpolation problem led to a simple linear system. In the case



of the sphere this method alone cannot solve the landmark matching problem, but it can be seen as
an infinitesimal version of it, providing a method for the interpolation of vector fields on S?, and used
as first step in the building of our deformation maps. The theory of Radial Basis Functions has been
widely studied, even in the general case of manifolds (see [?], [?] and [?] for results on the sphere)
but apparently only for functional approximation. On the other hand, flow interpolation has numerous
applications in fluid dynamics (see e.g. [?] for meteorological issues).

3.1 Problem statement

The spline problem states as follows:

Vector Spline Interpolation problem Given n distinct landmarks x; on the sphere, and associated
tangent vectors v; € Ty, 5%, find v € V such that

(VSI) lvllv  is minimal subject to v(x;) =~ Vi€ {l,...,n}.

As in the previous section, we have an inexact statement of this problem.

Inexact Vector Spline Interpolation problem Given n landmarks x; on the sphere, and associated
tangent vectors v; € Ty, 5%, find v € V such that

I o
(IVSI) J(v) = |Jv||3 + = Z lv(z;) —vi|*  is minimal.
i=1

3.2 The Reproducing Kernel

Notation In the following we will consider the n landmarks as an element of the product manifold
(S?)" and write x = (21,...,2,) € (S?)". A tangent vector at x will be denoted o = (avy,...,0,) €
Tx(S?)™ and (-,-) will also denote the scalar product on Ty (S5?)" :

n

(@, 8) =) (i, B).

i=1

From assumption (*) made on the energetic space V, it directly follows that V' is a reproducing
kernel Hilbert space: for each point x € S?, and each tangent vector a, € T,S? the linear form
0% : v +— (v(x),qy) is continuous on V. Then by the Riesz representation property, there exists
5;“ € V such that

(027 o)y = (v(z),00) VO EV

Definition a) We call K, the reproducing kernel, which associates to every x,y € S? the linear
operator acting on the tangent spaces K (z,y) : T,S* — T,S? and defined by the formula

K(z,y)az =627 (y).

b) For x = (x1,...,7,) € (§%)" we denote K(x) the linear endomorphism of Tx(S*)" defined by:

K(x)a = <Z K(xi, @)y, ... ,ZK(@,%MO@) .

i=1 i=1



We denote also K,(x) = K(x) + o2 for every o > 0, where I is the identity map of Ty (S%)".

The linearity of K (x,y), i.e. linearity of 3;“ with respect to a, € 1,52, follows from the linearity of
the inner product.
Now the following result gives us the solution to (VSI) and (IVSI) problems.

Proposition 1 a) The solution to (VSI) is unique and given by

Vopt = 3,‘2‘ = zn: 3;"1 = Z K(x, ),
i=1

=1

where the o; € Ty, S are solutions to the 2n-dimensional linear system K (x)o = =, or more explicitely

ZK(xj,a:i)ozj:% ViE{l,...,n}.

Jj=1

Moreover, J(vopt) = l[vapel? = S0 (i, 7).

b) For every o > 0, the solution to (IVSI) is unique and given by
n
Vopt = 0 =y 6%
i=1
where the o; are solutions to K (x)a + o’a = 7 i.e.

K(xjaxi)aj+02ai:’7i Vied{l,...,n}.
1

n

J
Moreover, J(Vopt) = ZZ":1<04¢,%>.

So, we may write the solution to both spline interpolation problems as K, (x)o =« with J(vopt) =
(v, K, (x)71v), where o = 0 for the exact matching case.

It is evident from this expression that the solution depends on L only through K. Therefore, if the
reproducing kernel is known, then explicit knowledge of the operator L is not needed. In fact, instead
of chosing an operator L to define the space V', we could choose a specific operator K (x,y) with the
appropriate properties as a starting point and deduce the operator L from it.

