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Abstract

We prove a central limit theorem for strictly stationary random
fields under a projective assumption. Our criterion is similar to pro-
jective criteria for stationary sequences derived from Gordin’s theo-
rem about approximating martingales. However our approach is com-
pletely different, for we establish our result by adapting Lindeberg’s
method. The criterion that it provides is weaker than martingale-type
conditions, and moreover we obtain as a straightforward consequence,
central limit theorems for α-mixing or φ-mixing random fields.

Résumé

Nous démontrons un théorème limite central pour des champs de
variables aléatoires stationnaires sous une condition projective. Notre
critère est comparable aux critères projectifs pour les suites station-
naires dérivés du théorème de Gordin concernant l’approximation par
des martingales. Toutefois notre approche est complètement différente,
puisque nous établissons notre résultat en adaptant la méthode de
Lindeberg. Le critère fourni est plus faible que les conditions de type
martingale, et contient de plus les résultats connus pour les champs
α-mélangeants ou φ-mélangeants.
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1 Introduction

Let (Xi)i∈Z be a stationary sequence of random variables with mean zero

and finite variance, and write Sn =
∑n

k=1 Xk. As far as we know, one of

the best ways to prove the asymptotic normality of n−1/2Sn is to approxi-

mate Sn by a naturally related martingale with stationary differences. More

precisely, assume that the sequence is ergodic and that n−1E(S2
n) converges

to a strictly positive σ2, then Sn behaves asymptotically like a sum of n

martingale differences, each with variance σ2. Therefore, under fairly weak

additional condition, the central limit theorem can be deduced from the mar-

tingale case. This approach was first explored by Gordin (1969). Next, Hall

and Heyde (1980), Dürr and Goldstein (1984) or more recently Volný (1993),

used Gordin’s approach to provide projective criteria for the central limit the-

orem. These criteria imply Ibragimov’s central limit theorem for stationary

and strongly mixing sequences (1962).

Unfortunately, we cannot follow this way to study stationary random

fields, because the σ-algebras which naturally appear are no more nested.

Nevertheless it is still natural to ask for projective criterions which imply

the existence of central limit theorems for stationary random fields. This

question has been partially answered over the past few years, first by consid-

ering martingale-type conditions (see Nahapetian and Petrosian (1992) and

Nahapetian (1995)), and then by studying the case of conditionally centered

random fields (see Jensen and Künsch (1994), Janžura and Lachout (1995),

and Comets and Janžura (1995) in the non-stationary case). This notion

has been first intoduced by Guyon and Künsch (1992) in order to study the

asymptotic behaviour of a certain estimator of the interaction for the Ising

model at the critical temperature. In that case, the mixing coefficients have

no good properties of decrease and one cannot used any mixing theorems,

whereas conditional centering applies to certain fields subordinated to the

Ising model. Conversely, it is easy to understand that martingale-type con-

ditions as well as conditional centering may fail to hold for a large class of

random fields with long range interaction: for instance, one cannot infer from

any of these assumptions Bolthausen’s central limit theorem for strongly mix-

ing random fields (1982) (result recently improved by Perera (1996) in the

unbounded case).

Many proofs of these theorems are based on a useful method introduced

by Stein (1973). However, this method does not always lead to optimal
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assumptions, as Bolthausen notes in Remark 1 of his article. As a matter

of fact, to control the terms which naturally appear by following Stein’s

approach, one needs to make strong assumptions about the moments of the

random field, or to introduce some unnecessary mixing coefficients. Stein’s

method has been also used by Gordin (1993) who proves a central limit

theorem for dynamical systems. We agree with the author when he writes

in the concluding remarks of his paper, that a natural application of his

approach could be the central limit theorem for random fields. However,

until now, we are unable to compare the conditions that it might provide

with ours.

Our aim in this paper is first to propose a projective criterion compara-

ble to the L1 criterion stated by Gordin (1973) in the case of stationary and

ergodic sequences, and second to present a self-normalized sequence whose

limit, under this assumption, is a standard gaussian. To establish our re-

sults, we use Lindeberg’s method introduced in 1922 to study independent

sequences of random variables, adapted by Billingsley (1961) and Ibragimov

(1963) to the case of stationary and ergodic martingale difference sequences,

and by Rio (1995) to the case of strongly mixing sequences. In order to

exhibit our criterion, we extend a decomposition proposed by Rio to our

context. The tools that are needed are quite different from the strongly mix-

ing case, because the remainder terms cannot be controled with the help of

covariance inequalities as in Bolthausen, Rio or Perera. Since our approach

needs to be more precise, we obtain as a straightforward consequence the α-

mixing condition expected by Bolthausen (see again Remark 1 of his paper).

Another interest of this approach is that it does not require any assump-

tion about the ergodicity of the random field. Consequently, the normalized

partial sum sequence converges in distribution to a mixture of gaussian law.

More precisely, let I be the invariant σ-algebra, the limit is a product of an

I-measurable variable by an independent standard gaussian.

This paper is organized as follows: Section 2 sets up the notations and

the preliminary results which will be useful in the sequel. In Section 3, our

main results are stated. In Theorem 1 the normalized sequence converges

in distribution to a mixture of gaussian law, where the variance term η is a

positive I-measurable random variable. Theorem 1 provides also a consis-

tency estimator of η. In Corollary 1, we give a random normalization which

ensures the asymptotic normality of the partial sum sequence. In Corollary

2, we are interested in the degeneracy of the variable η. Corollary 3 is de-
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voted to mixing assumptions, and to be complete, Theorem 2 proposes the

finite-dimensional version of Theorem 1. The results are proved in Sections

4, 5, 6 and 7.

2 Preliminaries

In order to develop our results, we need some preliminary notations.

2.1 Real random fields

Let us consider the space R with its borel σ-algebra B. By a real random

field we mean a probability space (RZd
,BZd

,P). We denote by X the identity

application from RZd
to RZd

, and by Xi the projection from RZd
to R defined

by Xi(ω) = ωi, for any ω in RZd
. From now on, the application X, or the field

of all projections (Xi)i∈Zd will designate the whole random field (RZd
,BZd

,P).

For k in Zd, Tk denotes the translation operator from RZd
to RZd

which

is defined by: [Tk(ω)]i = ωi+k. An element A of BZd
is said to be invariant

if Tk(A) = A for any k in Zd. We denote by I the σ-algebra of all invariant

sets. A random field is said to be strictly stationary if Tk ◦ P = P, for any k

in Zd. Throughout, X is a strictly stationary random field with E(X0) = 0

and E(X2
0 ) < +∞.

On Zd we define the lexicographic order as follows: if i = (i1, i2, ..., id) and

j = (j1, j2, ..., jd) are distinct elements of Zd, the notation i <lex j means that

either i1 < j1 or for some p in {2, 3, ..., d}, ip < jp and iq = jq for 1 ≤ q < p.

Note that the lexicographic order provides a total ordering of Zd.

Let the sets {V k
i : i ∈ Zd , k ∈ IN∗} be defined as follows:

V 1
i = {j ∈ Zd : j <lex i} ,

and for k ≥ 2 :

V k
i = V 1

i ∩ {j ∈ Zd : |i− j| ≥ k} where |i− j| = max
1≤k≤d

|ik − jk| .

For any Γ in Zd, let FΓ be the σ-algebra defined by: FΓ = σ(Xi : i ∈ Γ).

For any i in Zd, define the tail σ-algebras Fi,−∞ = ∩k∈IN∗FV k
i

(for brevity,

we write F−∞ = F0,−∞). Using the same argument as in Georgii (1988)

Proposition (14.9), the following result holds:

Proposition 1 Let X be a stationary random field. For any i in Zd, the

σ-algebra I is included in the P-completion of Fi,−∞.
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2.2 Mixing coefficients

Let (Ω,A,P) be a probability space. Given two σ-algebras U and V of A,

different measures of their dependence have been considered in the literature.

We are interested by two of them. The strong mixing coefficient of Rosenblatt

(1956) is defined by:

α(U ,V) = sup{|P(U)P(V )− P(U ∩ V )|; U ∈ U , V ∈ V}.

