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Abstract

We prove a central limit theorem for strictly stationary random
fields under a projective assumption. Our criterion is similar to pro-
jective criteria for stationary sequences derived from Gordin’s theo-
rem about approximating martingales. However our approach is com-
pletely different, for we establish our result by adapting Lindeberg’s
method. The criterion that it provides is weaker than martingale-type
conditions, and moreover we obtain as a straightforward consequence,

central limit theorems for a-mixing or ¢-mixing random fields.
Résumé

Nous démontrons un théoreme limite central pour des champs de
variables aléatoires stationnaires sous une condition projective. Notre
critére est comparable aux criteres projectifs pour les suites station-
naires dérivés du théoreme de Gordin concernant I’approximation par
des martingales. Toutefois notre approche est complétement différente,
puisque nous établissons notre résultat en adaptant la méthode de
Lindeberg. Le critere fourni est plus faible que les conditions de type
martingale, et contient de plus les résultats connus pour les champs

a-mélangeants ou ¢-mélangeants.
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1 Introduction

Let (X;)iez be a stationary sequence of random variables with mean zero
and finite variance, and write S, = > ;_, Xj. As far as we know, one of
the best ways to prove the asymptotic normality of n=1/2S, is to approxi-
mate S, by a naturally related martingale with stationary differences. More
precisely, assume that the sequence is ergodic and that n™'E(S?) converges
to a strictly positive o2, then S, behaves asymptotically like a sum of n
martingale differences, each with variance o2. Therefore, under fairly weak
additional condition, the central limit theorem can be deduced from the mar-
tingale case. This approach was first explored by Gordin (1969). Next, Hall
and Heyde (1980), Diirr and Goldstein (1984) or more recently Volny (1993),
used Gordin’s approach to provide projective criteria for the central limit the-
orem. These criteria imply Ibragimov’s central limit theorem for stationary
and strongly mixing sequences (1962).

Unfortunately, we cannot follow this way to study stationary random
fields, because the o-algebras which naturally appear are no more nested.
Nevertheless it is still natural to ask for projective criterions which imply
the existence of central limit theorems for stationary random fields. This
question has been partially answered over the past few years, first by consid-
ering martingale-type conditions (see Nahapetian and Petrosian (1992) and
Nahapetian (1995)), and then by studying the case of conditionally centered
random fields (see Jensen and Kiinsch (1994), Janzura and Lachout (1995),
and Comets and Janzura (1995) in the non-stationary case). This notion
has been first intoduced by Guyon and Kiinsch (1992) in order to study the
asymptotic behaviour of a certain estimator of the interaction for the Ising
model at the critical temperature. In that case, the mixing coefficients have
no good properties of decrease and one cannot used any mixing theorems,
whereas conditional centering applies to certain fields subordinated to the
Ising model. Conversely, it is easy to understand that martingale-type con-
ditions as well as conditional centering may fail to hold for a large class of
random fields with long range interaction: for instance, one cannot infer from
any of these assumptions Bolthausen’s central limit theorem for strongly mix-
ing random fields (1982) (result recently improved by Perera (1996) in the
unbounded case).

Many proofs of these theorems are based on a useful method introduced
by Stein (1973). However, this method does not always lead to optimal



assumptions, as Bolthausen notes in Remark 1 of his article. As a matter
of fact, to control the terms which naturally appear by following Stein’s
approach, one needs to make strong assumptions about the moments of the
random field, or to introduce some unnecessary mixing coefficients. Stein’s
method has been also used by Gordin (1993) who proves a central limit
theorem for dynamical systems. We agree with the author when he writes
in the concluding remarks of his paper, that a natural application of his
approach could be the central limit theorem for random fields. However,
until now, we are unable to compare the conditions that it might provide
with ours.

Our aim in this paper is first to propose a projective criterion compara-
ble to the L criterion stated by Gordin (1973) in the case of stationary and
ergodic sequences, and second to present a self-normalized sequence whose
limit, under this assumption, is a standard gaussian. To establish our re-
sults, we use Lindeberg’s method introduced in 1922 to study independent
sequences of random variables, adapted by Billingsley (1961) and Ibragimov
(1963) to the case of stationary and ergodic martingale difference sequences,
and by Rio (1995) to the case of strongly mixing sequences. In order to
exhibit our criterion, we extend a decomposition proposed by Rio to our
context. The tools that are needed are quite different from the strongly mix-
ing case, because the remainder terms cannot be controled with the help of
covariance inequalities as in Bolthausen, Rio or Perera. Since our approach
needs to be more precise, we obtain as a straightforward consequence the a-
mixing condition expected by Bolthausen (see again Remark 1 of his paper).
Another interest of this approach is that it does not require any assump-
tion about the ergodicity of the random field. Consequently, the normalized
partial sum sequence converges in distribution to a mixture of gaussian law.
More precisely, let Z be the invariant o-algebra, the limit is a product of an
Z-measurable variable by an independent standard gaussian.

This paper is organized as follows: Section 2 sets up the notations and
the preliminary results which will be useful in the sequel. In Section 3, our
main results are stated. In Theorem 1 the normalized sequence converges
in distribution to a mixture of gaussian law, where the variance term 7 is a
positive Z-measurable random variable. Theorem 1 provides also a consis-
tency estimator of . In Corollary 1, we give a random normalization which
ensures the asymptotic normality of the partial sum sequence. In Corollary

2, we are interested in the degeneracy of the variable n. Corollary 3 is de-



voted to mixing assumptions, and to be complete, Theorem 2 proposes the
finite-dimensional version of Theorem 1. The results are proved in Sections
4,5, 6 and 7.

2 Preliminaries

In order to develop our results, we need some preliminary notations.

2.1 Real random fields

Let us consider the space R with its borel o-algebra B. By a real random
field we mean a probability space (de, B~ P). We denote by X the identity
application from R% to ]de, and by X; the projection from RZ" t0 R defined
by X;(w) = w;, for any w in RZ". From now on, the application X, or the field
of all projections (X;);cz« will designate the whole random field (R%*, B%*, P).

For k in Z¢, T}, denotes the translation operator from R%" to R%" which
is defined by: [Tx(w)]; = wisk. An element A of BZ is said to be invariant
if T (A) = A for any k in Z¢. We denote by Z the o-algebra of all invariant
sets. A random field is said to be strictly stationary if T, o P = P, for any k
in Z¢. Throughout, X is a strictly stationary random field with E(X;) = 0
and E(X3) < +oo.