Proof of proposition 1

a) For any B € TS?, let us define Vg = {v € V : v(x;) = B;,i = 1,...,n}. In particular the space
of admissible vector fields is V,,. Note that Vj is non empty since the landmarks are distinct and x(5?)
is included in V. Moreover, if vg € V3 then Vg = vg + Vy, i.e. Vj is an affine subspace, namely a
translation of Vp. Now consider the subspace D = {v € V : v = Y7 5% o € T,,5?}. In fact, the

i=1"x;"
orthogonal complement of D, written D+ is exactly Vp, for if u =", 0y and v € Vo, we have
n n
(u,v)v = Z<5gjvv>v = Z<'U(£El), a;) =0,
i=1 =1

and if v ¢ Vp then clearly we may choose a u € D such that (u,v)y # 0. Thus, Vj is closed, and since V
is a translation of Vg, the solution v, exists, is unique, and is orthogonal to Vo = D by the projection
theorem. But, since D is finite dimensional, it is closed and it follows that V5- = D++ = D. Therefore,
the solution is of the asserted form, and since the linear constraints must be satisfied, the solution can
be found by simply solving the linear system K (x)a =« for a. Finally,

n R n n

J(vopt) = ”'UO;Dt”%/ = Z<5g:a"}0pt>V = Z<U(xi),ai> = Z<%‘aai>
i=1 i=1 i=1

= <77a>'



b) Note that on each Vg, the second term of the functional J(v) is constant and equal to 2 >0 | [3;—
7;|?. Thus, the functional is minimal when [|v||?, is minimal. This proves that a solution to the inexact
problem necessarily belongs to D. On this subspace, we can rewrite J(v) as a quadratic function of the

variables a;, where v = )" | 627 :

J@) = ol + = EJU% i

n

= Z<5al v)v + - Z |'Yz 1
i=1

- Z<au xv + _ZZh/? z

=1

= (o K()a) + Sy — K(x)al?
= (@ K()a) + = (I + K ()af’ ~ 203, K(x)a)) .

Hence J(v) has a unique minimum on D, which we obtain by computing its gradient as a function of a.
Using the symmetry of K (x) we have

VJ (v)

I
[N}
P
=
®
Q
+
L=
Jal
»
5
R
|
L
=
X
3
~

I
[N}
Jal
X
—~
Q
_|_
|
fal
X
Q
|
L
2
~—

Finally, we find that this gradient vanishes if and only if 0?a + K (x)a = 7, or more explicitely

an—l—Zle,xJ) =; foralli=1,...,n

i=1

So the solution is given by solving the linear system K, (x)a = K (x)a + o?a. Furthermore, we have
1
I (Vopt) = (o, K(x)a) + —5 |7 — K(x Jal? = (o, K (x)a) + o’|af’ = (a, K, (x)a),

hence J(vopt) = (o, ). 1

4 Landmark matching via large deformations

4.1 Reformulation of the minimization problems

We now return to the landmark matching problems as they were stated at the beginning of the paper.
We reformulate the minimization equations, taking advantage of the spline interpolation theory of the
previous section. The idea is to notice that in the three stated problems, the matching conditions only
involve the vector fields v(z,t) along specific paths : the images ¢, (z;,t) for (LM) and (ILM1), and the
trajectories x;(t) for (ILM2). In order to use a unified notation we will denote these specific paths in
the three cases by z;(t).

e (LM) and (ILM1) problems: In these cases we have &;(t) = v(z;(t),t), thus for fixed trajectories
x;(t) the energy of v(x,t) is minimal if at each time ¢, v(-,t) is the solution to (VSI) with v; = @;(¢).

e (ILM2) problem: For fixed trajectories z;(¢) the (ILM2) functional is minimal if at each time ¢,
v(-, t) is the solution to (IVSI) with ~; = @;(¢).



These remarks lead us to reformulate the landmark matching problems as minimisation problems ex-
pressed with respect to these trajectories instead of the velocity fields.

Exact landmark matching problem
Given n distinct landmarks (x;) and their targets (y;) find trajectories x(t) = (z;(t)) on the sphere such
that

1
J(x) = /0 (x(t), K(x(t)) " %(t))dt is minimal subject to  x;(0) =x;, and x;(1)=vy; Vi.

In other words, find a minimizing geodesic between (z;) and (y;) on the manifold (S*)" equipped with
the metric tensor K 1.

Inexact landmark matching problem, first formulation
Suppose o > 0. Given n distinct landmarks x; and their targets y;, find trajectories x;(t) such that

1 n
J(x) = / x(t), K (x(t))"'%(t))at —|— Z is minimal subject to x;(0) = z; Vi.
0 i—1

Inexact landmark matching problem, second formulation
Suppose o > 0. Given n distinct landmarks x; and their targets y;, find trajectories x;(t) such that

J(x) = /0 (x(t), Ko (x(t)) " %(t))dt is minimal subject to x;(0) =z; and xz;(1)=y; Vi

In other words, find a minimizing geodesic between (z;) and (y;) on the manifold (S*)" equipped with
the metric tensor K; 1.