The φ-mixing coefficient has been introduced by Ibragimov (1962) and can

be defined by:

hi(U ,V) = sup{‖P(V |U)− P(V )‖∞ , V ∈ V}.

Between those two coefficients, the following relation holds:

2α(U ,V) ≤ φ(U ,V). (2.1)

Mixing coefficients for real random fields.

Let (RZd
,BZd

,P) be a real random field. The mixing coefficients we will use

in the sequel are defined by: if n ∈ IN, k, l ∈ IN ∪ {∞},

αk,l(n) = sup{α(FΓ1 ,FΓ2), |Γ1| ≤ k, |Γ2| ≤ l , d(Γ1, Γ2) ≥ n},

φk,l(n) = sup{φ(FΓ1 ,FΓ2), |Γ1| ≤ k, |Γ2| ≤ l , d(Γ1, Γ2) ≥ n},
where d(Γ1, Γ2) = min{|j − i| , i ∈ Γ1, j ∈ Γ2}. For more about the mixing

properties of random fields, see Doukhan (1994).

2.3 Toward a new central limit theorem for stationary

random fields

Let Γ be any subset of Zd . We denote by |Γ| the cardinality of this set, and

we introduce:

∂Γ = {i ∈ Γ : ∃j /∈ Γ such that |i− j| = 1}.

If Γ is a finite subset of Zd, SΓ denotes the partial sum of the random field

X over this set: SΓ =
∑

i∈Γ Xi. Throughout (Γn)n∈IN is a sequence of finite

subsets of Zd satisfying:

lim
n→+∞

|Γn| = +∞ and lim
n→+∞

|Γn|−1|∂Γn| = 0 . (2.2)
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The L2-ergodic theorem (see Georgii 1988) ensures that |Γn|−1SΓn converges

to E(X0|I) in L2. In order to prove a central limit theorem for |Γn|−1/2SΓn ,

it will be necessary to impose some conditions ensuring that E(X0|I) = 0.

Proposition 2 Let Λn = [−n, n]d ∩ Zd. Assumptions (a) and (b) are equiv-

alent:

(a) lim
n→+∞

|Λn|−1
∑

k∈Λn

Cov(X0, Xk) = 0 ; (b) E(X0|I) = 0 a.s.

The condition (a) is very weak, and is automatically realized as soon as

we make some assumption concerning the dependency of the variables. For

example, if we define, for all positive integers k and all i in Zd,

Ek(Xi) = E(Xi|FV k
i
) ,

then (a) holds if we suppose that the martingale-type condition E1(X0) = 0

is realized. However, in that case, the classical central limit theorem may

fail, for this kind of condition does not imply the ergodicity of the field.

More precisely, if d = 1, Eagleson (1975) has shown that the sequence

n−1/2Sn converges weakly to a mixture of gaussian law εE1/2(X2
0 |I), where

ε ∼ N (0, 1) and ε is independent of I. The fact that a single variable X0

appears through the conditional expectation with respect to I can be easily

understood. As a matter of fact, the martingale-type condition ensures that:

|Λn|−1E(S2
|Λn||I) = E(X2

0 |I) a.s.

In view of the martingale case, it is natural to think that the convergence

of |Λn|−1E(S2
|Λn||I) may be important to obtain a central limit theorem. This

leads us to consider the condition:

∑

k∈V 1
0

|XkE|k|(X0)| ∈ L1 , (2.3)

which implies the convergence of |Λn|−1E(S2
|Λn||I), as shown in the proposi-

tion below.

Proposition 3 If X satisfies (2.3), then E(X0|F−∞) = 0 almost surely.

Moreover:

∑

k∈Zd

|E(X0Xk|I)| ∈ L1 and lim
n→+∞

|Λn|−1E(S2
|Λn||I) =

∑

k∈Zd

E(X0Xk|I) a.s.
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Remark 1. If (i, j) is any element of (Zd)2 such that j <lex i, then we have

Fj,−∞ ⊂ Fi,−∞ and consequently E(Xi|Fj,−∞) = E(E(Xi|Fi,−∞)|Fj,−∞).

Now from Proposition 3 and the stationarity of X we infer that (1.2.3) imply

successively E(Xi|Fi,−∞) = 0 and E(Xi|Fj,−∞) = 0. Since I is included in

the P-completion of Fi,−∞, we also have E(Xi|I) = 0.

3 Central limit theorems

Throughout this section, (Xi)i∈Zd is a strictly stationary random field, with

E(X0) = 0 and E(X2
0 ) < +∞. (Γn)n∈IN∗ is a sequence of finite subsets of Zd

satisfying (2.2).

Now let us introduce the concept of stability (Rényi 1963), which enables

us to interchange norming in the central limit theorem.

Definition 1 Let (Yn)n∈IN be a sequence of real random variables, and let Y

be defined on some extension of the underlying probability space (Ω,A,P).

Let U be a σ-algebra of A. Then (Yn)n∈IN is said to converge U-stably to Y if

for any continuous bounded function ϕ and any bounded and U-measurable

variable Z, limn→+∞ E(ϕ(Yn)Z) = E(ϕ(Y )Z).

Theorem 1 Assume that condition (2.3) is satisfied, and set

η =
∑

k∈Zd

E(X0Xk|I) .

The following results hold:

(a) The random variable |Γn|−1/2SΓn converges I-stably to εη1/2, where ε is

a standard Gaussian independent of η.

(b) For any N in IN∗, set GN = {(i, j) ∈ Γn×Γn : |i− j| ≤ N}. Let ρn be

a sequence of positive integers satisfying:

lim
n→+∞

ρn = +∞ and lim
n→+∞

ρ3d
n E

(
X2

0 (1 ∧ |Γn|−1X2
0 )

)
= 0 . (3.1)

Then:

An = |Γn|−1 max


1,

∑

(i,j)∈Gρn

XiXj


 P−→ η .

As a direct consequence, we obtain the following corollary:
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Corollary 1 Assume that condition (2.3) is satisfied. Then, with the same

notations as in Theorem 1, (|Γn|−1/2SΓn , An) converges in distribution to

(εη1/2, η). Assume moreover that P(η > 0) = 1. Then (An|Γn|)−1/2SΓn

converges in distribution to ε.

Remark 2. Let us describe an important class of random fields which satis-

fies condition (1.2.3): let X and Y be two stationary centered random fields.

As in Jensen and Künsch (1994), we say that X is conditionally centered

with respect to Y if E(X0|Yi, i 6= 0) = 0 and X0 is σ(Yi, |i| ≤ K)-measurable

for some integer K. Since σ(Xi, i ∈ V k
0 ) is contained in σ(Yi, i 6= 0) for

k > K, it follows immediately that condition (1.2.3) is satisfied. This kind

of random fields has also been studied by Comets and Janžura (1995) in the

non-stationary case. They obtain a central limit theorem, assuming that the

random variables have uniformly bounded fourth moments.

It is rather interesting to compare conditional centering as it is defined

here with the notion of martingale-difference random fields considered by

Nahapetian (1992, 1995).

Corollary 1 gives an example of sequence whose limit is a Gaussian law,

by choosing a random norming. Situations like this one under which we can

obtain the asymptotic normality are of a special interest. Applying Proposi-

tion 2, the next corollary gives a condition which ensures the degeneracy of

the random variable η.

Corollary 2 Let N be a positive number, and set: XN
i = (Xi ∧N) ∨ (−N).

Assume that condition (2.3) is fulfilled. Assume moreover that for any k in

Zd, and any positive integer N :

lim
n→+∞

|Λn|−1
∑
i∈Λn

Cov(X0X
N
k , XiX

N
i+k) = 0 (3.2)

Then Theorem 1 holds with: η = σ2 =
∑

k∈Zd E(X0Xk) .

Remark 3. Assume that the random variables Xi have finite fourth mo-

ments, then we do not need any truncation. In view of Proposition 2, the

condition which ensures the degeneracy of η can be replaced by:

lim
n→+∞

|Λn|−1
∑
i∈Λn

Cov(X0Xk, XiXi+k) = 0 for any k in Zd .