On Z* we define the lexicographic order as follows: if i = (iy, 4y, ..., i4) and
Jj = (j1, Jo, ---, Ja) are distinct elements of 74, the notation ¢ <., j means that
either 4; < j; or for some p in {2,3,...,d}, i, < j, and i, = j, for 1 < ¢ < p.
Note that the lexicographic order provides a total ordering of Z¢.

Let the sets {V/*¥ : i € Z¢ k € IN*} be defined as follows:

‘/il:{jezd : j<lemi}a
and for k > 2 :

k _— /1 ] d g > ) — 7| = e — Tk -
Vi=Vin{jezZ® : li—jl =k} where |i —j| = max |ix — jil

For any I' in Z%, let Fr be the o-algebra defined by: Fr = o(X; :i € I).
For any i in Z?, define the tail o-algebras Fi—oo = Nken=Fy (for brevity,
we write F_oo = Fp_o0). Using the same argument as in Georgii (1988)

Proposition (14.9), the following result holds:

Proposition 1 Let X be a stationary random field. For any i in Z%, the
o-algebra I s included in the P-completion of F; _ .



2.2 Mixing coefficients

Let (2,.A4,P) be a probability space. Given two o-algebras U and V of A,
different measures of their dependence have been considered in the literature.

We are interested by two of them. The strong mixing coefficient of Rosenblatt

(1956) is defined by:
ald,V) =sup{|P(U)P(V)—-P(UNV)|; U elU,V € V}.

The ¢-mixing coefficient has been introduced by Ibragimov (1962) and can
be defined by:

hiU, V) = sup{[|[P(V|Uf) = P(V)[|oc ,V € V}.
Between those two coefficients, the following relation holds:
20U, V) < 6U. V). (2.1)

Mixing coefficients for real random fields.
Let (R%", B2, P) be a real random field. The mixing coefficients we will use
in the sequel are defined by: if n € N, k,l € N U {0},

ak,l(”) = SUP{a(prsz); |F1| S k7 |F2| S l7d(F17F2) Z n}7

Gr(n) = sup{d(Fr,, Fry), [T1] <k, [T <1,d(T,Ty) > n},

where d(T'1,T'3) = min{|j —i|, 7 € I'1,j € I's}. For more about the mixing
properties of random fields, see Doukhan (1994).

2.3 Toward a new central limit theorem for stationary

random fields

Let I' be any subset of Z¢ . We denote by |I'| the cardinality of this set, and

we introduce:
O ={iel' : 3j ¢TI suchthat |i—j]=1}

If T' is a finite subset of Z?, Sp denotes the partial sum of the random field
X over this set: Sp = >
subsets of Z¢ satisfying:

ser Xi- Throughout (T'n)nen is a sequence of finite

lim |[I',] =400 and lirf IT,| ' oT,| =0 . (2.2)

n—-+00



The L2-ergodic theorem (see Georgii 1988) ensures that |I',,| " Sp.. converges
to E(Xo|Z) in 2. In order to prove a central limit theorem for |T,|~*/2Sy

it will be necessary to impose some conditions ensuring that E(X(|Z) = 0.

Proposition 2 Let A, = [-n,n|NZ%. Assumptions (a) and (b) are equiv-
alent:
(a) lim A ™) Cov(Xo, Xi) =0 ; (b) E(Xo|Z) =0 a.s.
kE€An

The condition (a) is very weak, and is automatically realized as soon as
we make some assumption concerning the dependency of the variables. For

example, if we define, for all positive integers k and all 7 in Z,
Ex(X;) = E(Xi|5'-"vik) ,

then (a) holds if we suppose that the martingale-type condition E;(X,) = 0
is realized. However, in that case, the classical central limit theorem may
fail, for this kind of condition does not imply the ergodicity of the field.
More precisely, if d = 1, Eagleson (1975) has shown that the sequence
n~1/28, converges weakly to a mixture of gaussian law eE'/2(XZ2|T), where
e ~ N(0,1) and ¢ is independent of Z. The fact that a single variable X,
appears through the conditional expectation with respect to Z can be easily
understood. As a matter of fact, the martingale-type condition ensures that:
|An|*1E(S|2An‘|I) =E(X3|Z) a.s.

In view of the martingale case, it is natural to think that the convergence
of [A,|""E(S}, ||7) may be important to obtain a central limit theorem. This
leads us to consider the condition:

> 1 XiEy (Xo)| € L, (2.3)

kevy

which implies the convergence of |A,|'E(S, |Z), as shown in the proposi-

tion below.

Proposition 3 If X satisfies (2.3), then E(Xo|F_») = 0 almost surely.
Moreover:

> E(XXi|T)| €L and lim An| EB(SHIT) = ) B(XoX4[T) as.

kezd kezd



Remark 1. If (i,7) is any element of (Z4)? such that j <., i, then we have
Fij—oo C Fi—oo and consequently E(X;|F;_o) = E(E(X;|Fi_o0)|Fj—c0)-
Now from Proposition 3 and the stationarity of X we infer that (1.2.3) imply
successively E(X;|Fi —oo) = 0 and E(X;|F; _o) = 0. Since Z is included in
the P-completion of F; _, we also have E(X;|Z) = 0.

3 Central limit theorems

Throughout this section, (X;);cza is a strictly stationary random field, with
E(Xy) = 0 and E(X?) < +00. (I'y)nen+ is a sequence of finite subsets of Z4
satisfying (2.2).

Now let us introduce the concept of stability (Rényi 1963), which enables

us to interchange norming in the central limit theorem.

Definition 1 Let (Y,,)nen be a sequence of real random variables, and let Y
be defined on some extension of the underlying probability space (Q,.A,P).
Let U be a o-algebra of A. Then (Y, )nen is said to converge U-stably to 'Y if
for any continuous bounded function ¢ and any bounded and U-measurable
variable Z, lim, .o E(p(Y,)Z) = E(p(Y)Z).

Theorem 1 Assume that condition (2.3) is satisfied, and set

n=> E(XoXi|T).

kezd

The following results hold:

(a) The random variable |T,,| /%Sy, converges T-stably to en'/?, where € is

a standard Gaussian independent of 1.

(b) For any N in N*, set Gy = {(i,j) € [y x Iy, @ Ji—j| < N}. Let p, be

a sequence of positive integers satisfying:

lim p, =+occ and lim pE (XJ(LA|L,|7'X3)) =0. (3.1)

n—-+00 n—-+o0o

Then:

An:|Fn|_lmaX 1, Z X X; &n.