In each case, the optimal diffeomorphism is given by ¢ = ¢,(-,1) with v(z,t) = > | K(z;(t), x)a;(t)
and a(t) = K(x(t))7'x%(t).

Thus we are led to perform a minimization with respect to the variables x;(t) instead of the vector
fields, v(x,t), over the entire space. We also remark that the exact matching problem becomes a
particular case of (ILM2) with o = 0. This justifies a posteriori the introduction of (ILM2). These two
formulations ((LM) and (ILMZ2)) provide the deﬁnition 0f a true metric between sets of

landmarks on the sphere, given by the formula d((z;), (y;) fo VX(), K, (x(t)~1x(t))dt at
convergence. This is not the case for (ILM1).

4.2 Variation of the functional

We now compute the variation of the functional J in each case.

4.2.1 First formulation

We have .
760 = [ (i), dt+—z¢2 yir v

Let n(t) be a direction of variation of x(t), i.e. an element of Ty (S?)™, with the condition n(0) = 0.

Vi, will denote for the covariant derivative in the direction n(t), and the dot notation applied to tangent

vectors (&, 7),...) refers to covariant derivatives in the direction x = ‘3—;‘. We consider a variation

10



Xr = (@p1,...,%r,) of x such that 8x(§r(t)

derivatives taken at r = 0:

lr—o = m(t). Leaving out the variable ¢, we have, with

n

1
Tox) = [ G K o))+ Z (i 21

dJ(x,) 18<Xr,ar 1< yvaxrv )
I e e

Now,

(%, ) A%, K (x,)"1%,)
or or
= (Vg% K(%)7'%) + (%, Vo {K(x)71}%) + (%, K(x) 7' V%)
= 2(7, K(x)7'%) + (%, Vo {K(x) "' }x)

because V% = Vin = f) (covariant derivative) and K (x)~

dJ(x,)
dr

1is symmetric. Therefore we have

—A+B+C

with
1
A =2 [ e
0
1
B = /(X,V,,K(x)’%)dt
0

1 ¢ Py een(1)
¢ = ?z_: dr '

Computation of A
Since n(0) = 0 and n(1) = 0 we have

A=2(a()n) -2 [ (@
Computation of B
B = —/0 (%, K(x)"'V,K(x)a) dt
= _/01 (K(x)"'%, VK (x)a) dt

—/0 (o, Vp K (%)) dt.

Thus we have to compute V, K (x), covariant derivative of the operator K(x). K(x) is a linear
operator in T, 5% x - -+ x T, S%. If 7¥ is the i*" canonical projection

P T, 8% xT, 8% — 1,5

3

we can write, directly from the definition of K (x):

K(x); = a0 K(x) = Y Kjilx) o

11



with
Kji(X) = K({Ej, :El)

Now,
VnK(x)i = Y VpKj(x)on
V,,Kji = vanji+vn,ini~

The computation of the derivatives of the reproducing kernel are given in annex B. Eventually we get

— [ Yt sr(ana:
0 =1

with

Br(a) =2 | YK (i) o, Tjia)es; + k(1) (M) (i, Tji ) fij
j=1

S111 ¢”

where Tji = T(J?j, 1‘1‘), ¢7J = ’lﬂ(ﬂ?z, Z‘j) and (eij, fTJ) is the mutual basis of (Z‘i, Z‘j).

Computation of C

g (i, (1)
_022 L

Let (-,-) denote the usual dot product on R3. We have v (x,y) = Arccos(z,y), hence

~  2(yi, z
- O-QZ\/]_w_yy%< z;(1) yz) l(1)>

where IT,, (1)y; is the projection of y; € S* C R* on T},(1)S* C R? the tangent space at x;(1).

4.2.2 Second formulation

We include here the case of exact matching, which correspond to ¢ = 0. Here we consider variations n
with two endpoint conditions 17(0) = 0 and n(1) = 0. The variation of the functional is

dJ(x,) _A4B
dr
with
1 1
A:2/ () :-2/ (&, m)dt,
0 0
and

B = —/0 (o, Vi Ko (x)ox) dt.