As a consequence of Theorem 1, we obtain central limit theorems under

α-mixing or φ-mixing assumptions.
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Corollary 3 Let us consider the two following assumptions:

∑

k∈Zd

∫ α1,∞(|k|)

0

Q2
X0

(u)du < ∞ , (3.3)

where QX0 denotes the cadlag inverse of the function HX0: t → P(|X0| > t),

and

∑

k∈Zd

φ∞,1(|k|) < ∞ . (3.4)

The following results hold:

(a) (3.3) implies (2.3), and hence also Theorem 1(a)(b).

(b) Under condition (3.4) Theorem 1(a) holds.

(c) Assume that (3.3) or (3.4) is realized, and moreover that α2,2(k) tends

to zero as k tends to infinity. Then, with the same notations as in

Theorem 1, η = σ2 =
∑

k∈Zd E(X0Xk) a.s.

Remark 4. Bolthausen (1982) proves a central limit theorem for stationary

and α-mixing random fields (see Guyon (1993) for a non-stationary version

of this theorem), but he fails to make assumptions on α1,∞ only (see Remark

1 of his paper). To compare our result with Bolthausen’s, let us note that if

E(|X0|2+δ) < ∞ for some δ > 0, then the condition

∞∑
m=1

md−1α
δ/2+δ
1,∞ (m) < ∞

is more restrictive than condition (3.3).

We remark that in Bolthausen’s article, the conditional expectation with

respect to the σ-algebra I does not appear. Indeed α2,2(n) is required to

be asymptoticaly negligible, and this implies the degeneracy of η. In fact,

one can see that this condition on α2,2(n) is stronger than assumption of

Corollary 2, since it implies that σ(X0, Xk) is independent of I for any k in

Zd.

To be complete, let us state the multivariate version of Theorem 1.
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Theorem 2 Let (Γi,n)i∈[1..q] be a sequence of disjoint subsets of Zd. Assume

that condition (2.3) is fulfilled. Then:




SΓ1,n

|Γ1,n|1/2

.

.

.
SΓq,n

|Γq,n|1/2




D−→




ε1η
1/2

.

.

.

εqη
1/2




where (εi)i∈[1..q] ∼ N (0, Id) and (εi)i∈[1..q] is independent of η.

4 Proofs of propositions and corollaries

Proof of Proposition 2. Since E(X0) = 0 the condition (a) of Proposition 2

can be expressed as follows:

lim
n→+∞

|Λn|−1E(X0SΛn) = 0 .

By the L2-ergodic theorem, we infer that condition (a) is equivalent to

E(X0E(X0|I)) = 0, and the result easily follows.

Proof of Proposition 3.

We start by proving that E(X0|F−∞) = 0 a.s.

We denote by E−∞ the conditional expectation with respect to F−∞, and by

EI the conditional expectation with respect to I. By the backward martin-

gale convergence theorem, we know that limn→+∞ ‖En(X0)−E−∞(X0)‖2 = 0.

Now, for any k in V 1
0 :

E(|XkE−∞(X0)|) ≤ E(|XkE|k|(X0)|) + ‖X0‖2‖E|k|(X0)− E−∞(X0)‖2,

hence E|XkE−∞(X0)| converges to 0 as |k| → +∞. Let us introduce the set

Λ1
n = Λn ∩ V 1

0 . Applying the L2-ergodic theorem to the random variables

|Xk|, and the Cesaro mean convergence theorem, we infer that:

E(EI(|X0|)|E−∞(X0)|) = lim
n→+∞

|Λ1
n|−1

∑

i∈Λ1
n

E|XiE−∞(X0)| = 0 .

By Proposition 1 and Jensen’s inequality,

EI(|X0|) ≥ EI(E−∞(|X0|)) ≥ EI(|E−∞(X0)|) a.s.
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Hence

E(EI(|X0|)|E−∞(X0)|) ≥ E(|E−∞(X0)|EI(|E−∞(X0)|)) ,

which ensures that EI(|E−∞(X0)|) = 0 a.s., and finally E−∞(X0) = 0 a.s.

The second point is to prove that
∑

k∈Zd

E(|E(X0Xk|I)|) < +∞ .

By Proposition 1 and the fact that F−∞ ⊂ FV k
0
, we have, for all k in V 1

0 :

E(|E(X0Xk|I)|) ≤ E(|E(X0Xk|F−∞)|) ≤ E(|XkE|k|(X0)|) .

Since E(X0Xk|I) = E(X0X−k|I), we infer that:
∑

k∈Zd

E(|E(X0Xk|I)|) ≤ E(X2
0 ) + 2

∑

k∈V 1
0

E(|E(X0Xk|I)|)

≤ E(X2
0 ) + 2

∑

k∈V 1
0

E(|XkE|k|(X0)|) < +∞ .

The last point is to prove that

lim
n→+∞

|Λn|−1E(S2
Λn
|I) =

∑

k∈Zd

E(X0Xk|I) .

For any subset Γ of Zd and any k in Zd, let Γ − k = {i − k, i ∈ Γ}. By

stationarity of the random field:

|Λn|−1E(S2
|Λn||I) =

∑

k∈Λ2n

|Λn|−1|Λn ∩ (Λn − k)|E(X0Xk|I) .

Now

|Λn|−1|Λn ∩ (Λn − k)||E(X0Xk|I)| ≤ |E(X0Xk|I)| ,
and ∑

k∈Zd

|E(X0Xk|I)| < +∞ a.s.

Since limn→+∞ |Λn|−1|Λn ∩ (Λn − k)| = 1, we may apply the dominated

convergence theorem, yielding:

lim
n→+∞

|Λn|−1E(S2
|Λn||I) =

∑

k∈Zd

E(X0Xk|I) a.s.

Hence the result follows.

Proof of Corollary 1. Corollary 1 is an immediate consequence of the follow-

ing lemma:
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Lemma 1 Let Xn and Yn be two sequences of real random variables defined

on (Ω,A,P). Let U be a σ-algebra of A. Assume that Xn converges U-stably

to X and that Yn converges in probability to some U-measurable random

variable Y .Then (Xn, Yn) converges in distribution to (X, Y ).

Proof. Let f and g be two continuous bounded functions, and assume more-

over that g is 1-Lipchitz. Clearly:

|E(f(Xn)g(Yn)− f(X)g(Y ))| ≤ ‖f‖∞E|g(Yn)− g(Y )|
+ |E(g(Y )[f(Xn)− f(X)])| .

The stability of the convergence of Xn to X ensures that the second term of

the right hand inequality is asymptotically negligible, and the convergence

in probability of Yn to Y together with the fact that g is 1-Lipchitz im-

ply that limn→+∞ E|g(Yn) − g(Y )| = 0. Hence E(f(Xn)g(Yn)) converges to

E(f(X)g(Y )) and the result follows.

Proof of Corollary 2. By Proposition 2 and assumption (3.2) we infer that

E(X0X
N
k |I) = E(X0X

N
k ) a.s. Now, applying the dominated convergence the-

orem, we get that:

lim
N→+∞

E(X0X
N
k |I) = E(X0Xk|I) a.s. and lim

N→+∞
E(X0X

N
k ) = E(X0Xk) .

Finally for all k in Zd: E(X0Xk|I) = E(X0Xk) almost surely. Since (2.3) is

realized, we infer that:

η = σ2 =
∑

k∈Zd

E(X0Xk) and |Γn|−1/2SΓn

D−→ N (0, σ2) .

Proof of Corollary 3. First, we note that (c) follows immediately from Corol-

lary 2.

To prove (a), let us remark that:

E|XkE|k|(X0)| = Cov(|Xk|(1IE|k|(X0)≥0 − 1IE|k|(X0)<0), X0) .

By Theorem 1.1 in Rio (1993), it follows that

E|XkE|k|(X0)| ≤ 4

∫ α1,∞(|k|)

0

Q2
X0

(u)du ,

which proves (a).

To prove (b), we need a conditional version of Peligrad’s inequality (1983).