(ivj)eGPn

As a direct consequence, we obtain the following corollary:



Corollary 1 Assume that condition (2.3) is satisfied. Then, with the same
notations as in Theorem 1, (|T,|7Y/2Sp,, A,) converges in distribution to
(en'/2.n). Assume moreover that P(n > 0) = 1. Then (A,|T,])"Y2Sr,

converges in distribution to €.

Remark 2. Let us describe an important class of random fields which satis-
fies condition (1.2.3): let X and Y be two stationary centered random fields.
As in Jensen and Kiinsch (1994), we say that X is conditionally centered
with respect to Y if E(X,|Y;, ¢ # 0) = 0 and Xy is o(Y}, |i| < K)-measurable
for some integer K. Since o(X;,i € V) is contained in o(Y;,i # 0) for
k > K, it follows immediately that condition (1.2.3) is satisfied. This kind
of random fields has also been studied by Comets and Janzura (1995) in the
non-stationary case. They obtain a central limit theorem, assuming that the
random variables have uniformly bounded fourth moments.

It is rather interesting to compare conditional centering as it is defined
here with the notion of martingale-difference random fields considered by
Nahapetian (1992, 1995).

Corollary 1 gives an example of sequence whose limit is a Gaussian law,
by choosing a random norming. Situations like this one under which we can
obtain the asymptotic normality are of a special interest. Applying Proposi-
tion 2, the next corollary gives a condition which ensures the degeneracy of

the random variable 7.

Corollary 2 Let N be a positive number, and set: XN = (X; AN)V (=N).
Assume that condition (2.3) is fulfilled. Assume moreover that for any k in
7%, and any positive integer N :

lim |An|™" ) Cov(Xo Xy, X, XN,) =0 (3.2)

n—-+400
iEAp

Then Theorem 1 holds with: n = 0® =3, ;4 E(XoX}) .

Remark 3. Assume that the random variables X; have finite fourth mo-
ments, then we do not need any truncation. In view of Proposition 2, the
condition which ensures the degeneracy of n can be replaced by:

lim |A,|™! Z Cov(Xo Xy, XiXirx) =0 for any k in Z% .

n—-400
€A,

As a consequence of Theorem 1, we obtain central limit theorems under

a-mixing or ¢-mixing assumptions.



Corollary 3 Let us consider the two following assumptions:

1,00 (|k])
Z/ Q% (u)du < oo, (3.3)

kezd

where Qx, denotes the cadlag inverse of the function Hx,: t — P(|Xo| > 1),
and

S buea(lk) < oo (3.4)

kezd

The following results hold:
(a) (3.3) implies (2.3), and hence also Theorem 1(a)(b).
(b) Under condition (3.4) Theorem 1(a) holds.

(c) Assume that (3.3) or (3.4) is realized, and moreover that aso(k) tends
to zero as k tends to infinity. Then, with the same notations as in
Theorem 1, n = 0° =Y, 74 E(XoX}) a.s.

Remark 4. Bolthausen (1982) proves a central limit theorem for stationary
and a-mixing random fields (see Guyon (1993) for a non-stationary version
of this theorem), but he fails to make assumptions on oy , only (see Remark
1 of his paper). To compare our result with Bolthausen’s, let us note that if
E(] X0|?*°) < oo for some § > 0, then the condition

d—1 6/2+6
Zm aylo " (m) < oo

is more restrictive than condition (3.3).

We remark that in Bolthausen’s article, the conditional expectation with
respect to the o-algebra Z does not appear. Indeed ags(n) is required to
be asymptoticaly negligible, and this implies the degeneracy of n. In fact,
one can see that this condition on ass(n) is stronger than assumption of
Corollary 2, since it implies that o(Xg, Xj) is independent of Z for any k in
VA

To be complete, let us state the multivariate version of Theorem 1.



Theorem 2 Let (I';;)icn.q be a sequence of disjoint subsets of 74, Assume
that condition (2.3) is fulfilled. Then:

SFI n
___Ln 1/2
|F17n|1/2 6177 /
D
—_—
Sty 1/2
|Fq,n|1/2 €q7]

where (€;)icp.q ~ N(0,1d) and (€;)ic1..q is independent of 1.

4 Proofs of propositions and corollaries

Proof of Proposition 2. Since E(X() = 0 the condition (a) of Proposition 2
can be expressed as follows:

lim [A,|'E(XoSy,) = 0.

n—-+00

By the L2-ergodic theorem, we infer that condition (a) is equivalent to
E(XoE(Xy|Z)) = 0, and the result easily follows.

Proof of Proposition 3.

We start by proving that E(Xo|F_o) =0 a.s.
We denote by E_, the conditional expectation with respect to F_.,, and by
[E7 the conditional expectation with respect to Z. By the backward martin-
gale convergence theorem, we know that lim,,, 1o [|En(Xo) —E_o(Xo)|l2 = 0.

Now, for any k in Vg
E([XHE—oo(Xo)[) < E(IXaEp (Xo)]) + [ Xoll2[Ep(Xo) — E-oo(Xo)ll2,

hence E|X;E_(Xo)| converges to 0 as |k| — +o00. Let us introduce the set
AL = A, NV} Applying the L?-ergodic theorem to the random variables

| Xk|, and the Cesaro mean convergence theorem, we infer that:

E(Ez(|Xo))|E-oo(Xo)) = lm_|ALI™ D" EIXE oo(Xo)] = 0.
i€EAL

By Proposition 1 and Jensen’s inequality,

Ez(|Xo]) = Ez(E_oo(|Xo])) = Ez(|E—oo(Xo)]) a-s.

10



Hence

E(Ez (| Xo[)[E—oo(Xo)]) = E(|E—o0 (Xo)[Ez(|E—oo(Xo)])) ,

which ensures that Ez(|E_.(Xo)|) = 0 a.s., and finally E_..(X,) =0 a.s.
The second point is to prove that

> E(E(XoXi/T)]) < +o0.
kezd

By Proposition 1 and the fact that F_, C fvok, we have, for all k in V'
E(IE(XoXk[Z)[) < E([E(XoXk|F-oo)]) < E(IXiEj(Xo)]) -
Since E(XoXx|Z) = E(XoX_¢|Z), we infer that:
Y E(E(X0XT)) < E(X) +2 ) E(E(XoX4[T)))
kezd keVy

< E(X3) 42 ) E(IXkEj(Xo)]) < +oo.
kevy

The last point is to prove that

lim |A,|” 'E(S},|T) = ) E(XoX)/T).
e kezd
For any subset I' of Z% and any k in Z% let I —k = {i — k, i € T'}. By

stationarity of the random field:

AT E(SE 1T Z A THAL N (A, — B)[E(X X, |T) .
k€Aay,
Now
A 7R O (A — B)I[E(Xo X, |T)| < [E(XoX,|T)|,
and

> E(XoXi|T)| < 400 as.

kezd
Since lim, . 4o0 [An| '[An N (A, — k)| = 1, we may apply the dominated
convergence theorem, yielding:
im A TTE(SR, 12 = E(XoX:|T) a
kezd
Hence the result follows.

