SOME UNBOUNDED FUNCTIONS OF INTERMITTENT MAPS FOR WHICH
THE CENTRAL LIMIT THEOREM HOLDS

J. DEDECKER! AND C. PRIEUR?

Abstract. We compute some dependence coefficients for the stationary Markov chain whose transition
kernel is the Perron-Frobenius operator of an expanding map 7" of [0, 1] with a neutral fixed point. We
use these coefficients to prove a central limit theorem for the partial sums of f o T, when f belongs to
a large class of unbounded functions from [0, 1] to R. We also prove other limit theorems and moment
inequalities.
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1. INTRODUCTION

For ~ in ]0,1[, we consider the intermittent map 7 from [0,1] to [0, 1], studied for instance by
Liverani, Saussol and Vaienti (1999), which is a modification of the Pomeau-Manneville map (1980):

a1 4+22) itz e(0,1/2
Ty (x) = {2$_1 if x € [1/2,1]

We denote by v, the unique T’,-probability measure on [0, 1]. We denote by K, the Perron-Frobenius
operator of T, with respect to v,: for any bounded measurable functions f, g,

V’y(f g OT’y) = V’y(K'y(f)g) .

Let (X;)i>0 be a stationary Markov chain with invariant measure v, and transition Kernel K. It
is well known (see for instance Lemma XI.3 in Hennion and Hervé (2001)) that on the probability
space ([0,1],v,), the random variable (7%, TVZ, ..., ) is distributed as (Xp, X5—1, ..., X1). Hence any
information on the law of

Sn(f) = ZfOT,;
i=1

can be obtained by studying the law of """ | f(X;).

In 1999, Young proved that such systems (among many others) may be described by a Young
tower with polynomial decay of the return time. From this construction, she was able to control
the covariances v, (f o T™ - (9 — v4(g))) for any bounded function f and any a-Holder function g,
and then to prove that n=2(S,(f) — v4(f)) converges in distribution to a normal law as soon as
v < 1/2 and f is any a-Holder function. For v = 1/2, Gouézel (2004) proved that the central limit
theorem remains true with the same normalization \/n if f(0) = v,(f), and with the normalization
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nln(n) if f(0) # vy(f). When 1/2 < v < 1, he proved that if f is a-Hélder and f(0) # vy (f),
n=Y(Sn(f) — vy(f)) converges to a stable law.

At this point, two questions (at least) arise: 1) what happens if f is no longer continuous? 2) what
happens if f is no longer bounded? For instance, for the uniformly expanding map Tp(z) = 2z — [2z],
the central limit theorem holds with the normalization y/n as soon as f is monotonic and square
integrable on [0, 1], that is not necessarily continuous nor bounded.

For the slightly different map 6, (z) = (1 — 27)~Y7 — [2(1 — 27)~/7], with the same behavior
around the indifferent fixed point, Raugi (2004) (following a work by Conze and Raugi (2003)) has
given a precise criterion for the central limit theorem with the normalization /n in the case where
0 < < 1/2 (see his Corollary 1.7). In particular his result applies to a large class of non continuous
functions, which gives a quite complete answer to our first question for the map 6,. The result also
applies to the unbounded function f(x) = =% with 0 < a < 1/2 — 4. However, the function f is
allowed to blow up near 0 only (if f tends to infinity when z tends to xg €]0, 1], then the variation
coefficient v(fh,, k), where h., is the density of the 6.-invariant probability, is always infinite).

We now go back to the map T’,. In a short discussion after the proof of his Theorem 1.3, Gouézel
(2004) considers the case where f(x) = ™%, with 0 < a < 1 —~. He shows that, if 0 < a < 1/2 — v
then the central limit theorem holds with the normalization y/n, if a = 1/2 — 7 then the central limit
theorem holds with the normalization /nln(n), and if 0 < @ < 1 — and v > 1/2 then there is
convergence to a stable law. Again, as for Raugi’s result (2004) concerning the map 6., the function
f is allowed to blow up only near 0.

On another hand, we know that for stationary Harris recurrent Markov chains with invariant mea-
sure 4 and [-mixing coefficients of order n°, b > 1, the central limit theorem holds with the nor-
malization \/n as soon as the moment condition u(|f|?) < oo holds for p > 2b/(b — 1). For T, the
covariances decay is of order n(7=1/7, so that one can expect the moment condition vy (| fI?) < oo for
p > (2 —2v)/(1 — 2v). For instance, if f(z) = 27¢, since the density of v, is of order ™7 near 0,
the moment condition is satisfied if 0 < a < 1/2 — «, which is coherent with Gouézel’s result (2004).
However, since the chain (K, v,) is not S-mixing, the condition v, (| f?) < oo for p > (2—2v)/(1—27)
alone is not sufficient to imply the central limit theorem, and one still needs some regularity on f.

Let us now define the class of functions of interest. For any probability measure p on R, any M > 0
and any p €]1,00], let Mon(M, p, 1) be the class of functions g which are monotonic on some open
interval of R and null elsewhere, and such that pu(|g| > t) < MPt™P for p < oo and p(|lg| > M) =0
for p = co. Let C(M,p,u) be the closure in L!(1) of the set of functions which can be written as
>y aigi, where Y |a;| < 1 and g; belongs to Mon(M, p, ). Note that a function belonging to
C(M,p, ) is allowed to blow up at an infinite number of points.