A complete proof of this inequality will be done in Annexe.
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Proposition 4 Let (Ω,A,P) be a probability space and U ,V, and F three

σ-algebras of A such that U and V are independent of F . Let X and Y be two

random variables from (Ω,A,P) to R such that X is U-measurable in Lp(P),

and Y is V-measurable in Lq(P), where p and q are two positive numbers with

p−1 + q−1 = 1. We define Cov(X, Y |F) = E(XY |F)− E(X)E(Y ). Then:

|Cov(X, Y |F)| ≤ 2φ1/p(F ∨ U ,V)φ1/q(F ∨ V ,U)‖X‖p‖Y ‖q a.s.

Now, to prove the asymptotic normality, we apply the truncation technique

as in Ibragimov and Linnik (1971). Using the same notation as in Corollary

2, let XN
k = (Xk ∧ N) ∨ (−N), and X̃N

k = Xk − XN
k . We denote by SN

Γn

the sum of the new centered field XN − E(XN) over the set Γn and we set

S̃N
Γn

= SΓn − SN
Γn

. By assumption the equation (1.3.4):
∑

k∈Zd φ∞,1(|k|) < ∞
is satisfied. Applying (1.2.1), 2α1,∞(|k|) ≤ φ∞,1(|k|) and (1.3.4) implies that:∑

k∈Zd α1,∞(|k|) < ∞. Now, we can apply Corollary 3(a) to the random field

XN . As a matter of fact, the definition of QXN
0 −E(XN

0 ) as the inverse cadlag

of the tail function HXN
0 −E(XN

0 ) : t → P(|XN
0 − E(XN

0 )| > t), ensures that

QXN
0 −E(XN

0 ) ≤ 2N . Therefore:

∑

k∈Zd

∫ α1,∞(|k|)

0

Q2
XN

0 −E(XN
0 )(u)du ≤ 4N2

∑

k∈Zd

α1,∞(|k|) < ∞

This means that (1.3.3) is realized, and Corollary 3(a) ensures that the ran-

dom field XN − E(XN) satisfies condition (2.3). Consequently, the series∑
k∈Zd Cov(XN

0 , XN
k |I) converges in L1. Set ηN =

∑
k∈Zd Cov(XN

0 , XN
k |I).

Let Z be any bounded I-measurable random variable, and ϕ be a bounded

1-Lipschitz function. To obtain the theorem, we have to prove that, under

(3.4),

lim
n→+∞

E(Z[ϕ(|Γn|−1/2SΓn)− ϕ(εη1/2)]) = 0 .

Clearly:

E(Z[ϕ(|Γn|−1/2SΓn)− ϕ(εη1/2)]) = E(Z[ϕ(|Γn|−1/2SΓn)− ϕ(|Γn|−1/2SN
Γn

)])

+ E(Z[ϕ(|Γn|−1/2SN
Γn

)− ϕ(εη
1/2
N )])

+ E(Z[ϕ(εη
1/2
N )− ϕ(εη1/2)]) .

By Theorem 1(a), the second term of the right hand expression converges to

0 as n → +∞. Let us now study the first term of the right hand expression:

|E(Z[ϕ(|Γn|−1/2SΓn)− ϕ(|Γn|−1/2SN
Γn

)])| ≤ ‖Z‖∞|Γn|−1/2E1/2([S̃N
Γn

]2) .
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Now, by Proposition 4:

|Γn|−1E([S̃N
Γn

]2) ≤ 2‖X̃N
0 ‖2

2

∑

k∈Zd

φ∞,1(|k|) .

Since ‖X̃N
0 ‖2 converges to zero as N tends to infinity, the first term of the

right hand expression can be chosen as small as we wish. Now, to ensure

that the third term of the right hand expression is asymptotically negligible,

it is enough to prove that limN→+∞ηN = η almost surely. The dominated

convergence theorem implies that:

lim
N→+∞

Cov(XN
0 , XN

k |I) = E(X0Xk|I) a.s.

Let us remark that the convergence of φ∞,1(n) to zero implies that for all k

in Zd, σ(Xk) is independent of F−∞. Therefore, applying Proposition 1 and

Proposition 4:

Cov(XN
0 , XN

k |I) ≤ 2‖X0‖2
2φ∞,1(|k|) a.s.

Since (3.4) is realized, we may apply once more the dominated convergence

theorem yielding:

lim
N→+∞

∑

k∈Zd

Cov(XN
0 , XN

k |I) =
∑

k∈Zd

E(X0Xk|I) = η a.s.

This ends the proof of (b).

5 Proof of the main result

In this section we prove Theorem 1(a). The two main references concerning

this part of Theorem 1 are Ibragimov (1963) and Rio (1995). From the

first article, which deals with stationary and ergodic martingale difference

sequences, we get the structure of our proof. From the second one we borrow

a decomposition which can be adapted to our case although we do not use

mixing assumptions.

Notations 1. Let f be a one to one map from [1, N ]∩IN∗ to a finite subset of

Zd, and (ξi)i∈Zd a real random field. For all integer k in [1, N ] we introduce:

Sf(k)(ξ) =
k∑

i=1

ξf(i) and Sc
f(k)(ξ) =

N∑

i=k

ξf(i) .
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with the convention: Sf(0)(ξ) = Sc
f(N+1)(ξ) = 0.

Let Γ be a bounded subset of Zd. To describe this set, we define the one

to one map fΓ from [1, |Γ|]∩ IN∗ to Γ by: fΓ is the unique function such that

for 1 ≤ m < n ≤ |Γ|, f(m) <lex f(n).

Let Γn be a sequence of finite subsets of Zd, satisfying (2.2). We introduce

the sequence of one to one maps fΓn . In the sequel, we will omit the index

Γn.

Notations 2. From now on, we consider a strictly stationary random field

(Xi)i∈Zd which satisfies the condition (2.3) and (εi)i∈Zd an i.i.d. random

field independent of X, such that ε0 ∼ N (0, 1) (a classical argument ensures

the existence of two such fields). We introduce the two sequences of fields:

Y n
i = |Γn|−1/2Xi and γn

i = |Γn|−1/2εiη
1/2. In the sequel, we will omit the

index n.

Notations 3. Let h be any function from R to R. For 0 ≤ k < l ≤ |Γn|+ 1,

we introduce: hk,l(Y ) = h(Sf(k)(Y ) + Sc
f(l)(γ)) .

With the above convention we have that hk,|Γn|+1(Y ) = h(Sf(k)(Y )) and

also h0,l(Y ) = h(Sc
f(l)(γ)). For sake of brevity, we will often write hk,l instead

of hk,l(Y ).

We denote by B4
1(R) the unit ball of C4

b (R): h belongs to B4
1(R) if and

only if it belongs to C4(R) and satisfies max0≤i≤4 ‖h(i)‖∞ ≤ 1.

5.1 Lindeberg’s method

Let Z be a I-measurable random variable bounded by 1. We shall prove

that, under the assumptions of Theorem 1, for all h in B4
1(R):

lim
n→+∞

E(Zh(|Γn|−1/2SΓn)) = E(Zh(εη1/2)) . (5.1)

We use Lindeberg’s decomposition:

E(Z[h(|Γn|−1/2SΓn)− h(εη1/2)]) = E(Z[h|Γn|,|Γn|+1 − h0,1]) (5.2)

=

|Γn|∑

k=1

E(Z[hk,k+1 − hk−1,k]) .

Now:

hk,k+1 − hk−1,k = hk,k+1 − hk−1,k+1 + hk−1,k+1 − hk−1,k .
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Applying Taylor’s formula we get that:




hk,k+1 − hk−1,k+1 = Yf(k)h
′
k−1,k+1 + 1

2
Y 2

f(k)h
′′
k−1,k+1 + Rk

hk−1,k+1 − hk−1,k = −γf(k)h
′
k−1,k+1 − 1

2
γ2

f(k)h
′′
k−1,k+1 + rk

where |Rk| ≤ Y 2
f(k)(1 ∧ |Yf(k)|) and |rk| ≤ γ2

f(k)(1 ∧ |γf(k)|).
Since (Y, (εi)i6=f(k)) is independent of εf(k), it follows that

E(Zγf(k)h
′
k−1,k+1) = 0 and E(Zγ2

f(k)h
′′
k−1,k+1) = E(Z|Γn|−1ηh′′k−1,k+1) .