Proof of Corollary 1. Corollary 1 is an immediate consequence of the follow-

ing lemma:

11



Lemma 1 Let X,, and Y, be two sequences of real random variables defined
on (Q, A, P). Let U be a o-algebra of A. Assume that X,, converges U-stably
to X and that Y, converges in probability to some U-measurable random
variable Y. Then (X,,,Y,) converges in distribution to (X,Y).

Proof. Let f and g be two continuous bounded functions, and assume more-

over that g is 1-Lipchitz. Clearly:

E(f(Xn)g(Yn) = F(X)g(Y )] < [IFllElg(Yn) = g(Y)
+E(g(Y)f (Xa) = FXODI

The stability of the convergence of X,, to X ensures that the second term of
the right hand inequality is asymptotically negligible, and the convergence
in probability of Y,, to Y together with the fact that g is 1-Lipchitz im-
ply that lim, . E|lg(Y,) — g(Y)| = 0. Hence E(f(X,)g(Y,,)) converges to
E(f(X)g(Y)) and the result follows.

Proof of Corollary 2. By Proposition 2 and assumption (3.2) we infer that
E(XoX)N|Z) = E(XoX}) a.s. Now, applying the dominated convergence the-

orem, we get that:

lim E(XoXN|T) = E(XoXi|T) a.s. and lim E(XoX}) = E(X,X}).

N—+400 N—+400

Finally for all k in Z%: E(XoX.|Z) = E(X,X}) almost surely. Since (2.3) is

realized, we infer that:

n=0"=Y E(XeX;) and [[,]"Y2Sp, 25 N(0,0%).

kezd

Proof of Corollary 3. First, we note that (c¢) follows immediately from Corol-
lary 2.

To prove (a), let us remark that:
E[XkEx (Xo)| = Cov(| Xi|(Tg,, (x0)>0 — Tk, (x0)<0)s Xo) -

By Theorem 1.1 in Rio (1993), it follows that

o100 ([KI)
E| X:Ep(Xo)| < 4 / Q%, (w)du,
0

which proves (a).
To prove (b), we need a conditional version of Peligrad’s inequality (1983).

A complete proof of this inequality will be done in Annexe.

12



Proposition 4 Let (2, A, P) be a probability space and U,V, and F three
o-algebras of A such thatU andV are independent of F. Let X and Y be two
random variables from (2, A,P) to R such that X is U-measurable in LP(P),

and Y is V-measurable in LY(P), where p and q are two positive numbers with

p '+ q ' =1. We define Cov(X,Y|F) =E(XY|F) —E(X)E(Y). Then:
|Cov(X,Y|F)| < 20"P(FVvU, V)" (FVV,U|X|,IY|l, as.

Now, to prove the asymptotic normality, we apply the truncation technique
as in Ibragimov and Linnik (1971). Using the same notation as in Corollary
2, let XY = (Xp AN)V (=N), and XY = X; — XY, We denote by S
the sum of the new centered field X~ — E(X?) over the set I',, and we set
g;l\z = Sr, — SP . By assumption the equation (1.3.4): >, 74 Peo1(|E]) < 00
is satisfied. Applying (1.2.1), 2a; oo (|k|) < ¢oo1(|k]) and (1.3.4) implies that:
Y kezd @1,00(|k]) < 00. Now, we can apply Corollary 3(a) to the random field
XN, As a matter of fact, the definition of Q X -E(x)) as the inverse cadlag
of the tail function Hyy_gxyy : ¢ — P(| XY — E(XY)| > t), ensures that
Qxpy_gxyy < 2N. Therefore:

1,00 (|E|)
Z/o QX ~E(xQ) (u)du < 4N? Z a1,00(lk]) < 00

kezd keZd

This means that (1.3.3) is realized, and Corollary 3(a) ensures that the ran-
dom field XV — E(X?) satisfies condition (2.3). Consequently, the series
> weza Cov(XY, XN|T) converges in LY. Set ny = >, 50 Cov(X{, XV |T).
Let Z be any bounded Z-measurable random variable, and ¢ be a bounded
1-Lipschitz function. To obtain the theorem, we have to prove that, under
(3.4),

lim E(Z[p(I0, 25k, ) — p(en2)]) = 0.

n—-+o0o

Clearly:

E(Z[o(ITa"Y25r,) — ¢(en'?))) = E(Z[o(ITa|"25r,) — ¢(|Tal Y252)])
+ E(Z[p(I0| 728N ) — p(eny®))
+ E(Zlp(eny®) — plen'/?)]) .

By Theorem 1(a), the second term of the right hand expression converges to

0 as n — +o00. Let us now study the first term of the right hand expression:
[E(Z[(ITal~25r,) = o(ITal 7288 )D] < 1 Zloo|Tal ~/*EY2([SF ) -

13



Now, by Proposition 4:

ITal " E(SY]?) < 20 X705 doon (K]
kezd

—_—

Since || X{V||2 converges to zero as N tends to infinity, the first term of the
right hand expression can be chosen as small as we wish. Now, to ensure
that the third term of the right hand expression is asymptotically negligible,
it is enough to prove that limy_. .9y = 1 almost surely. The dominated
convergence theorem implies that:

Jim Cov(XY, XN |T) = E(Xo X,|T) a.s.
——+400

Let us remark that the convergence of ¢ 1(n) to zero implies that for all &
in Z4, o(X}) is independent of F_.,. Therefore, applying Proposition 1 and

Proposition 4:
Cov(Xg', X' [Z) < 2] Xo|3¢0,1(|E]) as.

Since (3.4) is realized, we may apply once more the dominated convergence
theorem yielding;:
lim )~ Cov(Xy, XN|T) =) E(XoX4|T) =1 a.s.

N——~+oc0
kezd kezd

This ends the proof of (b).

5 Proof of the main result

In this section we prove Theorem 1(a). The two main references concerning
this part of Theorem 1 are Ibragimov (1963) and Rio (1995). From the
first article, which deals with stationary and ergodic martingale difference
sequences, we get the structure of our proof. From the second one we borrow
a decomposition which can be adapted to our case although we do not use

mixing assumptions.