In Corollary 4.1 of the present paper, we prove that if f belongs to the class C(M,p,v,) for p >
(2 —27)/(1 — 27), then n=Y/2(S,,(f — v (f)) converges in distribution to a normal law. We also give
some conditions on p to obtain rates of convergence in the central limit theorem (Corollary 5.1), as
well as moment inequalities for S, (f — vy(f)) (Corollary 6.1). Finally, a central limit theorem for the
empirical distribution function of (Té)lgign is given in the last section (Corollary 7.1).

To prove these results, we compute the S-dependence coefficients (cf Dedecker and Prieur (2005,
2007)) of the Markov chain (K,,vy). The main tool is a precise estimate of the Perron-Frobenius
operator of the map F' associated to T, on the Young tower, due to Maume-Deschamps (2001). Next,
we apply some general results for S-dependent Markov chains. For the sake of simplicity, we give all
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the computations in the case of the maps 7%, but our arguments remain valid for many other systems
modelled by Young towers.

2. THE MAIN INEQUALITY

For any Markov kernel K with invariant measure u, any non-negative integers ni,ns,...,nk, and
any bounded measurable functions fi, fa, ..., fk, define

KOst (fy, fo, o fi) = K" (K™ (K™ (fs o K™ (i K™ (fr)) ), and
KOnati)(fy fo o fi) = KUmm(fy fo o fi) = p(EK0m2 ) (fy fo o ).
For a €]0,1] and ¢ > 0, let H, . be the set of functions f such that |f(z) — f(y)| < ¢z — y|®.

Theorem 2.1. Let v €]0,1[, and let fO) = f — v (f). For any o €]0,1], the following inequality

holds:
C(a, k)(In(ny +1))2

(n1 + 1)@=/~

A s 0,19, ) <
fl,...,kaHa,l

In particular,

> < C(a,1)(In(n + 1))?

1/7( sup |K;Lf—V’y(f)’ (n—f—l)(l_'Y)/’y

f€Ha 1
Proof of Theorem 2.1. We refer to the paper by Young (1999) for the construction of the tower A
associated to T, (with floors A/), and for the mappings = from A to [0,1] and F' from A to A such that
T,om =moF. On A there is a probability measure mg and an unique F-invariant probability measure
7 with density ho with respect to mg, and 7(A;) = O(~/7). The unique T’,-invariant probability
measure v, is then given by v, = ™. There exists a distance 6 on A such that §(x,y) < 1 and
|m(x) — 7(y)| < Kd(z,y). For a €]0,1], let §o = 0%, let L, be the space of Lipschitz functions with
respect to dq, and let Lo (f) = sup, yea |f(7) — f(y)|/0a(7,y). Let La be the set of functions such
that Lo (f) < c¢. For ¢ in Hy ., the function ¢ o m belongs to Lq cxe. Any function f in L, is bounded
and the space L, is a Banach space with respect to the norm | f|la = La(f) + ||fllcc- The density
ho belongs to any L, and 1/hg is bounded. As in Maume-Deschamps (2001), we denote by Ly the
Perron-Frobenius operator of F' with respect to mg, and by P the Perron-Frobenius operator of F'
with respect to v: for any bounded measurable functions ¢, v,

mo(p - o ) = mo(Lo(p)y) and v(p-¢poF)=0v(P(p)y).
We first state a useful lemma

Lemma 2.1. For any positive ny,na,...,ng and any bounded measurable functions f1, fa,..., fr from
[0,1] to R, one has

K,(ynl’nQ""’nk)(fl, f2, e fk) om=Ey (P(n1,n2,...,nk)(f1 o, f2 om,... 7fk o 7T)‘7l’) .

We now complete the proof of Theorem 2.1 for k& = 2, the general case being similar. Applying
Lemma 2.1, it follows that

sup K5 (fOR D) (@) — vy (FO KT ¢
fvgeHOé,l
<By( s [P@OPYO) — p(eO PO |7 = ).
¢7’¢'€La,no‘
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Here, we need the following lemma, which is derived from Lemma 3.4 in Maume-Deschamps (2001).
Lemma 2.2. There exists My, > 0 such that, for any ¢ € Ly,

[Pp(w) = Pp(y)] < Mad(2, )19 lla < 2Mada(w, y) La(¥)

Hence, if ¢ € Lq ke, then Pm(zp(o)) belongs to L 21, x> and is centered, so that 0 Pm4y(0) helongs
to Ly anr, k2o It follows that

sup [K2(FOKTG0) ) — v(fORTGO) < aMar®E,( sup [P(e) ~ p(o)l|r = ).
f,.9€Ha 1 pELa 1

Next, we apply the following Lemma, which is derived from Corollary 3.14 in Maume-Deschamps
(2001).