We obtain:

E(Zh(|Γn|−1/2SΓn))− E(Zh(εη1/2)) =

|Γn|∑

k=1

(
E(Z(Yf(k)h

′
k−1,k+1)) + E(Z(Y 2

f(k) −
η

|Γn|)
h′′k−1,k+1

2
) + E(Rk + rk)

)
.

(5.3)

Arguing as in Rio (1995), it is easily proven that

lim
n→+∞

|Γn|∑

k=1

E(|Rk|+ |rk|) = 0 .

On the other hand, if we define ηN =
∑

k∈ΛN−1
E(X0Xk|I), the upper

bound E|η− ηN | ≤ 2
∑

k∈V N
0
E|E(X0Xk|I)| holds for any positive integer N .

Hence according to condition (2.3), limn→+∞ E|η−ηN | = 0, and consequently

Theorem 1(a) will be proved if we show that:

lim
N→+∞

lim sup
n→+∞

|Γn|∑

k=1

E(Z(Yf(k)h
′
k−1,k+1)) + E(Z(Y 2

f(k) −
ηN

|Γn|)
h′′k−1,k+1

2
) = 0 .

(5.4)

5.2 First reduction

In this section, we focus on
∑|Γn|

k=1 E(Z(Yf(k)h
′
k−1,k+1)). Since Y does not sat-

isfy a martingale type condition, this term has a non negligible contribution.

Notations 4. For all N in IN∗ and all integer k in [1, |Γn|], we define:

EN
k = f([1, k] ∩ IN∗) ∩ V N

f(k) and SN
f(k)(Y ) =

∑

i∈EN
k

Yi .
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For any function g from R to R, we define: gN
k−1,l = g(SN

f(k)(Y )+Sc
f(l)(γ)).

(Afterwards, we shall apply this notation to the successive derivatives of the

function h.)

Our aim in this section is to show that:

lim
N→+∞

lim sup
n→+∞

|Γn|∑

k=1

E(Z(Yf(k)h
′
k−1,k+1 − Yf(k)(Sf(k−1) − SN

f(k))h
′′
k−1,k+1) = 0 .

(5.5)

First we use the decomposition:

Yf(k)h
′
k−1,k+1 = Yf(k)h

′N
k−1,k+1 + Yf(k)(h

′
k−1,k+1 − h′Nk−1,k+1) .

We consider a one to one map m from [1, |EN
k |] ∩ IN∗ to EN

k and such that

|m(i)−f(k)| ≤ |m(i−1)−f(k)|. This choice of m ensures that Sm(i)(Y ) and

Sm(i−1)(Y ) are F
V
|m(i)−f(k)|
f(k)

-measurable. From Remark 1 and the fact that γ

is independant of Y , we obtain

E(ZYf(k)h
′(Sc

f(k+1)(γ))) = E(h′(Sc
f(k+1)(γ)))E(ZE(Yf(k)|I)) = 0 .

Therefore:

|E(ZYf(k)h
′N
k−1,k+1)| =

|
|EN

k |∑
i=1

E(ZYf(k)[h
′(Sm(i)(Y ) + Sc

f(k+1)(γ))− h′(Sm(i−1)(Y ) + Sc
f(k+1)(γ))])| .

Since Sm(i)(Y ) and Sm(i−1)(Y ) are F
V
|m(i)−f(k)|
f(k)

-measurable, we can take the

conditional expectation of Yf(k) with respect to F
V
|m(i)−f(k)|
f(k)

in the right hand

side of the above equation. On the other hand the function h′ is 1-Lipschitz

(see Notations 3), wich implies that

|h′(Sm(i)(Y ) + Sc
f(k+1)(γ))− h′(Sm(i−1)(Y ) + Sc

f(k+1)(γ))| ≤ |Ym(i)|.

Consequently, the term

|E(ZYf(k)[h
′(Sm(i)(Y ) + Sc

f(k+1)(γ))− h′(Sm(i−1)(Y ) + Sc
f(k+1)(γ))])|

is bounded by

E|Ym(i)E|m(i)−f(k)|(Yf(k))| ,
and

|E(ZYf(k)h
′N
k−1,k+1)| ≤

|EN
k |∑

i=1

E|Ym(i)E|m(i)−f(k)|(Yf(k))|.
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Hence

|
|Γn|∑

k=1

E(ZYf(k)h
′N
k−1,k+1)| ≤

|Γn|∑

k=1

|EN
k |∑

i=1

|Γn|−1E|Xm(i)E|m(i)−f(k)|(Xf(k))|

≤
∑

k∈V N
0

E|XkE|k|(X0)| .

Since (1.2.3) is realized, this last term is as small as we wish by choosing N

large enough.

Applying again Taylor’s formula, it remains to consider

Yf(k)(h
′
k−1,k+1 − h′Nk−1,k+1) = Yf(k)(Sf(k−1) − SN

f(k))h
′′
k−1,k+1 + R′

k ,

where |R′
k| ≤ 2|Yf(k)(Sf(k−1) − SN

f(k))(1 ∧ |Sf(k−1) − SN
f(k)|)|. It follows that

|Γn|∑

k=1

E|R′(k)| ≤ 2

|Γn|∑

k=1

|Γn|−1E

(
|X0|(

∑
i∈ΛN

|Xi|)(1 ∧ |Γn|−1/2
∑
i∈ΛN

|Xi|)
)

≤ 2E

(
|X0|(

∑
i∈ΛN

|Xi|)(1 ∧ |Γn|−1/2
∑
i∈ΛN

|Xi|)
)

.

By the dominated convergence theorem, this last term converges to zero as

n tends to infinity, and (5.5) follows.

5.3 The second order terms

It remains to control

W1 = E


Z

|Γn|∑

k=1

h′′k−1,k+1

(
Y 2

f(k)

2
+ Yf(k)(Sf(k−1) − SN

f(k))−
ηN

2|Γn|

)
 . (5.6)

Notations 5. We introduce the two sets:

ΓN
n = {i ∈ Γn : d({i}, ∂Γn) ≥ N} and IN

n = {1 ≤ i ≤ |Γn| : f(i) ∈ ΓN
n } ,

and the function g from RZd
to R such that:

g(X) = X2
0 +

∑

i∈V 1
0 ∩ΛN−1

2X0Xi .

For k in [1, |Γn|], we set: DN
k = ηN − g ◦ Tf(k)(X).
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By definition of g and of the set IN
n , we have, for any k in IN

n :

g ◦ Tf(k)(X) = X2
f(k) + 2Xf(k)(Sf(k−1)(X)− SN

f(k)(X)) .

Therefore, for k in IN
n :

|Γn|−1DN
k = |Γn|−1ηN − Y 2

f(k) − 2Yf(k)(Sf(k−1)(Y )− SN
f(k)(Y )) .

The assumption (2.2) ensures that limn→+∞ |Γn|−1|IN
n | = 1. Hence, it re-

mains to prove that

lim
N→+∞

lim sup
n→+∞

E


Z

|Γn|∑

k=1

|Γn|−1h′′k−1,k+1D
N
k


 = 0 . (5.7)

5.4 Conditional expectation with respect to the tail

σ-algebras

Our aim in this section is to replace DN
k by E(DN

k |Ff(k),−∞). We introduce

the expression:

HN
n =

|Γn|∑

k=1

E
(

Z

|Γn|h
′′
k−1,k+1[g ◦ Tf(k)(X)− E(g ◦ Tf(k)(X)|Ff(k),−∞)]

)
.

For the sake of brevity, we have written h′′k−1,k+1 instead of h′′k−1,k+1(Y ). Using

the stationarity of the field we get that

HN
n =

|Γn|∑

k=1

E
(

Z

|Γn|(h
′′
k−1,k+1 ◦ T−f(k))(Y )[g(X)− E(g(X)|F−∞)]

)
.