Notations 1. Let f be a one to one map from [1, NJNIN* to a finite subset of

72, and (&;);cze a real random field. For all integer k in [1, N] we introduce:

k N

Srw(©) =Y & and S5O =D& -

i=1 i=k

14



with the convention: Sy (9)(§) = S§y1)(§) =0.

Let I' be a bounded subset of Z?. To describe this set, we define the one
to one map fr from [1,|I'|]NIN* to I" by: fr is the unique function such that
for 1 <m <n <|T|, f(Mm) <iex f(n).

Let ', be a sequence of finite subsets of Z%, satisfying (2.2). We introduce

the sequence of one to one maps fr,. In the sequel, we will omit the index
r,.

Notations 2. From now on, we consider a strictly stationary random field
(X;)ieze which satisfies the condition (2.3) and (&;);cz¢ an ii.d. random
field independent of X, such that ey ~ N(0,1) (a classical argument ensures
the existence of two such fields). We introduce the two sequences of fields:
Y = |T,|7Y2X; and 4? = |[,|7Y2¢m'/2. In the sequel, we will omit the

index n.

Notations 3. Let h be any function from R to R. For 0 < k < < |T',| + 1,
we introduce: g (Y) = h(Spuw) (Y) + 55)(7)) -

With the above convention we have that Ay r,+1(Y) = h(Sfw)(Y)) and
also ho(Y') = h(S%,)(7)). For sake of brevity, we will often write /y, instead
of hy (Y).

We denote by Bf(R) the unit ball of C}(R): h belongs to B}(R) if and
only if it belongs to C*(R) and satisfies maxg<i<y ||A? |0 < 1.

5.1 Lindeberg’s method

Let Z be a Z-measurable random variable bounded by 1. We shall prove
that, under the assumptions of Theorem 1, for all h in B} (R):

lim E(Zh(|T,|"V%5r,)) = E(Zh(en'/?)). (5.1)

n—-+00
We use Lindeberg’s decomposition:
E(Z[h(|Ta|728p,) = h(en'?)]) = E(Z[hp,raen = hon])  (5.2)

IT'n

|
= E(Z[hg g1 — Pr—14]) -

k=1
Now:

P gor1 — hi—1 6 = P k1 — Pe—1541 + Pk—1 o1 — D1k -

15



Applying Taylor’s formula we get that:

hipyr —he1kyn = Yiwhi_1pe  + ;Yf2(k; by 1pn + B

he-1 k1 — he—1p = —’Yf(k)h;g—1,k+1 - Q’Vf )hk Lkl T Tk
where |Ry| < Y7 (LA [Yil) and [r] < 2%, (LA [vsm))-
Since (Y, (&;)izfx)) is independent of €y, it follows that
E(ZVf(k)h;cq,kH) =0 and E<ZV?(k)hlk/fl,k+1) E(Z|T| lnhk 1k+1)
We obtain:

E(Zh(|Tu|™"?5r,)) — E(Zh(en'/?)) =

"

n Py,
> (B s + B2 — 7o) ) + BB+ 1))

(5.3)

Arguing as in Rio (1995), it is easily proven that

Tl
lim E(|Rk| + |rk]) =

n—-400
k=1

On the other hand, if we define ny = >, .\~ E(XoX;|Z), the upper
bound E|n —ny| < 2 ZkeVON E|E(XoXk|Z)| holds for any positive integer N.
Hence according to condition (2.3), lim,,, 1o E|n—nx| = 0, and consequently
Theorem 1(a) will be proved if we show that:

T |

h/l
2 NN k—1k+1\
NEIEOO 1LIEJSFUP ZE Yf(k)h;c—l,kﬂ)) + ]E(Z(Yf(k) - |Fn|) 2 )=0.

(5.4)

5.2 First reduction

In this section, we focus on Zlkrz’ll' E(Z(Ykyhy_14:1))- Since Y does not sat-

isfy a martingale type condition, this term has a non negligible contribution.

Notations 4. For all N in N* and all integer k in [1, |I',|], we define:

= f([LEINN) NV, and SN, (V)= ) Y.

zEEN

16



For any function g from R to R, we define: g ,, = g(S}\E (Y)+ S50 (7))
(Afterwards, we shall apply this notation to the successive derivatives of the

function h.)

Our aim in this section is to show that:

T |

lim lim supZE )1 w1 — Y (Spe-1) S}\Ek))hg—l,k—&-l) =0.

N—+oc0o n——+o0o
(5.5)
First we use the decomposition:

N
Yioh_161 = Y )hk; Lkt T Yk YW1 per = P 1hgn) -

We consider a one to one map m from [1,|EY|] N IN* to E}Y and such that

im(i) — f(k)| < |m(i—1)— f(k)|. This choice of m ensures that S,,,;(Y") and

Sm(i-1)(Y) are .7: \mm sy -measurable. From Remark 1 and the fact that
*)

is independant of Y we obtain

E(ny(k)h/(sff(kﬂ)ﬁ))) = E(h/(sj”(k—i-l) (7)))E(ZE(YJ‘U€)|I)) =0

Therefore:

N
‘E<ZYf(k)hlk—l,k+l)‘ =
|EY|

| Z E(ZY50) [P (Smeiy (V) + Sty (7)) = B (Smni—1y (V) + S0y (VDI -

Since Sy (Y) and Sp,-1)(Y) are F. im()-m-measurable, we can take the
F(k)
conditional expectation of Y} with respect to f \m( - in the right hand

side of the above equation. On the other hand the functlon h' is 1-Lipschitz

(see Notations 3), wich implies that

[ (S (V) 4 S50y (7)) = B (=) (V) + Sy (D] < [V |

Consequently, the term

IE(ZY 1) [P (Smiy (V) 4 S50y (1) = B (Smi—1y (YY) + S50y (0))])]
is bounded by
EY oo Epm) -6 (V)|

and
|EY]

N
E(ZY 5y ko) < D BV By (Vo) -

i=1

17



Hence

Tl ITnl 1EY]
N
D EZY il )] <) 0D Tl T B X o B - (X s i)
k=1 k=1 =1
< ) EIXGE(Xo)|.
kev{y

Since (1.2.3) is realized, this last term is as small as we wish by choosing N
large enough.

Applying again Taylor’s formula, it remains to consider

N
Yf(k)(hggq,kﬂ - h/k71,k+1) = Yf(k)(Sf(k—l) - S]]”\ék))hlklfl,kJrl + R;C )
where [ Ry < 2|V (Spe-1) — Spry) (LA [Spe—1) — S| Tt follows that

T T |
ZE]R’ < 2Z|r I~ 11E<|XO > IXD (AT, 1/2Z\X|>

1€EAN i€EAN

2E (!Xo!(z X)L AITL T2 \Xil)) :

i€EAN 1EAN

IN

By the dominated convergence theorem, this last term converges to zero as

n tends to infinity, and (5.5) follows.