But since K,(x) = K(x) + %I, we have V, K, (x) = V, K (x), and thus the previous formula holds for

B .
— [ St sr(and:
0 =1

12



4.3 Gradient of the functional

To write a gradient of J we must specify a scalar product on the space of infinitesimal deformations
of the paths. Actually the expresion of the functional requires that the paths be of H' regularity, and

therefore we will choose :

(n.€) = /0 (i, €) .

4.3.1 First formulation

Here the infinitesimal variations n and &€ are such that n(0) = £(0) = 0. We have

.6 = (m1).E1) - / (51, €)dt

SRR STIDNICIE

i=1
The i-th component of the gradient is then given by

VI (x)i(t) = 26u(t) — B (e)
with the two initial conditions

VJ(x)i(1) = —iMHmu)(%)%—%ﬁ(l),

o /1= (yi, (1))

VJ(x);(0) = 0.

This gradient can be computed by numerical integration.

4.3.2 Second formulation

Here we have n(0) = £(0) =0 and n(1) = &(1) = 0. We include the case of exact matching (¢ = 0).

m&) = — [ e
S D M CRAO
=1

Then )
VIJ(x)i(t) = 2d5(t) — 57 ()

with the two initial conditions VJ(x);(0) = 0 and VJ(x);(0) = 0.

5 Implementation and experiments

5.1 Computation of the vector spline interpolation

We now turn to the problem of effective computation of the reproducing kernel and of the solution to
(VSI) and (IVSI). We show that in the case of L = A? these computations are greatly simplified and

reduce to applying parallel transport operators to the tangent vectors.

13



5.1.1 Mutual basis and parallel transport on the sphere

Given two points z,y € S? we define the basis (€4, fzy) of tangent space T,,5% and (eys, fyz) of Ty S?
by the formulas :

T Ay
foy = 05
" lz Ayl

Cry = Joy/A@

and

yNx

G Py i

eye = JyaNY

where A denotes the vector cross-product (here points and vectors are considered as vectors in R?).
These basis can be refered to as mutual basis of the pair (z,y) (see figure 5.1.1). Note that they are
not defined when y = x and when y is at the antipode of z.

fyx

<

< -

Figure 1: The mutual basis

Now define by T'(z, y) the parallel transport ! of tangent vectors on S? along the great circle connect-
ing x and y. T'(z,y) is a linear operator from T3,5% to T,,S%. Its matrix expressed in the basis (ey, fuy)
and (eys, fyz) is —Id.

5.1.2 Computation of K(z,v)

From assumptions made on V, we have that the injection V <— H is compact and that the map
L=': H — H is a compact, self-adjoint operator [?]. Hence L™, and thus also L, can be diagonalized
in an Hilbertian basis of L? [?]. Now the reproducing kernel can be computed with the use of the
following formula :

Proposition 2 Let \,,, m >0 be the eigenvalues of L, with I, the associated eigenspaces. We note
dp, = dim(1l,,) and E,,; € I,,, for 1 <1 <d,, the orthonormalized eigenvectors for the L? scalar product.
If 2,y are points on S?, a, € T,,S? a tangent vector, then

dm
K(z,y).a, = Z )\L Z<Eml(x)’am>Eml(y)~
=1

m>0

f v € TS?%, 2,y € S? and « : [0,1] — S? is a smooth curve on the sphere with a(0) = z and a(1) = y, then there exists
a unique vector field w along a with w(0) = v, w(t) € Ta()S” for all ¢, and the covariant derivative of w(t) equal to 0 for all
t. w(1) € T,,S? is said to be the parallel transport of v along a.

14



Proof The vector field 6% € V' C H can be decomposed in the basis (E,,;)of H: 6% = Em,l<Eml7 0%V Bt
Now <Emla5;){T>H = )\Lm<LEmla gT>H = )\,Lm<Emla gT>V = )\%m<Eml(x)aaw>V~ 1

Now we focus on the case L = AZ. Again, note that A is the laplacian operator defined on vector
fields, which is not the usual scalar spherical laplacian applied to each spherical coordinate, as it would
be in an euclidean setting. The eigenvectors for this operator are given by taking the gradients of the
spherical harmonics (see [?]): we have, for m > 1,

A =m?(m +1)2
B, = ———VY,,

11 \/m l
Eml2 = vyml)J—a

weree
where Y, are the usual spherical harmonics and L denotes the Z-rotation on T,52.
Proposition 3 When L = A? the reproducing kernel satisfies
K(z,y) = k(¥ (z,9)T(z,y)
where k() is a scalar valued function of the angle between two points on the sphere.