For any positive integer p, we decompose HN
n in two parts:

HN
n =

|Γn|∑

k=1

J1
k (p) +

|Γn|∑

k=1

J2
k (p) ,

where

J1
k (p) = E

(
Z

|Γn|(h
′′p
k−1,k+1 ◦ T−f(k))(Y )[g(X)− E(g(X)|F−∞)]

)

and J2
k (p) is equal to

E
(

Z

|Γn| [h
′′
k−1,k+1 ◦ T−f(k) − h′′pk−1,k+1 ◦ T−f(k)](Y )[g(X)− E(g(X)|F−∞)]

)
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From the definition of h′′pk−1,k+1 (cf. notations 4), we infer that the vari-

able h′′pk−1,k+1 ◦ T−f(k)(Y ) is FV p
0
-measurable. Therefore, we can take the

conditional expectation of g(X)− E(g(X)|F−∞) with respect to FV k
0

in the

expression of J1
k (p). Now, the backward martingale theorem implies that

lim
p→+∞

E|E(g(X)|FV p
0
)− E(g(X)|F−∞)| = 0 ,

and consequently,

lim
p→+∞

lim sup
n→+∞

|
|Γn|∑

k=1

J1
k (p)| = 0 .

On the other hand,

|
|Γn|∑

k=1

Jk
2 (p)| ≤ E





2 ∧

∑

|i|<p

|Xi|
|Γn|1/2


 |g(X)− E(g(X)|F−∞)|


 .

Hence, applying the dominated convergence theorem, we conclude that HN
n

tends to zero as n tends to infinity. It remains to consider:

W2 = E


Z

|Γn|∑

k=1

h′′k−1,k+1|Γn|−1E(DN
k |Ff(k),−∞)


 . (5.8)

5.5 Truncation

Notations 6. For any integer k in [1, |Γn|], and any M in R+ we introduce

the two sets

BN
k (M) = E(DN

k |Ff(k),−∞)1I|E(DN
k |Ff(k),−∞)|≤M and

B̄N
k (M) = E(DN

k |Ff(k),−∞)−BN
k (M) .

The stationarity of the field ensures that E|B̄N
k (M)| = E|B̄N

1 (M)|, for

any k in [1, |Γn|]. Now, applying the dominated convergence theorem, we

have: limM→+∞ E|B̄N
1 (M)| = 0. It follows that

lim
M→+∞

|Γn|∑

k=1

E
(
h′′k−1,k+1|Γn|−1B̄N

k (M)
)

= 0 .

Therefore, instead of W2 it remains to consider:

W3 = E


Z

|Γn|∑

k=1

h′′k−1,k+1|Γn|−1BN
k (M)


 . (5.9)
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5.6 An ergodic lemma

The next result is the central point of our proof.

Lemma 2 For all M in R+, we introduce

βN(M) = E([ηN − E(g(X)|F−∞)]1I|ηN−E(g(X)|F−∞)|≤M |I) .

Then

lim
M→+∞

βN(M) = 0 a.s. and lim
n→+∞

E

∣∣∣∣∣∣
βN(M)− 1

|Γn|
|Γn|∑

k=1

BN
k (M)

∣∣∣∣∣∣
= 0 .

Proof of Lemma 2 Let

u(X) = [ηN − E(g(X)|F−∞)]1I|ηN−E(g(X)|F−∞)|≤M .

Using the function u, we write βN(M) = E(u(X)|I). The fact that βN(M)

tends to zero as M tends to infinity follows from the dominated convergence

theorem. As a matter of fact

lim
M→+∞

u(X) = ηN − E(g(X)|F−∞) ,

and u(X) is bounded by |ηN − E(g(X)|F−∞)|, which belongs to L1. This

implies that:

lim
M→+∞

βN(M) = E(ηN − E(g(X)|F−∞)|I) a.s.

Since I is included in the P-completion of F−∞ (see Proposition 1), and

bearing in mind that ηN is I-measurable, it follows that

lim
M→+∞

βN(M) = ηN − E(g(X)|I) a.s.

By stationarity of the random field, E(X0Xk|I) = E(X0X−k|I), which im-

plies that

E(g(X)|I) =
∑

k∈ΛN−1

E(X0Xk|I) = ηN

and the result follows.

To prove the second point of Lemma 2, we apply the L1-ergodic theorem.

First note that

BN
k (M) = [ηN − E(g ◦ Tf(k)(X)|Ff(k),−∞)]1I|ηN−E(g◦Tf(k)(X)|Ff(k),−∞)|≤M

= u ◦ Tf(k)(X) .
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Consequently
|Γn|∑

k=1

BN
k (M) =

∑
i∈Γn

u ◦ Ti(X) ,

and the L1-ergodic theorem ensures that |Γn|−1
∑

i∈Γn
u ◦Ti(X) converges in

L1 to E(u(X)|I). This means exactly that

lim
n→+∞

E

∣∣∣∣∣∣
βN(M)− 1

|Γn|
|Γn|∑

k=1

BN
k (M)

∣∣∣∣∣∣
= 0 ,

and the proof of Lemma 2 is complete.

As a direct application of this lemma, we see that:
∣∣∣∣∣∣
E


Z

|Γn|∑

k=1

h′′k−1,k+1

βN(M)

|Γn|




∣∣∣∣∣∣
≤ E|βN(M)| ,

is as small as we wish, by choosing M large enough. So, instead of W3, we

consider:

W4 = E


Z

|Γn|∑

k=1

h′′k−1,k+1

[BN
k (M)− βN(M)]

|Γn|


 . (5.10)

5.7 Abel transformation

W4 = E



|Γn|∑

k=1

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
Z(h′′k−1,k+1 − h′′k,k+2)




+ E


Zh′′|Γn|,|Γn|+2

|Γn|∑

k=1

[BN
k (M)− βN(M)]

|Γn|


 .

Now
∣∣∣∣∣∣
E


Zh′′|Γn|,|Γn|+2

|Γn|∑

k=1

[BN
k (M)− βN(M)]

|Γn|




∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣
βN(M)− 1

|Γn|
|Γn|∑

k=1

BN
k (M)

∣∣∣∣∣∣
.

Then, applying Lemma 2, we get that:

lim
n→+∞

∣∣∣∣∣∣
E


Zh′′|Γn|,|Γn|+2

|Γn|∑

k=1

[BN
k (M)− βN(M)]

|Γn|




∣∣∣∣∣∣
= 0 .
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Therefore it remains to prove that, for any positive integer N and any positive

real M ,

lim
n→+∞

E



|Γn|∑

k=1

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
Z(h′′k−1,k+1 − h′′k,k+2)


 = 0 . (5.11)

5.8 Last reductions

We use the same decomposition as in Section 5.1:

h′′k,k+2 − h′′k−1,k+1 = h′′k,k+2 − h′′k,k+1 + h′′k,k+1 − h′′k−1,k+1 .

Applying Taylor’s formula:
{

h′′k,k+2 − h′′k,k+1 = −γf(k+1)h
′′′
k,k+2 + sk

h′′k,k+1 − h′′k−1,k+1 = Yf(k)h
′′′
k−1,k+1 + Sk

where |sk| ≤ γ2
f(k+1) and |Sk| ≤ Y 2

f(k). To examine the remainder terms, we

consider:

E



|Γn|∑

k=1

1

|Γn|

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
ZX2

f(k)


 .

The definition of BN
i (M) and of βN(M) enables us to write, for all integer k

in [1, |Γn|],
k∑

i=1

|BN
i (M)− βN(M)| ≤ 2M |Γn| .

Therefore:

E

∣∣∣∣∣∣

|Γn|∑

k=1

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
ZX2

f(k)1I|Xf(k)|>K

|Γn|

∣∣∣∣∣∣
≤ 2ME(X2

01I|X0|>K) ,

and, applying the dominated convergence theorem, this last term is as small

as we wish by choosing K large enough. Now, for all K in R+, Lemma 2

ensures that:

lim
n→+∞

E



|Γn|∑

k=1

1

|Γn|

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
ZX2

f(k)1I|Xf(k)|≤K


 = 0 .

So, we have proved that

lim
n→+∞

E



|Γn|∑

k=1

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
ZSk


 = 0 .
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In the same way, we obtain that

lim
n→+∞

E



|Γn|∑

k=1

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
Zsk


 = 0 .

Moreover, since (X, (εi)i6=f(k+1)) is independent of εf(k+1) we have:

E

((
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
γf(k+1)Zh′′′k,k+2

)
= 0 .