Lemma 2.3. Let vy = (£ + 1)=D/7(In(0 + 1))~2. There exists Co > 0 such that

By sup [P"(p) — rlg)l|r =) < Calln(n+ 1)*(n+1)0 DS up(1n,fr =)

0€Lq1 >0
Hence
v s KT (ORTG) - p(FOKRIGO)|) < AMar® Colin(n+ 1) (n+ )OS (M)
g a,l ZZO

Since 7(Ag) = O(£~/7), the result follows.

Proof of Lemma 2.1. We write the proof for £ = 2 only, the general case being similar. Let ¢, f
and g be three bounded measurable functions. One has

v (KL (fETg) = w(po Tyt fo T - g)
= U(pomo F"™ . foroF™ gom)
= v(pomP"(fonmP™(gom)))
= v(pomEs(P"(fomP™(gom))|m))

— [ Gl@EAP"(f o wP" (g0 m)lm = o) ().
which proves Lemma 2.1 for k = 2.

Proof of Lemma 2.2. Applying Lemma 3.4 in Maume-Deschamps (2001) with v; = 1, we see that
there exists D, > 0 such that, for any v in L,

1£5"¢ () = L§'¢(y)| < Dada(z, y)||¢]a-

Now P™ (1) = L{*(ho)/ho. Since 1/hg is bounded by B(hg), and since hg belongs to L, it follows
that

|[P™(x) — P"(y)| < DaB(ho)llhollada(z, y)|[¢]a-
Let M, = Dy B(ho)||ho||a- Since [P™(x) — P™p(y)| = |[P™hO) () — P™1pO) ()] and since |[1]|o <
Lo (1), it follows that

|P™p(x) — P"(y)| < Maaa(xvy)Hw(o)Ha < 2Maba(z,y) La() -
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Proof of Lemma 2.3. Applying Corollary 3.14 in Maume-Deschamps (2001), there exists B, > 0
such that

L5 f = homo(f)] < Ball flla(In(n +1))*(n+ 10D "1y, .
>0

It follows that, with the notations of the proof of Lemma 2.2,

[P"(f) = 2()] < BaB(ho)[hollallf la(In(r + 1)) (n + )OS " vida, .
£>0

Since |P™(f) — o(f)| = |P™(f©) — o(f©)] and since || fD|oo < La(f), it follows that
|P™(f) = 2(f)] < 2BaB(ho)|[hollaLa(f)(In(n + 1))*(n + HODTY 014, ,
£>0

and the result follows.

3. THE DEPENDENCE COEFFICIENTS

Let X = (Xj;)i>0 be a stationary Markov chain with invariant measure p and transition kernel
K. Let fi(z) = 1lz<¢. As in Dedecker and Prieur (2005, 2007), define the coefficients ay(n) of the
stationary Markov chain (X;);>0 by

ai(n) = Sup u(| K™ (fe) = p(fe)]),  and for k > 2,
te
ag(n) = ai(n)V sup sup sup u(\K(O)("’”Q"“’”l)(ftl,ftQ, e ftl)|) .
2<i<kno>1,.my>1t1,...4,€R

In the same way, define the coefficients [ (n) by
Bin) = p(sup|K"(fy) = p(f)l), and for k> 2,
teR

Bln) = BV sup  sup g sup (KO0 g f)]).
2<i<kno>1,.m>1 t1,...,t1€R

Theorem 3.1. Let 0 <y < 1. Let X = (X;)i>0 be a stationary Markov chain with invariant measure
vy and transition kernel K. There exist two positive constants C1(y) and Co(6,7,k) such that, for
any 9 in |0, (1 —v)/v[ and any positive integer k,

a=1 =1
¥ +§,

Ci(Mn+1) 7 < ag(n) < Br(n) < C2(6,7,k)(n+1)
Proof of Theorem 3.1. Applying Proposition 2, Item 2, in Dedecker and Prieur (2005), we know
that

w(fgg;;yl K2 = v (£)]) < 20a(n).

Hence, for any ¢ such that |¢| <1 and any f in Hy 1,

vy - (K5 =1y (f) = vy o T - (f — 1, (f))) < 201(n)

The lower bound for ay(n) follows from the lower bound for v (@ o T™ - (f — v,(f))) given by Sarig
(2002), Corollary 1.
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It remains to prove the upper bound. The point is to approximate the indicator f;(x) = 1;<; by
some a-Holder function. Let
T —t\«

frea(®) = fi(z) + (1 - ( ) )1t<x§t+6'

This function is a-Holder with Holder constant e ~. We now prove the upper bounds for £ = 1 and
k = 2 only, the general case being similar. For k = 1, one has

K" (fi-cea) = vy (fimcea) = w4 ([t — & t]) < K2(fi) = vy(ft) < K (frea) = v (frea) + 5[t + ).