Proof The full computation is given in annex A. It provides an explicit formula for k(¢). This function
is plotted on figure 3. 11

This expression for K is very convenient for numerical purpose since we only need to store the scalar
function k. The operator T'(z,y) can be computed easily once the mutual basis of (x,y) is defined.

Figures 2 and 4 show visual representations of the vector fields T'(x, -)a, and K (x,-)a,. The vector
« is represented by the arrow.

Figure 2: Parallel transport T'(z,-)a, of a vector a,. Front view and back view

The resulting shape of the kernel function k(1)) is directly related to the initial choice of V. One can
adjust this shape by changing the eigenvalues of the operator L, obtaining various types of deformation
mappings.

5.1.3 Numerical solution to the spline interpolation

The spline interpolation problem leads to a 2n-dimensional linear system, as stated above. Writing
the matrix of this linear system would require that we work coordinate frames on the sphere, e.g. the
coordinate frames obtained by stereographic projection at north and south poles as in Bakircioglu et
al. [?]. But as we have seen, the operator K (z,y) has a very simple expression and can be computed
directly using cartesian coordinates. This fact has led us to choose a conjugate gradient algorithm to

15



Figure 4: Computation of the vector field K(z,-)a,. Front view and back view

solve the linear system without computing its matrix, and enables us to use only cartesian representation
for both points and tangent vectors.

Figure 5 represents the solution to a spline interpolation problem with n = 4. The vectors ~; are
represented by the arrows.

5.2 Implementation of the landmark matching problems

Algorithms to solve (LM), (ILM1) and (ILM2) problems have been written in the C programming
language. The method used to minimize the functional .J is a simple gradient descent: at each iteration
the trajectory x is replaced by x — AVJ, which is then projected on the sphere. The scalar coefficient
A is adaptively adjusted to ensure minimization of the functional.

The main steps of the algorithm are the following :

e Compute the mutual basis of the n landmarks z,, ; for each discrete time step t € {1,...,T}. These
basis are the key elements for the computation of the reproducing kernel.

e For each time step ¢, compute the solution to the spline interpolation problem by solving the linear
system K (x;)a; = X, where X; is an appropriate discretisation of the time derivative of x;. This
is done by a conjugate gradient algorithm. Again, the advantage of such a method is that it does
not require the explicit matrix form of K(x;), which would require that we work with coordinate
charts instead of cartesian coordinates.

e Compute J(x) and its gradient V.J(x).

e Compute X = x—AV.J(x) and reproject on the sphere, with different values of A, until J(x) < J(x).
The mutual bases are recalculated and the corresponding linear system is solved at each time step.

e Set x = X at convergence.
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5.3 Experiments

Some results of the algorithms described above are presented here. Figures 7 to 10 show visual repre-
sentations of the computed deformation maps. On each figure are plotted the initial (circles) and target
landmarks (crosses), the trajectories z;(-), the flowed landmarks positions ¢(x;,t) (diamonds), and the
deformation of a regular grid through the action of the diffeomorphism at different times ¢ € [0, 1].
The initial trajectories (before minimization) are set to be the sections of the great circle connecting
the landmarks to their targets. Note that this initialization already provides a true diffeomorphism
matching the landmarks. In the experiments with 5 and 10 landmarks, the positions of the landmarks
and their targets were chosen at random.

For each experiment, we have also plotted the energy (squared V-norm) of the time-dependant
vector field v(xz,t). As we have seen, the landmark matching problem can be reformulated in terms of
geodesics on the manifold (S?)". Therefore this energy must be constant for all time at the end of the
minimization. In the (LM) and (ILM2) cases, its square root gives the distance between the two sets of
landmarks (which is also d(Id, ¢)).

In the first example (figure 7), there is a large difference between trajectories before and after min-
imization: they tend to move away from each other since at first they cross with opposite directions,
which has very high cost. Conversely, in figure 8, trajectories tend to draw near. Note also the substan-
tial regularization achieved by the minimization in figure 7. In figures 9 and 10 some of the landmark
trajectories cross one another, which may seem counter intuitive to a sequence of transformations that
are diffeomorphic. However, the flow of the particles which these trajectories represent, do not cross
at the same time and therefore the particles from two differented trajectories never occupy the same
position at the same time.