Finally, it remains to consider:

W5 = E



|Γn|∑

k=1

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
ZYf(k)h

′′′
k−1,k+1)


 . (5.12)

Let p be a fixed positive integer. Since h′′′ is 1-Lipschitz, we have the upper

bound |h′′′k−1,k+1 − h′′′pk−1,k+1| ≤ |Sf(k−1)(Y ) − Sp
f(k)(Y )|. Now, we can apply

the same truncation argument as before: first we choose the level of our

truncation by applying the dominated convergence theorem, and then we

use Lemma 2. So, it follows that

lim
n→+∞

E



|Γn|∑

k=1

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
ZYf(k)(h

′′′
k−1,k+1 − h′′′pk−1,k+1))


 = 0 .

Therefore, to prove Theorem 1(a) it is enough to show that:

lim
p→+∞

lim sup
n→+∞

E



|Γn|∑

k=1

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
ZYf(k)h

′′′p
k−1,k+1)


 = 0 .

(5.13)

we consider a one to one map m from [1, |Ep
k |] ∩ IN∗ to Ep

k and such that

|m(i) − f(k)| ≤ |m(i − 1) − f(k)|. Now, we use the same argument as in

Section 1.5.2:

h′′′pk−1,k+1 − h′′′(Sc
f(k)(γ)) =

|Ep
k |∑

i=1

h′′′(Sm(i)(Y ) + Sc
f(k)(γ))− h′′′(Sm(i−1)(Y ) + Sc

f(k)(γ)) .

Here, recall that BN
i (M) is Ff(i),−∞-measurable and βN(M) is I-measurable.

From Remark 1 of Proposition 3, we have the equalities: E(Xf(k)|I) = 0,
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E(Xf(k)|Ff(k),−∞) = 0 and E(Xf(k)|Ff(i),−∞) = 0 for any positive integer i

such that i < k (which implies that f(i) <lex f(k) by definition of the map

f). Consequently, for any positive integer i such that i ≤ k, we have:

E
(

[BN
i (M)− βN(M)]

|Γn| Z
Xf(k)

|Γn|1/2
h′′′(Sc

f(k)(γ))

)
= 0 .

Therefore, using the conditional expectation, we find:

E



|Γn|∑

k=1

(
k∑

i=1

[BN
i (M)− βN(M)]

|Γn|

)
ZYf(k)h

′′′p
k−1,k+1)




≤ 2M

|Γn|∑

k=1

|Ep
k |∑

i=1

E| 1

|Γn|Xm(i)E|m(i)−f(k)|(Xf(k))|

≤ 2M
∑

k∈V p
0

E|XkE|k|(X0)| .

Since (2.3) is realized the last term is as small as we wish, by choosing p large

enough. Hence (5.11) holds, which ends up the control of W4.

Finally we have proved (5.1), and the proof of Theorem 1(a) is complete.

6 End of the proof of Theorem 1

In this section we prove Theorem 1(b). Obviously, instead of An, we can

consider:

A′
n = |Γn|−1

∑

(i,j)∈Gρn

XiXj .

So we have to prove that under conditions (2.3) and (3.1), A′
n is a consistent

estimator of η.

For any positive integer N , put:

AN
n =

1

|Γn|
∑

(i,j)∈GN

XiXj and ηN+1 =
∑

k∈ΛN

E(X0Xk|I) .

First we need to prove that AN
n is a consistent estimator of ηN+1. Clearly:

AN
n =

∑

k∈ΛN

1

|Γn|


 ∑

i∈Γn∩(Γn−k)

XiXi+k


 .

The assumption (2.2) implies that limn→+∞ |Γn|−1|Γn ∩ (Γn − k)| = 1, and

the L1-ergodic theorem enables us to conclude that AN
n converges to ηN+1 in

L1.
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The second step is to compare A′
n to AN

n . Since E|η − ηN+1| is asymp-

totically negligible, the consistency of A′
n will be established if we prove that

for any positive number δ:

lim
N→+∞

lim sup
n→+∞

P(|A′
n − AN

n | > δ) = 0 . (6.1)

In order to prove (6.1) we shall adapt Lindeberg’s method to our context.

Notation 7. Let the function ϕ be defined by ϕ′(0) = ϕ(0) = 0 and

ϕ′′(t) = (1− |t|)1I|t|<1.

To study P(|A′
n − AN

n | > δ) we use the function ϕ. Since ϕ is an even

function, increasing from R+ to R+, (6.1) follows from the assertion

lim
N→+∞

lim sup
n→+∞

E(ϕ(A′
n − AN

n )) = 0 . (6.2)

Notations 8. For i in Zd let us introduce the sets

Bn
i (N) = {j ∈ V 1

i ∩ Γn : N < |j − i| ≤ ρn} .

Bearing in mind notations 1, we consider the one to one maps f = fΓn and

gk = fBn
f(k)

(N).

For any integer j in [1, |Γn|] and any integer l in [0, |Bn
f(j)(N)|] , we define:

∆j,l =

(
j−1⋃

k=1

{k} × (
[0, |Bn

f(k)(N)|] ∩ IN∗)
)⋃

({j} × ([0, l] ∩ IN∗)) ,

with the convention: ∆0,l = ∅.
Let ∆ be any subset of ∆|Γn|,|Bn

f(|Γn|)(N)|. We set:

D∆ = 2
∑

(p,q)∈∆

Xf(p)Xgp(q)

|Γn| and D∅ = 0 .

Clearly, with the notations above, if ρn > N

A′
n − AN

n =
2

|Γn|
∑
i∈Γn

∑

j∈Bn
i (N)

XiXj .

To prove (6.2) we introduce the decomposition below:

E(ϕ(A′
n − AN

n )) =

|Γn|∑
j=1

|Bn
f(j)

(N)|∑

l=1

E(ϕ(D∆j,l
))− E(ϕ(D∆j,l−1

)) .
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The definition of ϕ′′ an ϕ′ ensures that: ‖ϕ′′‖∞ = 1 and ‖ϕ′‖∞ = 1/2. Hence,

applying Taylor’s formula, |ϕ(x+h)−ϕ(x)−hϕ′(x)| ≤ |h|(1∧|h|). Therefore:

E(ϕ(A′
n − AN

n )) ≤
|Γn|∑
j=1

|Bn
f(j)

(N)|∑

l=1

2

∣∣∣∣E(ϕ′(D∆j,l−1
)
Xf(j)Xgj(l)

|Γn| )

∣∣∣∣

+

|Γn|∑
j=1

|Bn
f(j)

(N)|∑

l=1

2

|Γn|E
∣∣∣∣Xf(j)Xgj(l)(1 ∧

|Xf(j)Xgj(l)|
|Γn| )

∣∣∣∣ . (6.3)

Control of the main term

Notations 9. For any integer j in [1, |Γn|] and any integer l in [1, |Bn
f(j)(N)|],

we define:

Cj,l = {(p, q) ∈ ∆j,l−1 : min(|f(p)− f(j)|, |gp(q)− f(j)|) < ρn} ,

and Cc
j,l = ∆j−1,l\Cj,l .

With these notations,

E
(

ϕ′(D∆j,l−1
)
Xf(j)Xgj(l)

|Γn|
)

= E
(

ϕ′(DCc
j,l

)
Xf(j)Xgj(l)

|Γn|
)

+ E
(

(ϕ′(D∆j,l−1
)− ϕ′(DCc

j,l
))

Xf(j)Xgj(l)

|Γn|
)

.

Bearing in mind that ‖ϕ′′‖∞ ≤ 1, it follows that:

∣∣∣∣E
(

ϕ′(D∆j,l−1
)
Xf(j)Xgj(l)

|Γn|
)∣∣∣∣ ≤

∣∣∣∣E
(

ϕ′(DCc
j,l

)
Xf(j)Xgj(l)

|Γn|
)∣∣∣∣

+ E
∣∣∣∣
Xf(j)Xgj(l)

|Γn| (1 ∧ |DCj,l
|)
∣∣∣∣ .