5.3 The second order terms

It remains to control

T |

Y2
N
=K Zzhk 1k+1< +Yf(k (Str—1) Sﬁk))—m) . (5.6)

Notations 5. We introduce the two sets:
N ={iel, :d{i},oT,) >N} and I ={1<i<|I,|: f(i) €TV},
and the function g from R%" to R such that:

g(X) =X+ > 2XoX;.

i€VENAN_1

For k in [1, |T,|], we set: DfY = ny — g o Ty (X).

18



By definition of g and of the set I, we have, for any k in IV

n

90 Ty (X) = XF ) + 2X 500 (Syoe-1) (X) — Sy (X)) -
Therefore, for k in IY:
Tl ™' DY = I0ul ™y — Yy — 2Y500 (Spae—1y (V) — Spiy (Y)) -

The assumption (2.2) ensures that lim, ., [T 71 IY| = 1. Hence, it re-

mains to prove that

I
lim limsupE [ ZY |, 'A] DN =0. 5.7
N=+00 s too ; ‘ | k—1,k+1~k ( )

5.4 Conditional expectation with respect to the tail

o-algebras

Our aim in this section is to replace Dy by E(Dy | Ffk),—o0o). We introduce

the expression:

T |

A
HY = Z E (mhgmﬂ[g o Ty (X) — E(g o T (X)|5Cf(k),_oo)]> :
k=1 n

For the sake of brevity, we have written hy_, , ., instead of by, ,,(Y"). Using
the stationarity of the field we get that

T |

HY =Y E (,%(h 0 T 1) (V) [g(X) E<g<X>|f_oo>]) .

For any positive integer p, we decompose HY in two parts:

T | T |

ZJk +2Jk

where
R0 =B (0% 2 0 T (V)a(X) = Bl ()17
and J?(p) is equal to
Z "
B (e aies 0T = H s o Tl (V)90CX) — B ()17 )

19



From the definition of h"}_, ;. (cf. notations 4), we infer that the vari-
able h"} | 1 o T j)(Y) is Fyp-measurable. Therefore, we can take the
conditional expectation of g(X) — E(g(X)|F_o) with respect to Fyu in the
expression of J}(p). Now, the backward martingale theorem implies that

lim E|E(g(X)|Fvp) — E(g(X)|F-o)[ = 0,

p—-+oo

and consequently,
Ty

lim limsup | Z Ji(p)| = 0.
k=1

p—+00 n—-4oo
On the other hand,

T |

NOELIELSS % 19(X) — E(g(X)|F0)|

lil<p
Hence, applying the dominated convergence theorem, we conclude that H¥
tends to zero as n tends to infinity. It remains to consider:

[T
Wy =E | 2 Wiyt [Tl BN | F ), o0) | - (5.8)
k=1

5.5 Truncation

Notations 6. For any integer k in [1,|T',|], and any M in Rt we introduce

the two sets
BY(M) = E(Dljcv|ff(k)7—00>]I\E(D,JCVLFf(k)’_OO)\gM and
B (M) = E(Dy|Fsp),-) — By (M).
The stationarity of the field ensures that E|BY (M)| = E|BN(M)|, for

any k in [1,|T',]]. Now, applying the dominated convergence theorem, we
have: limy; ., E|BN(M)| = 0. It follows that

ITrl
MIEEOO;E (hg—l,k+1|rn|_lBlJcV<M)) =0.

Therefore, instead of W it remains to consider:

|
Ws =E ZZ hlk/fl,kJrl’FnrlBl]cv(M) : (5.9)
k=1

20



5.6 An ergodic lemma

The next result is the central point of our proof.

Lemma 2 For all M in Ry, we introduce

By (M) = E([nn — E(g(X)|F o) Mjyn @)1 7o)< |T) -

Then
T |
lim Ay(M)=0as and lim E|3 (M)—LZBN(M) =0

Proof of Lemma 2 Let

u(X) = [nv — E(9(X)F =o)Ly —E(g(X)|F_ o)< -

Using the function u, we write Sy(M) = E(u(X)|Z). The fact that Sy(M)
tends to zero as M tends to infinity follows from the dominated convergence
theorem. As a matter of fact

lim w(X) = ny — E(g(X)|F ),

M—+oc0
and u(X) is bounded by |ny — E(g(X)|F_o)|, which belongs to L.'. This
implies that:

lim Gy (M) = E(y — E(g(X)|F_o)|T) as.

M —+oco
Since Z is included in the P-completion of F_., (see Proposition 1), and
bearing in mind that ny is Z-measurable, it follows that

lim By(M) = ny —E(9(X)|Z) a.s.

M —+400

By stationarity of the random field, E(XoXy|Z) = E(XoX_k|Z), which im-
plies that
E(g(X)IT) = ) E(XoXilT)=ny

keAN_1
and the result follows.
To prove the second point of Lemma 2, we apply the L'-ergodic theorem.
First note that

BY (M) = [nx —E(g 0 Trr) (X)|Fiy,—o00) My —E(goT ey (X)) o0) <M
= wo Ty (X).
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Consequently
T |

ZBk M)=> uoTi(X

i€l
and the L'-ergodic theorem ensures that [['| 7' Y7, . w0 T;(X) converges in
L' to E(u(X)|Z). This means exactly that
Ty
lim E |Gy(M Z
P

n—-+o0o

’I’L

and the proof of Lemma 2 is complete.
As a direct application of this lemma, we see that:

I

Bn (M)
E Zzhk 1k+1 |F|

< E[Sn(M)],

is as small as we wish, by choosing M large enough. So, instead of W3, we

consider:

[T
wi—g (23, (MTF_ g CHN (5.10)

k=1

5.7 Abel transformation

s[5 (Z ) 200

k=1 =1
ICal oy
(B (M) — Bn(M)]
+E ZhIF IIFn|+2Z T, |
k=1 "
Now
S [BY (M) — ()] | L RA
E | Zhit, ruje D T <E ﬁN(M)—ﬁZBk (M) .
k=1 " M og=1
Then, applying Lemma 2, we get that:
R P S~ 1BY (D = 0] | _
et T \|rn|+2z T, -
k=1 "

22



Therefore it remains to prove that, for any positive integer N and any positive
real M,

|Tr| k N
lim E | (Z Ban o N(M)]) 2y por = Wiin) | = 0. (5.11)

e k=1 \i=1 U]