6 Conclusion

We have presented three formulations of the landmark matching problem on the sphere — the solution to
each provides a diffeomorphism of the sphere to itself, with landmark constraints. In the experiments,
we have seen good performance of the algorithm. In particular, the algorithm achieved diffeomorphic
mappings for severe landmark constraints, for which other landmarks matching techniques would clearly
fail to maintain the topology of the manifold (see Joshi [?] for a pathological example). A metric between
sets of landmarks is simultaneously generated from the mapping, which provides a natural setting for
statistical comparison and fits the framework of [?]. In future work, we plan to apply the algorithm to
brain mapping studies, and to extend the large deformation setting to a broader class of manifolds.
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Appendix

A Proof of Proposition 3 - Computation of the reproducing ker-
nel

Since A is rotation invariant, K (x,y) is also rotation invariant, and it only depends on the angle between

x and y. Thus we need only to compute it in a special case, say 0, = 5, ¢, =0and 0, =73, ¢, =¢

in polar coordinates (6 is the colatitude and ¢ the longitude). We will note (95,09%) (resp. (9,0Y))
the coordinate frames at = (resp. y). Note that in this special case these are orthonormal basis of T),S?

(resp. T,,S?).

Figure 11: Positions of points x and y

There are 2m + 1 spherical harmonics of order m for m > 0 which are, in polar coordinates (see [?])
Yino(0, ) = Ko P (cos 0)

for m > 0, and

< 0,0) = kP (cos)cosly
$(0,0) = kpuP! (cos8)sinlp
for m > 1 and 1 <[ <m, with
kmo — m >0
bt =2 m>1, 1<i<m
P,, are the Legendre polynomials
1 dam
Pm = R — 2 _ 1 m
(=) 2mm! dxm (@ )
_ (2k — 1) o
= Z (—pm* , Py
m hem (m — k)1(2k —m)!2
and P! the associated Legendre functions :
! ! 2y1/2 @
P.(x) = (-1)(1—27) @Pm(x)
(2k — 1! Sk (mtl)
= (_1)m+l(1 _ x2)l/2 (_1)k g% mel)
m_+'§<m (m — k)!(2k — (m +1))12m—*
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We use the notation (2n + 1)!! = 13 % --- % (2n + 1) and (2n)!! = 2 x4 % --- % (2n) with the rule
Ol = (=1)! = 1. Now we have, form > 1 and 1 <l <m:

VYmo(z) = —kmoP,(0) 05

VYmo(x)™ = —kmoP,,(0) 0%

VYiu(e) = —kuPp(0) 0f

VYiu(@)t = —kuPy(0) 82

VY (@) = knuPlL(0) O

VYo(@)t = kP (0)l 0

and

VYmo(y) = —kmoP,(0) 0
V¥mo(y)" = —kmoP’ (0) a3
VY (y) = PY(0)cosly Y — ki PL(0)sinlyp Y
vYS, (y)t = mlP (0)lsinly O — ki PV (0) cos g oY
VY2, (y) = —kuPl(0)sinly 9 + kPl (0)l cos g Y
VY ()t = —kuPL(0)lcosly 0 — kPl (0)sinlyp 0%

remark  Since Yj is constant, its gradient vanishes, and consequently there is no eigenvector for
m = 0.

The explicit formula for P, entails that P! (0) = 0 when m — [ is odd while P” (0) = 0 when m —
is even. Thus P! (0)P%(0) = 0 for all m and [. Finally we get, for a, € 7,52,

1 - x T\ 9

K(z,y).a, = Z

m>1

The coefficients 3!, are
Bin = ki (P (0)* + 2Py, (0)°).

We find 9
2m 1 (—(m"l!bu) when 1=0, m odd
ﬁl B 0 when =0, m  even
" e e when 1£0,  m+1 odd
2met1 )2 (mAl=DU (m—l=DU oy 140, m+1 even

(m+DN! (m—0N

Note that in this special case, the parallel transport of vector «,. precisly writes: T'(x, y)a, = ((am, 95)08 + (o, 8;2}8};))
Therefore the above formula can be written

K(z,y).00 = k(o)1 (2,y).0a

where
l
k(p) = Z Z 7m3(£m+ O cos(ly).
1>0 \m>I

k(p) is a trigonometric series which can be computed rapidly once its coefficients are stored. The
eigenvalues m?(m + 1)? can be modified to adjust the smoothing properties of the operator. This would
only change the coefficients of the function k.