Since the density g,., of v, is such that g, (z) < V(y)z~7, we infer that for any real a, v, ([a,a+¢]) <
V(7)e!=(1 — 4)~L. Consequently,

_ Vv _
K2(F) iy ()] < sup () — ()] + 1D,
fE€H 1 -7
Applying Theorem 2.1 with k£ = 1, we obtain that
-1 V
s sup [K2() 1y (£)]) < Clan e (tnn + )2+ )5 VDo,
t€[0,1] -7
The optimal € is equal to
(eCte it + D) (n+1)7 ) =
€= .
V()
Consequently, for some positive constant D(~y, a), one has
B
vy (sup [K2(f) = v, (f)l) < D(y,0) ((m(n+ 1)) (n+1)"5 ) 777

te[0,1]

Choosing av < §y(1 —v)/(1 — v(1 4 0)), the result follows for k = 1.
We now prove the result for kK = 2. Clearly, the four following inequalities hold:

KMAORTFO) < KR D) + o ([t ) + vy ([, 5+ €])
KMHOKPFO) > KO KO ) = o[t = e t]) = (s — e 8))
n(FOKTFO) = o (D KT FO,) = 20 ([t + e]) — vy ([s, 5+ €]).
i (FO K FO) < oy (F0 KT O ) + 20y ([t — e 1)) + vy ([s — €, 5)

Consequently,

KLU KD O) iy (ORI O < 0 sup [K(OKTGO) vy (O K790 1 D am,
fngHa,l ’y

Applying Theorem 2.1, we obtain that

v, sup ISR SO) v, (VK FO)]) < Cloy e I+ 1) +1) 7 +
te[0,1]

and the proof can be completed as for k = 1.
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4. CENTRAL LIMIT THEOREMS

In this section we give a central limit theorem for S, (f — v(f)) when f belongs to the class
C(M,p, ) defined in the introduction. Note that any function f with bounded variation (BV) such
that |f| < M; and ||df|| < Ms belongs to the class C(M; + 2Msy, 00, ). Hence, any BV function f
belongs to C(M, oo, i) for some M large enough. If g is monotonic on some open interval of R and
null elsewhere, and if u(|g|?) < MP, then g belongs to Mon(M,p, ). Conversely, any function in
C(M,p, ) belongs to LI(u) for 1 < g < p.

Theorem 4.1. Let X = (X;)i>0 be a stationary and ergodic (in the ergodic theoretic sense) Markov
chain with invariant measure p and transition kernel K. Assume that f belongs to C(M,p, p) for some
M >0 and some p €]2,00], and that

S (e (k)7 < o0,

k>0
The following results hold:
(1) The series

(K, f) = p((f = n(£)) + 2> pw((f = n(F)E*(F))

k>0
converges to some non negative constant, and n~*Var(3_" | f(X;)) converges to o?(u, K, ).
(2) Let (D([0,1],d) be the space of cadlag functions from [0,1] to R equipped with the Skorohod
metric d. The process {n~1/? Egiﬂl(f(Xl) — u(f)),t € [0,1]} converges in distribution in
(D([0,1],d) to o(p, K, f)W, where W is a standard Wiener process.
(3) One has the representation

f(X1) = p(f) = m(X1, Xo) + g(X1) — g(Xo)
with p(|g[P/®=1) < 0o, E(m(X1, X0)|Xo) = 0 and E(m?(X1, Xo)) = 02(u, K, f).

Corollary 4.1. Let v €]0,1/2[. If f belongs to the class C(M,p,v) for some M > 0 and some
p>(2—27)/(1 —27), then n=Y28,(f — v, (f)) converges in distribution to N'(0,0%(vy, K, f)).

Remark 4.1. We infer from Corollary (4.1) that the central limit theorem holds for any BV function
provided v < 1/2. Under the same condition on vy, Young (1999) has proved that the central limit
theorem holds for any a-Holder function. For the map 0-(x) = (1 —27)~Y7 — [z(1 — 27)"1/7] and
v < 1/2, the central limit theorem for BV functions is a consequence of Corollary 1.7(i) in Raugi
(2004).
Two simple examples.
(1) Assume that f is positive and non increasing on ]0,1[, with f(z) < Cz~® for some a > 0.
Since the density g, of v, is such that g, () < V(y)z~7, we infer that
1;7
s> STV

Hence the CLT holds as soon as a < % — 7.
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(2) Assume now that f is positive and non decreasing on ]0,1[ with f(z) < C(1 — z)™* for some

a > 0. Here
Viv) ( C\1a\1—v
t) < ) 1_(1_<7) ) )
vy(f >1) < 1—~ ;
Hence the CLT holds as soon as a < % — 2(17_7).

Proof of Theorem 4.1. Let f in C(M,p, ). From Dedecker and Rio (2000), Items (1) and (2) of
Theorem 4.1 hold as soon as

D I(F(Xo) = u(F)E(F(Xn) Xo) = pn(f))]1 < o0

n>0

Assume first that f = Zle a;g;, where Zle la;| < 1, and g; belongs to Mon(M, p, ). Clearly, the
series on left side is bounded by

kE k
DD laiag] Y l(gi(Xo) = 1(9)) (E(g;(Xn)| Xo) = 1(g))ln -

i=1 j=1 n>0
Here, we use the following lemma

Lemma 4.1. Let g; and g; be two functions in Mon(M,p, ) for some p €]2,00]. For any1 <q <p
one has

P—gq

(a5 (X)1X) = (g5l < 200 (-2 ) 2 ) 5

For any 1 < q < p/2, one has

(980 = ) (Bl ) Xo) = gl < 4042 (L) 2 )"
From Lemma 4.1 with ¢ = 1, we conclude that
2 -
(41) S I (X0) = kD EFEIXD) ~ ) < P25 S G ()5
n>0 n>0

Since the bound (4.1) is true for any function f = Z§:1 a;gi, it is true also for any f in C(M,p,p),
and Items (1) and (2) follow.