First of all, we focus on the first term of the right hand inequality. Since

ϕ′(DCc
j,l

) is F
V
|gj(l)−f(j)|
f(j)

-measurable, the following inequality holds:

∣∣∣∣E
(

ϕ′(DCc
j,l

)
Xf(j)Xgj(l)

|Γn|
)∣∣∣∣ ≤ E

∣∣∣∣
Xgj(l)

|Γn| E|gi(l)−f(j)|(Xf(j))

∣∣∣∣

≤ E
∣∣∣∣
Xgj(l)−f(j)

|Γn| E|gj(l)−f(j)|(X0)

∣∣∣∣ .
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Hence, summing in j, l, we get that:

|Γn|∑
j=1

|Bn
f(j)

(N)|∑

l=1

∣∣∣∣E(ϕ′(DCc
j,l

)
Xf(j)Xgj(l)

|Γn| )

∣∣∣∣ ≤
∑

k∈Λρn∩V N
0

E|XkEk(X0)|

≤
∑

k∈V N
0

E|XkEk(X0)| .

This last term is as small as we wish, by choosing N large enough.

So, it remains to consider:

E
∣∣∣∣
Xf(j)Xgi(l)

|Γn| (1 ∧ (|DCj,l
|)
∣∣∣∣ .

If (p, q) ∈ Cj,l then |gp(q)−f(p)| ≤ ρn and |f(p)−f(j)| ≤ 2ρn. This implies:

E
∣∣∣∣
Xf(j)Xgj(l)

|Γn| (1 ∧ |DCj,l
|)
∣∣∣∣

≤ sumr−f(j)∈Λ2ρn

∑
s∈Λρn

E
(

(1 ∧ 2|XrXr+s|
|Γn| )

|Xf(j)Xgj(l)|
|Γn|

)
.

By the stationarity of the field, it follows:

|Bn
f(j)

(N)|∑

l=1

E
∣∣∣∣
Xf(j)Xgj(l)

|Γn| (1 ∧ |DCj,l
|)
∣∣∣∣

≤
∑

k∈Λρn

∑
r∈Λ2ρn

∑
s∈Λρn

E
(

(1 ∧ 2|XrXr+s|
|Γn| )

|X0Xk|
|Γn|

)
. (6.4)

To conclude this section, we need the following lemma which will be proved

in Annexe:

Lemma 3 Let X1, X2, X3, X4 be identically distributed real random vari-

ables. Then:

E(|X1X2|(1 ∧ 2|X3X4|)) ≤ 2E(X2
1 (1 ∧X2

1 )) .

By (6.4) and Lemma 3,

|Γn|∑
j=1

|Bn
f(j)

(N)|∑

l=1

E
∣∣∣∣
Xf(j)Xgj(l)

|Γn| (1 ∧ |DCj,l
|)
∣∣∣∣ ≤ 2|Λ2ρn |3E

(
X2

0 (1 ∧ X2
0

|Γn|)
)

.

Now, |Λ2ρn|3 = (4ρn + 1)3d and consequently, condition (3.1) implies that

2E(X2
0 (1 ∧ X2

0/|Γn|))|Λ2ρ(n)|3 converges to 0 as n tends to infinity. This

ensures the control of the main term.
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End of the proof.

To complete the proof, we need to control the second term of the right hand

inequality (6.3). By Lemma 3 again,

|Γn|∑
j=1

|Bn
f(j)

(N)|∑

l=1

1

|Γn|E
∣∣∣∣Xf(j)Xgj(l)(1 ∧

2|Xf(j)Xgj(l)|
|Γn| )

∣∣∣∣ ≤ 2|Λρn |E
(

X2
0 (1 ∧ X2

0

|Γn|)
)

and the choice of ρn implies the asymtotic negligibility of this term. Hence

(6.2) holds, which implies the consistency of An.

7 Annexe

Proof of Proposition 4. Let X1 and X2 be two positive random variables

with σ(X1) and σ(X2) independent of F . Then almost surely,

Cov(X1, X2|F) =

∫ +∞

0

∫ +∞

0

P(X1 > t, X2 > s|F)−P(X1 > t)P(X2 > s) dsdt .

Clearly X = X+ −X− and Y = Y+ − Y−, where

X+ = (X ∧ 0) and X− = −(X ∨ 0) .

Hence,

|Cov(X, Y |F)| ≤ |Cov(X+, Y+|F)|+ |Cov(X−, Y−|F)|
+ |Cov(X−, Y+|F)|+ |Cov(X+, Y−|F)|.

To control |Cov(X+, Y+|F)|, we note that:

|P(X+ > t, Y+ > s|F)− P(X+ > t)P(Y+ > s)|
= |E(1IX+>t(E(1IY+>s|F ∨ U)− P(Y+ > s))|F)|

≤ P(X+ > t)φ(F ∨ U ,V) a.s.

In the same way:

|P(X+ > t, Y+ > s|F)− P(X+ > t)P(Y+ > s)| ≤ P(Y+ > t)φ(F ∨ V ,U) a.s.

Hence,

|P(X+ > t, Y+ > s|F)− P(X+ > t)P(Y+ > s)|
≤ P(X+ > t)φ(F ∨ U ,V) ∧ P(Y+ > t)φ(F ∨ V ,U) .
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The same inequalities hold for (X−, Y−), (X−, Y+) and (X+, Y−). Those

inequalities together with the fact that

x+ ∧ y+ + x+ ∧ y− + x− ∧ y+ + x− ∧ y− ≤ 2(x+ + x−) ∧ (y+ + y−)

yield:

|Cov(X, Y |F)| ≤2

∫ +∞

0

∫ +∞

0

P(|X| > t)φ(F∨U ,V)∧P(|Y | > t)φ(F∨V ,U) dsdt

We set a = φ(F ∨ U ,V), b = φ(F ∨ V ,U) and HX(t) = P(|X| > t). Bearing

in mind the definition of QX as the inverse cadlag of HX , it follows:

|Cov(X, Y |F)| ≤ 2

∫ +∞

0

∫ +∞

0

aHX(t) ∧ bHY (s) dsdt

≤ 2

∫ +∞

0

∫ +∞

0

∫ a∧b

0

1Iu<aHX(t)1Iu<bHY (s) dudsdt

≤ 2

∫ +∞

0

∫ +∞

0

∫ a∧b

0

1IQX(u
a
)>t1IQY (u

b
)>s dudsdt

≤ 2

∫ a∧b

0

QX(
u

a
)QY (

u

b
) du a.s.

So, applying Hölder’s inequality:

|Cov(X, Y |F)| ≤ 2

(∫ a

0

Qp
X(

u

a
) du

)1/p (∫ b

0

Qq
Y (

u

b
) du

)1/q

≤ 2

(∫ 1

0

aQp
X(u) du

)1/p (∫ 1

0

bQq
Y (u) du

)1/q

≤ 2φ1/p(F ∨ U ,V)φ1/q(F ∨ V ,U)‖X‖p‖Y ‖q a.s.

Proof of Lemma 3. Since

2|ab| ≤ (a2 + b2) and (1 ∧ (a2 + b2)) ≤ (1 ∧ a2) + (1 ∧ b2) ,

we have:

2E(|X1X2|(1 ∧ 2|X3X4|)) ≤ E(X2
1 (1 ∧X2

3 )) + E(X2
1 (1 ∧X2

4 ))

+ E(X2
2 (1 ∧X2

3 )) + E(X2
2 (1 ∧X2

4 )).

Now let us recall a result due to Fréchet (1957): if Z and T are two positive

random variables, then E(ZT ) ≤ ∫ 1

0
QZ(u)QT (u) du, where QZ is the inverse

càdlàg of the tail function HZ : t → P(Z > t). Therefore:

E(X2
1 (1 ∧X2

3 )) ≤
∫ 1

0

QX2
1
(u)(1 ∧QX2

1
(u)) du = E(X2

1 (1 ∧X2
1 )) ,

and the lemma easily follows.
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[7] M. Fréchet, Sur la distance de deux lois de probabilité, C.R Acad. Sci. Paris.
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[25] A. Rényi, On stable sequences of events, Sankhyā Ser. A 25. 189-206. (1963).
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