5.8 Last reductions
We use the same decomposition as in Section 5.1:
" " " " " "
P ko = M1 k1 = Pgoro — Piopn + P — P v -

Applying Taylor’s formula:

Bygvoe = PMigsr = Vit + Sk
h%,kJrl - h/k/fl,k+1 = Yf(]f)h,lc/Ll,k+1 + Sk
where |sg| < ’y;(k 41y and |Sk| < Yfz(k). To examine the remainder terms, we
consider:
. i L (50 B0 = B OD])
k=1 I i=1 | T

The definition of BN (M) and of Sy (M) enables us to write, for all integer k
in [1,|T,]],

k
> BN (M) — By (M)| < 2M|T,|.
=1

Therefore:
IT7 | k N 9
[BN (M) — B (M)]\ ZX G0 Uix, 015K )
g : <2ME(X:1
; (zzl Tl T, = (Xo |X0\>K>7

and, applying the dominated convergence theorem, this last term is as small
as we wish by choosing K large enough. Now, for all K in R,, Lemma 2
ensures that:

T

k N .
lim B (> 1 (Z 2D BN(M)]>ZXJ%(]€)][|X.)‘(I¢)SK =0.
k=1

oo Tl i—1 T

So, we have proved that

IT'n| k N
b B Z( 1B; <M>—5N<M>])Zsk o

n—-4o00 — |Fn|

k=1

23



In the same way, we obtain that

IT'n| k
. (B (M) — By (M)] _
Jm B <i1 T ) Fon) =0

k=1

Moreover, since (X, (€;)i£f+1)) is independent of €411y we have:

((Z = |6N( )]> W(anhg{m) 0.

=1

Finally, it remains to consider:

T k N
Ws = Z(ZB T ”)ZYf(k)hzn,m BNERD)

k=1 =1

Let p be a fixed positive integer. Since h” is 1-Lipschitz, we have the upper
bound (R 1 = B | < [Spae—1)(Y) — S5y (Y)|. Now, we can apply
the same truncation argument as before: first we choose the level of our
truncation by applying the dominated convergence theorem, and then we
use Lemma 2. So, it follows that

n—-+4oo
k=1 =1

|Fn k N
[B;
lim E E (E (M )|F ’ﬁN< ﬂ) ZYf(k)( lié/_17k+1—hm§—1,kz+1)) =0.

Therefore, to prove Theorem 1(a) it is enough to show that:

ITr| k N
BY (M) — M
lim limsupE Z (Z[ il )|F |5N< )]) ZYf(k)h"'i_LkH) =0.

PoHe0 n—too k=1 \i=1
(5.13)
we consider a one to one map m from [1,|E?|] N IN* to E} and such that
Im(i) — f(k)| < |m(i — 1) — f(k)|. Now, we use the same argument as in
Section 1.5.2:

W% = H(5(1)) =

|ER

Zh’” o (Y) 4 S50 (1) = " (S (V) + S50 (7))

Here, recall that B (M) is F(;), —co-measurable and Sy (M) is Z-measurable.
From Remark 1 of Proposition 3, we have the equalities: E(Xy)|Z) = 0,
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E(X )| Frk),—o0) = 0 and E(Xyu|Fr@),—00) = 0 for any positive integer ¢
such that ¢ < k (which implies that f(i) <, f(k) by definition of the map
f). Consequently, for any positive integer i such that i < k, we have:

[BN(M) = By(M)] o X506 w11 o )
]E( T, | Z|p |1/2h <Sf(k)(7))) =0.

Therefore, using the conditional expectation, we find:

IT'n| k N — By
k Z (Z = (M)|Fn|ﬁ (M)]> ny(k)hmi—mﬂ)

k=1 i=1

ITn| |E7]

< QMZZE"F ‘ @) Epm— ) (Xsm)]

k=1 i=1
<2M Y E[XiEj(Xo) -

kevy

Since (2.3) is realized the last term is as small as we wish, by choosing p large
enough. Hence (5.11) holds, which ends up the control of Wj.
Finally we have proved (5.1), and the proof of Theorem 1(a) is complete.

6 End of the proof of Theorem 1

In this section we prove Theorem 1(b). Obviously, instead of A,, we can

=0 Y XX

(i’j)eGPn

consider:

So we have to prove that under conditions (2.3) and (3.1), A’,, is a consistent
estimator of 7.

For any positive integer N, put:

Z XiX; and nng = Z E(XoXk|Z).

[Tl (i,j) €GN keAy

AN =

First we need to prove that A% is a consistent estimator of ny, ;. Clearly:

ZH > XiXiw,

keAn €T, N(Tp—F)

The assumption (2.2) implies that lim,, ., |Tn|* T N (T, — k)| = 1, and
the L!-ergodic theorem enables us to conclude that AY converges to ny; in
L.
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The second step is to compare A/, to AY. Since E|n — ny,1| is asymp-
totically negligible, the consistency of A/ will be established if we prove that

for any positive number 9:

lim limsupP(|]A’, — AY| > 6) =0. (6.1)

N—=+0 notoo

In order to prove (6.1) we shall adapt Lindeberg’s method to our context.

Notation 7. Let the function ¢ be defined by ¢'(0) = ¢(0) = 0 and
@' (t) = (1= [t) <1

To study P(|A’, — AN| > §) we use the function ¢. Since ¢ is an even

function, increasing from Ry to R, (6.1) follows from the assertion

lim limsup E(p(4’, — AY)) =0. (6.2)

N—+00 ot

Notations 8. For i in Z% let us introduce the sets
BI(N)={j€ V' NTy : N<|j—il<pu}.

Bearing in mind notations 1, we consider the one to one maps f = fr, and

= fBr
TN
For any mteger jin [1, |I's[] and any integer [ in [0, [B} ;) (N)|] , we define:

Ajy = <U{k’} ([0, 1B}y (N )I]NN*)) Ui x (0.0 nN")

with the convention: Ag; = ().

Let A be any subset of Ajr,| 5 |- We set:

fUF\)

X
Da=2 Y XiwXa@ 00 py—o.