The last assertion is rather standard. From the first inequality of Lemma 4.1 with ¢ = p/(p — 1),
we infer that if 3", o(a1(n))P~2/P < oo, then 3=, ¢ IE(f(Xn)|Xo0) — 1(f)lp/p—1) < o0 for any f
in C(M,p,u). Tt follows that g(z) = >3 E(f(Xk) — u(f)|Xo = z) belongs to LP/P~Y (1) and that
m(X1, Xo) = o (B(F(X1)| Xo) — E(f(X)|X1)) belongs to L?/®~1). Clearly

f(X1) = p(f) = m(Xy, Xo) + 9(Xo) — g(X1),
with E(m(X1, Xo)|Xo) = 0. Moreover, it follows from the preceding result that

n—oo n—oo v/

lim ;ﬁ)@mm,xk_l)ul = || 3000 — )|, < o).

By Theorem 1 in Esseen an Janson (1985), it follows that E(m?2(X1, Xo)) = o2(u, K, f).
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Proof of Lemma 4.1. We only prove the second inequality (the proof of the first one is easier). Let
r=¢q/(q—1) and let B,(c(Xp)) be the set of o(Xp)-measurable random variables such that ||V, < 1.
By duality,

1(9:(Xo) — 1(9:)) (E(g;(Xn)|Xo0) — u(gi)llg = YeBSl(ler ) E(Y (9:(Xo) — 1(9:))(95(Xn) — 1(g5)))
= sup  Cov(Y(gi(Xo) — 11(9i), 95(Xn)) -
YeB,(0(Xo))

Define the coefficients ay, 4(n) of the sequence (g(X;))i>0 as in Section 3 with g o f; instead of f;. If
¢ is monotonic on some open interval of R and null elsewhere, the set {z : g(x) < t} is either some
interval or the complement of some interval, so that ay 4(n) < 2*ax(n). Let Qy be the generalized
inverse of the tail function t — P(|Y| > ¢). From Theorem 1.1 and Lemma 2.1 in Rio (2000), one has
that

0‘1,91‘(”)
Cov(Yg:(Xo), g5(X0)) < 2 /0 Qv (1) @y, (x0y (1) @y (0 (1)l

2a1(n)
< 2/0 QY(U)Qgi(Xo)(U)ng(Xo)(u)du'

In the same way, applying first Theorem 1.1 in Rio (2000) and next Fréchet’s inequality (1957) (see
also Inequality (1.11b) in Rio (2000)),

IN

201 (n)
Cov(V (). g,(X)) < 2nlla) [ @)@y v (i

IN

2a1(n)
2 / Qv (W)Qy, o) (W) Qg 0 (W)t

Since fol Q% (u)du < 1, it follows that

201 (n)
I(9:(Xo0) = 1)) (Bg5(X2) | Xo) — ngi)lla < 4( /0 Qe QL ()

Since g; and g; belong to Mon(M, p, u) for some p > 2¢, we have that Qg (x,)(u) and ng(XO)(u) are
smaller than Mu =1/, and the result follows.

Proof of Corollary 4.1. We have seen that (T, ..., T7) is distributed as (Xp, ..., X1) where (X;)i>0
is the stationary Markov chain with invariant measure v, and transition kernel K. Consequently, on
the probability space ([0, 1], ), the sum Sy, (f — v(f)) is distributed as > | (f(X;) — vy(f)), so that
n~Y28,(f — v,(f)) satisfies the central limit theorem if and only if n=1/2 3" (f(X;) — vy(f)) does.
Moreover, we infer from Theorem 3.1 that

a(n) = O(nwv;hre)

for any € > 0. Consequently, if p > (2 — 2v)/(1 — 2v), one has that >, (o (n))pT < o0 so that
Theorem 4.1 applies: the central limit theorem holds provided that f belongs to C(M,p,vy).
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5. RATES OF CONVERGENCE IN THE CLT

Let ¢ be some concave function from R to RT, with ¢(0) = 0. Denote by Lip, the set of functions
g such that

l9(x) —g()| < c(lx —yl) .

When ¢(z) = 2 for « €]0, 1], we have Lip, = H, 1. For two probability measures P, () with finite first
moment, let

de(P,Q) = sup |P(f) —Q(f)!.

g€Llip,.

When ¢ =Id, we write d. = d;. Note that d;(P, Q) is the so-called Kantorovi¢ distance between P
and Q.

Theorem 5.1. Let X = (X;);>0 be a stationary Markov chain with invariant measure p and transition
kernel K. Let o%(f) = 0?(u, K, f) be the non-negative number defined in Theorem 4.1, and let Go2(f)
be the Gaussian distribution with mean 0 and variance o?(f). Let P,(f) be the distribution of the
normalized sum n~ Y231 (F(X;) — p(f)).

