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Abstract

In this paper, we give estimates of ideal or minimal distances between the distribution of the
normalized partial sum and the limiting Gaussian distribution for stationary martingale differ-
ence sequences or stationary sequences satisfying projective criteria. Applications to functions

of linear processes and to functions of expanding maps of the interval are given.

1 Introduction and Notations

Let X1, Xs, ... be a strictly stationary sequence of real-valued random variables (r.v.) with mean
zero and finite variance. Set S, = X;+ Xy + -+ X,,. By P, 1,25 we denote the law of n=/2S,
and by G2 the normal distribution N (0, 0?). In this paper, we shall give quantitative estimates
of the approximation of P,-1/25 by G,2 in terms of minimal or ideal metrics.

Let £(u,v) be the set of the probability laws on R? with marginals 4 and v. Let us consider

the following minimal distances (sometimes called Wasserstein distances of order r)

inf{/|x —y|"P(dz,dy) : P € L(p, 1/)} if0<r<l1

)= inf{</|:v—y|rP(dx,dy)>l/r PeLur)) ifr>1.



It is well known that for two probability measures p and v on R with respective distributions
functions (d.f.) F' and G,

1/r

W, (i, v) = (/01 IF~Y () — G—l(u)rdu) for any r > 1. (1.1)

We consider also the following ideal distances of order r (Zolotarev distances of order ). For

two probability measures p and v, and r a positive real, let

Q(um)zsup{/fdu—/fdv:fGAT},

where A, is defined as follows: denoting by [ the natural integer such that [ <r <[+ 1, A, is

the class of real functions f which are [-times continuously differentiable and such that
[fO(x) = FO(y)| < |z —y[™" for any (z,y) € R x R. (1.2)
It follows from the Kantorovich-Rubinstein theorem (1958) that for any 0 < r <1,

We(p,v) = Go(p, v) . (1.3)

For probability laws on the real line, Rio (1998) proved that for any r > 1,

W, (1,v) < ¢ (G ()" (1.4)
where ¢, is a constant depending only on r.

For independent random variables, Ibragimov (1966) established that if X; € L? for p €]2, 3],
then Wi (P, 125 ,Go2) = O(n'7?/2) (see his Theorem 4.3). Still in the case of independent
r.v.’s, Zolotarev (1976) obtained the following upper bound for the ideal distance: if X; € L for
p €]2,3], then (,(P,-1/25, , Go2) = O(n'~/%). From (1.4), the result of Zolotarev entails that, for
p €]2,3], Wp(P, 125 ,Gy2) = O(n'/P~4/2) (which was obtained by Sakhanenko (1985) for any
p > 2). From (1.1) and Holder’s inequality, we easily get that for independent random variables
in IL? with p €]2, 3],

W, (Py-1/2g,, Gy2) = O(n~®=D/2") for any 1 <r < p. (1.5)

In this paper, we are interested in extensions of (1.5) to sequences of dependent random
variables. More precisely, for X; € IL? and p in |2, 3] we shall give LP-projective criteria under
which: for r € [p — 2,p] and (r,p) # (1, 3),

Wy (Pyrjzg, , Goz) = O(n~#=2/2max(Lr)). (1.6)



As we shall see in Remark 2.3, (1.6) applied to r = p — 2 provides the rate of convergence
O(n_Z(pP—iQD) in the Berry-Esseen theorem.

When (r,p) = (1,3), Dedecker and Rio (2007) obtained that Wy (P, 125 ,Gy2) = O(n~'/?)
for stationary sequences of random variables in L3 satisfying L' projective criteria or weak
dependence assumptions (a similar result was obtained by Pene (2005) in the case where the
variables are bounded). In this particular case our approach provides a new criterion under
which W1 (P, 125 , Go2) = O(n~"?logn).