Now in the general case, because of rotation invariance, we can conclude that

K(z,y) = k((z,y))T(,y).
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B Derivatives of the reproducing kernel

Here we compute the two partial coderivatives of K (z,y) for every z,y € S?, n, € 1,5 and n, € T,S>.
We have

K(z,y) = k@)T(z,y)
Vo K(@y) = K@) L Ty + kW) VnT()
Now we use the mutual basis (eqy, fzy) and (eyq, fyz) introduced before. First
o

e = (e eay) = 1
The parallel transport operator T'(z,y) can be written:
T(xvy) = _e;kcy ® Cyz — f:y ® fya:

We have also the following results (see annex C):

vexy €xy = Vemy fmy =0
vay Cyz = Vemy fya: =0
Vig€ey = —coti)fey
\ foy = cotipegy
1

\ x — T Jyx

Jay €y Smwfy
N !

x = T Cyx-
Jay Jy sin ¢ Y
Consequently, V., T(x,y) = 0 and
Vi, T(@y) = —(Vi, ) @eys — e;y ® Vy,, ey

~(Viny fay)" @ fyo — [0, O Vi, fya
cosy — 1 . .
< >( ry®ey$_emy®fy$)

sin v

costp — 1
— (W) T(x,y)l.

T(x,y)* is the parallel transport T'(z,y) composed with a 7/2-rotation on the tangent space at y:
T(x,y)* = R(y)T(x,y)(also equal to T(z,y)R(x)). Thus,

cosy — 1
Vo K (o) = G 0T )+ nf(0) (5 ) T
For V, K(z,y) we have V. T (x,y) =0 and
vfymT(x’ y) - _(vfym efy)* ® Cyx — erﬂy ® vfym Cyx

_(vfy“” fry)* ® fy"f - f;y & vfym fyr
s — 1

(%) (€y ® fyo = fay ® eys)

B (cosw -1

sin vy

)T

and then
cosy — 1

Vo K o) = i )T o)~ nf0) () Tl
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This could also have been deduced from the formula
K(z,y) = K(y,z)"
which implies
Vi, K(z,y) = (Vy,K(y,z))"
= )T ) ko) (e

) .

But we have T(y,z)” = T(z,y) and
(T(y,z))T = (R(2)T(y,2))" = T(z,y)R(z)T = —T(z,y)R(z) = —T(x,y)*; hence we get the same
result.

C Covariant derivatives of the mutual basis

Computation in a special case

We must obtain the coderivatives of the tangent vectors ey, fsy, €y and fy, with respect to e, and
fuy, for every z,y € S%. Using the rotational invariance of these basis, we will consider a special case.
Let y be the North Pole, ie the point (0,0, 1) in cartesian coordinates, and x another point with spherical
coordinates (6, ), (eg, e,,) being the orthonormal basis associated on T},52.

Y

Figure 12: Positions of points x and y

In cartesian coordinates we have:

—cos(f) cos(p) sin(p)
ey = —€g = | —cos(f)sin(yp) foy = —€p, = | —cos(p)
sin(6) 0
cos ¢ —sing
eye = | singp fyz = cos ¢
0 0
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Now,

sin(@) cos(yp)
Opery = | sin(0)sin(yp)
cos(0)
0
80fr1:y = 0
0
0
896ym = 0
0
0
89fyr1; = 0
0
and
cos(0) sin(p)
Opery = | —cos(f) cos(yp) =
0
cos(p)
Opfay = | sin(p) =
0
— sin(yp)
Opeye= | cosie) | =
0
~ cos(v)
Opfye = | —sinlp) | =
0

General case

= vemy Exy = Vae Cry = 0
= Ve:cy fT?! = vae ny =0

= V eym - vaeeym = O

Cay

= vemyfym = vae,fym =0

1
vf:cyemy I

mvaw €xy = — €Ot O fry

1
szyfwﬂ = _siﬁva“’f“’ = COt@fwy

1 1
e = ———Vo. ys = —— fyz
Vi sing 0y sin 6 Ty
1 1
= Vo fe = e
Vi fy nd 0,1y il

Using rotational invariance property, we deduce the formulae in the general case.

Ve, €ay =0
vexy fwy = 0
Ve, eyz =0
Ve:cy fyT =0

where 1, = W(z,y).

V., €ay = — COt Yoy foy
vfmy facy = cot 1/}wyemy

1
V: €, = ———
f““v‘ yx bln¢Tnyw
1
va,,fyT = meyma
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