(1) Assume that f belongs to C(M,p, p) for some M >0 and some p €]2,00], and that

S (@i (k)'F < o0

k>0
If 6*(f) = 0, then do(Py(f),d103) = Olc(n™'/%)).
(2) If f belongs to C(M,p, ) for some M >0 and some p €]3, 0], and if
p—3
> kag(k) 7 < oo,
k>0
then dc<P7l(f)7 G0'2(f)) = O(C(nil/z))'
(3) If f belongs to C(M,p, ) for some M > 0 and some p €]3, 00|, and if

ag(k) = O(k=FIP/P=3))  for some 6 €]0,1],
then de(Pp(f), Go2(py) = O(c(n=%/2)).

Corollary 5.1. Let § €]0,1] and v < 1/(2+9), and let ju,(f) be the distribution of n="2S,(f —v-(f)).
If f belongs to the class C(M,p,v,) for some M > 0 and some p > (3 —3v)/(1 — (2 + 6)y), then

dc(:u%(f)v Gaz(f)) - O(C(n76/2))7 where U2(f) - 02(1/’77 KW7 f)

Remark 5.1. We infer from Corollary 5.1 that if f is BV, then di(un(f),Go2(p)) = O(n~Y2) if
v < 1/3, and di(pn(f), Gozp) = O(n=?) if v < 1/(2 + ). Denote by dpy(P,Q) the uniform
distance between the distribution functions of P and Q. If f is a-Holder, Gouézel (2005, Theorem
1.5) has proved that dpy (pn(f),Go2(f)) = O(nil/Q) if v < 1/3, and dpy (pn(f), G0'2(f)) = O(nié/Q)
if v =1/(246). In fact, from a general result of Bolthausen (1982) for Harris recurrent Markov
chains, we conjecture that the results of Corollary 5.1 are true with dpy instead of dy.

Two simple examples (continued).

(1) Assume that f is positive and non increasing on [0, 1], with f(x) < Cx~® for some a > 0. Let
5 €]0,1] and v < 1/(2+0). If a < & — 2 then de(pn(f), Goo(p)) = O(c(n/2)).
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(2) Assume that f is positive and non increasing on [0, 1], with f(z) < C(1 —x)~® for some a > 0.

Let 6 €)0,1] and v < 1/(2+4). f a < § — {7223, then de(pun(f), Goz(p)) = O(c(n™*/?)).

Proof of Theorem 5.1. From the Kantorovi¢-Rubinstein theorem (1957), there exists a probability
measure m with margins P and @, such that di(P, Q) = [ |z —y|r(dz, dy). Since ¢ is concave, we then
have

d.(P.Q) = sup )/ Jr(de dy)| < /c(]w—y])ﬂ(dx, dy) < c(dy(P, Q).

feH.

Hence, it is enough to prove the theorem for d; only.
If 301 (k)P~2/P < oo, f belongs to C(M,p,u) for some M > 0 and some p €]2,00], and
a?(f) = 0, it follows from Theorem 4.1 that f(X1) = g(Xo) — g(X1) with u(|g|) < co. Hence

2u(]g1)

di(Pp(f),610y) < Jn

and Item (1) is proved.

From now, we assume that o2(f) > 0 (otherwise, the result follows from Item (1)). If f = g1 — g,
where g1, g2 belong to Mon(M, p, i) for some M > 0 and some p €]3,00], Item (2) of Theorem 5.1
follows from Theorem 3.1(b) in Dedecker and Rio (2007). In fact the proof remains unchanged if f
belongs to C(M, p, u) for some M > 0 and some p €]3, c].

It remains to prove Item (3). Let Yi = f(Xx) — u(f), 02(f) = 02, and s,, = >0, Y;. Define

m
Wy = Ap + By, with Ay, = E(s2|Xo) — mo? and By, = 22E(Yk Yy ) .
k=1 i>m

From Theorem 2.2 in Dedecker and Rio (2007), we have that, if >, o [|[YoE(Y%|Xo)|[1 < oo,

[v2n]
(v, +2 YW
(52) VD), G £ )+ 3 M6+ 20 Wl ., 4 .
where
- 1
Dl,nzz \FZHYOE Yi|Xo)[l1 and Dzn—ZQGQ ZH o + Y5)E(Ye| Xo) -

>m

From Lemma 4.1 with ¢ = 1, the bound (4.1) holds for any f in C(M,p,u) for p > 2. Consequently,
if ag(k) = O(k=(1+0P/(P=3)) for some § €]0, 1[ and p > 3, then 3", [|[YoE(Y%|Xo)|[1 < oo, so that the
bound (5.2) holds. Moreover n='/2Dy,, = O(n="/?1In(n) vV n~%). Arguing as in Lemma 4.1, one can
prove that

p—3

IYZE(Yi|Xo)[lr < C(M,p)(en(k)) 7,
so that n=1/2Dy,, = O(n~/21n(n)).
Arguing as in Lemma 4.1, one can prove that, for 0 < k < ¢,