(p,g)eA | n|

Clearly, with the notations above, if p, > N

ZZXX

1€l jEB(N

A/n . AN

To prove (6.2) we introduce the decomposition below:



The definition of ¢” an ¢’ ensures that: ||¢"||. = 1 and ||¢'|| = 1/2. Hence,
applying Taylor’s formula, |p(x+h) —p(z)—h¢'(z)| < |h|(1A]h]). Therefore:

T 1B (VI
d X Xo,0)

e I L

T 1B (VI
\ | X

2 ) Xg,0)
3% B Xaoa P e
] 1 n n

Control of the main term

Notations 9. For any integer j in [1, [I',[] and any integer I in [1, [Bf ;) (N)]],

we define:

Cii =1, q) € Aju—r = min(|f(p) — fU)], 19p(0) — F)I) < pu},

and Cl—Aj 1I\Ojl

With these notations,

X)Xy X)Xy
E (90 (Da,,- 1)%) =E (SOI(DC;J)%>

X Xg;0)
{E (w (Da) = ¢/(De, ) 9200 ).

Bearing in mind that ||¢”||l < 1, it follows that:

X)Xy X)Xy
‘IE (w’(DAj,l_l)—(f% ‘ ”)‘ < ‘E (@’(DC;J)—(‘J% ’ ”)‘

XX

+E'M(1A|DC y)‘ .
1

First of all, we focus on the first term of the right hand inequality. Since

o' chql) is F o O=10)1- -measurable, the following inequality holds:
’ Vi)

X)) Xg,0) Xy
’]E (w’(Dc;,l)ﬁ < E |F | SO 0-r01(Xs)

Xg,()-10)
E’ T Plas-r)(Xo)|
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Hence, summing in 7,1, we get that:

XinXg.a
E(e(00) 2000 < S EXEN)
j=1 =1 " k€A 5, VN
< Y EIXGEL(X)].
kevy

This last term is as small as we wish, by choosing N large enough.
So, it remains to consider:

X Xa

————>(1 A (| D¢, .

| H0%a0 1 A (1D, )

If (p,q) € Cj; then |g,(q) — f(p)| < pn and |f(p) — f(4)] < 2p,. This implies:
X
B 20750 1 A g, )

Tl
2’XTXT+S‘ |Xf(j)X9j(l)|
< SUMy—f(j)ehs,, Z E ((1/\ T, ) T .
s€Ap, n "

By the stationarity of the field, it follows:

IBF ) (V)

g @)
2502 () 1A|D
Zf FO A D, \)\

QXTXT‘"FS XOXk
<> > Y E<(1A | T ’)' ] ‘). (6.4)

k€A, r1€A2p, sEA,,

To conclude this section, we need the following lemma which will be proved

in Annexe:

Lemma 3 Let X, X5, X3, X, be identically distributed real random wvari-
ables. Then:

E(] X1 Xa|(1 A 2| X3X,])) < 2E(X7 (1A X7D)).
By (6.4) and Lemma 3,

ITn| 1BFH (VI X)X
R
Now, |Ag,,[> = (4p, + 1)3? and consequently, condition (3.1) implies that
2E(XF(1 A X3/ |T0])[Agpmy|® converges to 0 as n tends to infinity. This

ensures the control of the main term.

AfG) g ) 3 2 X2
(LA 1D, | < 210, B (X300 5 )
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End of the proof.

To complete the proof, we need to control the second term of the right hand

inequality (6.3). By Lemma 3 again,
T 1B () (V) 21X,

(J')Xg'(l)’ 2 X2
X0y Xy (11 —J)]gzmnu@(x (1722
> Z rr\ ‘ T ® T, ’ IT|

j=1

and the choice of p, implies the asymtotic negligibility of this term. Hence
(6.2) holds, which implies the consistency of A,,.

7 Annexe

Proof of Proposition 4. Let X; and X, be two positive random variables
with o(X7) and o(X3) independent of F. Then almost surely,

Cov (X1, Xo|F) = /0+OO/O+OOIP’(X1 > t, Xy > s|F)—P(X; > t)P(Xy > s)dsdt.
Clearly X = X, — X_and Y =Y, — Y_, where

X =(XAN0) and X_=—-(XVO0).
Hence,

(Cov(X, Y| )] < |Cov(Xy, Y4 |F)| + [Cov(X_, Y. |F)|
+ [Cov (X, Y |F)| + [Cov(X, Y_|F)].

To control |Cov(X,, Yy|F)|, we note that:

IP(X; >t Y, > s|F)—P(Xy > t)P(Y; > s)|
= [E(Lx, > (E(Ty, > F VU) = P(Yy > 5))|F)|
<P(X; >t)op(FVU,V) a.s

In the same way:
IP(X, > 1Y, > s|F) —P(X,; > t)P(Y, > s)| <P(Y, > t)p(FVV,U) a.s

Hence,

P(Xy >t,Y, > s|F)—P(X; > t)P(Yy > s)|
<P(X, > O)(FVU, V) ANP(YL > )o(FVV,U).
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The same inequalities hold for (X_,Y_), (X_,Y}) and (X;,Y_). Those
inequalities together with the fact that

T ANYs + o Ayt Ayr + - Ay- <2(z +2-) A(y+ +y-)
yield:
+o0 p+o0
Cov(X, Y] F)| <2 / / P(|X| > )o(FVU, VIAB(Y| > )6(FVV,U) dsdt
0 0

We set a = ¢(F VU, V), b=¢(FVV,U) and Hx(t) = P(|X]| > t). Bearing
in mind the definition of ()x as the inverse cadlag of Hy, it follows:

+oo +oo
|Cov(X,Y|F)| < 2/ / aHx (t) NbHy(s) dsdt
0 0

+oo  ptoo  panb
=2 / / / Lycarry @ Lucvry ) dudsdt

400 400 aAb
< 2/ / / ][QX(%)>t]IQY(%)>Sdud8dt
0 0 0

aAb
< 2/0 QX(%)QY(%)du a.s.
So, applying Holder’s inequality:
a 1/p b
covievim < 2 [osa) ([ apa)
1 1/p 1 1/q
2(/0 a@Q% (u) du) </0 bQ% (u) du)

< 20V (FVUV)SUFVVUXILIY ], as.

1/q

IN

Proof of Lemma 3. Since
2lab] < (a®+b%) and (1A (a®+b%) < (1A@*) + (1AD?Y),
we have:
2E(|X1X:|(1 A 2] X3X4])) < E(XT(1AXS)) +E(XT(1AXY))
+E(XF(1AX3)) + E(X3(1AXE)).

Now let us recall a result due to Fréchet (1957): if Z and T are two positive
random variables, then E(ZT) < fol Qz(u)Qr(u) du, where Q7 is the inverse
cadlag of the tail function Hz: t — P(Z > t). Therefore:

E(X?(1 A X2)) < / Qe (w)(1 A Qua()) du = B(X2(1 A X?))

and the lemma easily follows.
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