-3

(5:3) (1Yol + 20)E(RYi Xo)llh < [I(]Yo] + 20)iE(Y;| Xi) 1 < C(M,p,0)(on(i — k)7 .
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Consequently,
V2n V2n m
1 [Z] 1(1Y0] +20) Bmll1 _ 0(1[ ' Z 1 ) — O(n~/?)
vn mo? n mo? L (7 — k)1+o '
m=1 m=1 k=1i>m
Now,

IOLE 200 Al < 2 57 S (1ol + 20)(BORY;1X0) — BO I + (ol +20)| (%) — o).

i=1 j=i

m

For the second term on right hand, we have

LR(s2) — o < 230 PR ) = 0 3 FA (0 ()7 = 06m ),
=1

m
k>0
so that
1 [v2n] 1
Z L2y 9| —5/2
\/ﬁm ‘ ’mE(Sm) g ‘ O(n )

ﬁ m m
2 _
(5.4 I 3 23S (%ol + 20) B Xo) ~ BB = 0.
m=1 =1 j=1
Applying first (5.3), we have for j > i,
;3
(5.5) (Yol + 20)(B(Y;Y;|Xo) — E(Y;Y)) |l < 2C(M,p,0)(on(j — 1)) 7 .

We need a second bound for this quantity. Assume first that f = 3% | a;g;, where 3> | |a;| <1 and
g; belongs to Mon(M, p, i1). Let gi(o) = g; — 11(gi). We have that

1Yo (E(Y;Yj[Xo) — ]EYij))Hl
k k

> Z lwagar g (Xo) (Bl (X:)g{® (X;)|Xo) — E(gy” (X:)g{ (X;))]|1 -

For three real-valued random variables A, B, C, define the numbers a(A, B) and a(A, B,C) by

a(A,B) = sup |Cov(lacs,1p<t)|
s,teR
&(A,B,C) = sup [E((Lacs—P(A < 5))(1p<i — B(B < ))(1ozy — P(C < )]
s,t, u€R

(note that a(A, B, B) < a(A, B)). Let

= (9" (X0) Isign{E(g{” (X:)g{ (X;)| X0) — E(¢{ (X:)9' (X))},
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and note that Q4 = Qg(o) (Xo)" From Proposition 6.1 and Lemma 6.1 in Dedecker and Rio (2007), we
l

have that

)

g (Xo) (B (g (X:)g?(X;)|Xo) — E(o” (Xi)g™ (X)) = E((A — E(4))g{” (X:)g{*) (X;))

8(A,04(X1),0 (X,))/2
= 16/0 Q00 () (W) @y (x0) () Qg (x0) (W)

Note that Qg(o)(Xo) < Qg,(xo) T l9:(Xo)|l1. Hence, by Fréchet’s inequality (1957),
l

&(Avgq (Xz)ng(XJ))/Q
/ Q00 5y (9020, 50 () Qg ) ()
a(A,gq(X5),9r(X5))/2
<2 / Qa0 (1) Qg (x0) (1) Qg 30 ().

Since {g;(x) < t} is some interval of R, we have that for j >1i > 1
a(A, gq(Xi), gr(X;)) < 4a(A, Xi, Xj) < da(i),
and for ¢ = j,
a(A, gq4(Xi), 9r(X5)) < 4a(A, X;, Xi) < 4a(Xo, X;) < 4oq (i) < das(i).
Since Qg (xy)(u) < Mu~Y? it follows that, for 1 < i < j,

3 _—
91X Bay (X:)9r (X,) Xo) ~ Blay(X:)g: (X < 2L (200() 7

Consequently, for any f in C(M, p, 1) with p > 3,

32M3 =
I¥o(E(Y,Y;1X0) ~ B(YiY)h < === (200(0) 7

In the same way,

320 M? =
20{|E(Y:Y;|X0) — E(Yi¥))[1 £ =P (202(3)) 7 -
It follows that, for any 1 <i < j,
. p=3
(5.6) 1Yol + 20) (E(Y;Y;| Xo) — E(Y;¥;))|1 < D(M,p,0)(0a(i)) 7 .

Combining (5.5) and (5.6), we infer that

Z Z 1(IYo| + 20) (E(Y;Y;|X0) — E(YiY;))|l1 = O(m'™?),

i=1 j=1i

and (5.4) easily follows. This completes the proof.
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6. MOMENT INEQUALITIES

Theorem 6.1. Let X = (X;)i>0 be a stationary Markov chain with invariant measure p and transition
kernel K. If f belong to C(M,p, ) for some M > 0 and some p > 2, then, for any 2 < q < p

[>oue — )], = v2a(nlf Xo) ~ (DI +4M2(L)5 S0 B 5" )
= k=1

Corollary 6.1. Let 0 < v < 1. Let f belong to C(M,p, u) for some M > 0 and some p > 2, and let
2<qg<p.

(1) If v <2(p — @)/ (2(p — q) + pq), then ||Sn(f — vy (f))llq = O(V/n) .
(2) If2(p —q)/(2(p — @) +pq) < v < 1, then, for any ¢ > 0,

14— A=0(p=q)
I (F = v (P)llg = O(n'H ).
Remark 6.1. Assume that v < (p — 2)/(2p — 2). By Chebichev inequality applied with 2 < q <
2p(1 =)/ (vp+2(1 — 7)), we infer from Item (1) that for any € > 0,

C
vy (H18u(F = mr(F)] > ) < R

Assume now that (p—2)/(2p —2) <~ < 1. By Chebichev inequality applied with ¢ = 2, we infer from
Item (2) that for any € > 0,

1 C
”V(ﬁ's”(f — ()l > ‘””) S 2 DA

When f is BV (case p = c0) and v < 1, we obtain that, for any ¢ > 0 and any x > 0,

(18, =) > ) <

Note that Melbourne and Nicol (2007) obtained the same bound when f is a-Hélder and v < 1/2.

Two simple examples (continued).

(1) Assume that f is positive and non increasing on [0, 1], with f(z) < Cz~% for some a > 0.

Ifa<i-~vand2<g< 2(12 Y then 1Sn(f — vy(f)llqg = O(v/n). If now a < 1777 and

9V 2&_21) <g< 1777’ then, for any € > 0,

1a(f = 1 (M)llg = O(n*+= ).

(2) Assume that f is positive and non increasing on [0, 1], with f(z) < C(1 — x)~* for some
=0

a>0. Ifa< (7,0 and 2 < ¢ < %, then [|Sn(f — vy(f))llq (vn). If a < § and

QVM<(]<7 then, for any € > 0,

ISu(F = o (D)l = O (n 5.
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Proof of Theorem 6.1. From Proposition 4 in Dedecker and Doukhan (2003) (see also Theorem 2.5
in Rio (2000)), we have that, for any ¢ > 2,

| S0, < Va2 (RIFE) -+ (=R o)~ B (X0 Xo) D)
=1 k=1

D=

Assume first that f = Zle a;g;, where Zle la;| <1, and g; belongs to Mon(M, p, uu). Clearly

k k
1(f (Xo0) = () ES (Xn) | Xo0) =D lgj2 < Y D laiagl|[(9i(Xo) = 1(g:)) (B9 (Xn) [ X0) = 1(g5) g2 -

i=1 j=1

Applying Lemma 4.1, we obtain that

(£ (X0) — iCD)ECF X 1X0) = (g < 4082 (L) 20y (m))*50"

Clearly, this inequality remains valid for any f in C(M,p, 1), and the result follows.

7. THE EMPIRICAL DISTRIBUTION FUNCTION
Theorem 7.1. Let X = (X;)i>0 be a stationary Markov chain with invariant measure p and transition
kernel K. Let F,(t) =n~131 | 1x,<¢ and F,(t) = p(] — oo, ]).
(1) If X is ergodic (in the ergodic theoretic sense) and if Y ;.- f1(k) < 0o, then, for any probability

T on R, the process {v/n(F,(t) — Fu(t)),t € R} converges in distribution in L*(r) to a tight
Gaussian process G with covariance function

Cov(G(s), G(1) = Cruic(s,8) = (£ FO) + 3 p(FVKEFO) + 3~ u(FOK* 1)

k>0 k>0

(2) Let (D(R),d) be the space of cadlag functions equipped with the Skorohod metric d. If Ba(k) =
O(k=%7¢) for some € > 0, then the process {\/n(F,(t) —F,(t)),t € R} converges in distribution
in (D(R),d) to a tight Gaussian process G with covariance function C, .

Corollary 7.1. Let F,,(t) =n"t>" Lri<s-

(1) If0 < v < 1/2, then, for any probability © on [0, 1], the process {/n(Fn(t)—F, (t)),t € [0,1]}
converges in distribution in IL2(1) to a tight Gaussian process G, with covariance function
Cu, Kk,

(2) If 0 < v < 1/3, the process {\/n(F,,(t) — F,,(t)),t € [0,1]} converges in distribution in
(D([0,1]),d) to a tight Gaussian process G~ with covariance function C,_ k. .

Remark 7.1. Denote by || - ||p the LP(mw)-norm. If v < 1/2, we have that, for any 1 < p < 2,
(7.7) Vl|Fny — Fy |lpx  converges in distribution to |G

ol ‘paﬂ— :

In particular, if m = X is the Lebesgue measure on [0,1] and g = p/(p — 1), we obtain that

1
— sup |[Sn(f —vy(f))| converges in distribution to ||G[px -

V<
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For p=1 and q = oo, we obtain the limit distribution of the Kantorovic¢ distance di(Fy ~, F,.):

1
Vndy(Fy . F.) sup |Sn(f —v4y(f))| converges in distribution to / |G (t)]dt.
0

1
B \/ﬁ feH1
Now if v < 1/3, the limit in (7.7) holds for any p > 1.
Note that, for Harris recurrent Markov chains, Item (2) of Theorem 7.1 holds as soon as the sum
of the B-mizing coefficients of the chain is finite. Hence, we conjecture that Item (2) of Corollary 7.1
remains true for vy < 1/2.

Proof of Theorem 7.1. Item (1) has been proved in Dedecker and Merlevede (2007, Theorem 2,
Item 2) and Item (2) in Dedecker and Prieur (2007, Proposition 2).

Acknowledgments. Many thanks to Jean-René Chazottes, who pointed out the references to Conze
and Raugi (2003) and Raugi (2004).
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