Our paper is organized as follows. In Section 2, we give projective conditions for stationary
martingales differences sequences to satisfy (1.6) in the case (r,p) # (1,3). To be more precise,
let (X;)icz be a stationary sequence of martingale differences with respect to some o-algebras
(Fi)iez (see Section 1.1 below for the definition of (F;);ez). As a consequence of our Theorem
2.1, we obtain that if (X;);ez is in L with p €]2, 3] and satisfies

> el (Eir) o

then the upper bound (1.6) holds provided that (r,p) # (1,3). In the case r = 1 and p = 3, we
obtain the upper bound W;(P, 125, ,Gy2) = O(n~1/?logn).
In Section 3, starting from the coboundary decomposition going back to Gordin (1969), and

o < 00, (1.7)

using the results of Section 2, we obtain LP-projective criteria ensuring (1.6) (if (r,p) # (1, 3)).
For instance, if (X;);ez is a stationary sequence of L? random variables adapted to (F;);cz, we
obtain (1.6) for any p €]2,3] and any r € [p — 2,p] provided that (1.7) holds and the series
E(S,|Fo) converge in LP. In the case where p = 3, this last condition has to be strengthened.
Our approach makes also possible to treat the case of non-adapted sequences.

Section 4 is devoted to applications. In particular, we give sufficient conditions for some
functions of Harris recurrent Markov chains and for functions of linear processes to satisfy the
bound (1.6) in the case (r,p) # (1,3) and the rate O(n~/?logn) when r = 1 and p = 3. Since
projective criteria are verified under weak dependence assumptions, we give an application to
functions of ¢-dependent sequences in the sense of Dedecker and Prieur (2007). These conditions

apply to unbounded functions of uniformly expanding maps.

1.1 Preliminary notations

Throughout the paper, Y is a N(0, 1)-distributed random variable. We shall also use the follow-
ing notations. Let (£2,.A4,P) be a probability space, and T": Q — Q be a bijective bimeasurable
transformation preserving the probability P. For a c-algebra Fy satisfying Fy C T 1(F),
we define the nondecreasing filtration (F;)iez by Fi = T (Fo). Let F_oo = (Nyey Fr and



Foo = Viez Fr- We shall denote sometimes by [E; the conditional expectation with respect to
F;. Let Xy be a zero mean random variable with finite variance, and define the stationary se-
quence (X;)iez by X; = Xgo T

2 Stationary sequences of martingale differences.

In this section we give bounds for the ideal distance of order r in the central limit theorem for

stationary martingale differences sequences (X;);cz under projective conditions.

Notation 2.1. For any p > 2, define the envelope norm || . |16, by

1
Xlep = [ (V871 = u/2)) @ ()
0
where (Qx denotes the quantile function of | X|, and ® denotes the d.f. of the N(0,1) law.

Theorem 2.1. Let (X;);ez be a stationary martingale differences sequence with respect to (F;)icz.
Let o denote the standard deviation of Xo. Let p €]2,3]. Assume that E|X|P < oo and that

> e (Sm) -, <o (21)
- n2-p/2 nl”° 1,&,p ’ '
and

=1 S? )

n=1
Then, for any r € [p — 2,p] with (r,p) # (1,3), G.(Pa-vas,, Gor) = O(n'?2), and for p = 3
(1 (Pn*1/25‘n7 GU2) = O(n_1/2 log n)

Remark 2.1. Under the assumptions of Theorem 2.1, (,(P,-1/2g, , Go2) = O(n~"/2) if r < p—2.
Indeed, let p’ = r+ 2. Since p’ < p, if the conditions (2.1) and (2.2) are satisfied for p, they also
hold for p’. Hence Theorem 2.1 applies with p'.

From (1.3) and (1.4), the following result holds for the Wasserstein distances of order r.

Corollary 2.1. Under the conditions of Theorem 2.1, W,(P, 125 ,Gy2) = O(n~@=2/2max(lr)
for any r in [p — 2, p|, provided that (r,p) # (1, 3).

Remark 2.2. For p in |2,3], W, (P, 125 ,G,2) = O(n~37P/?). This bound was obtained by
Sakhanenko (1985) in the independent case. For p < 3, we have Wi (P, 1/2g, , G,2) = O(n'77/2).

n

This bound was obtained by Ibragimov (1966) in the independent case.



Remark 2.3. Let II,, be the Prokhorov distance between the law of n~'/2S, and the normal
distribution N(0,0?). From Markov’s inequality,

I, < (Wo(P,-12g, Go2 )T for any 0 <7 < 1.
Taking r = p — 2, it follows that under the assumptions of Theorem 2.1,
I, = O(n M) if p<3andII, = O(n""4\/logn) if p = 3. (2.3)

For p in |2,4], under (2.2), we have that || >0 E(X? — 0%|Fi—1)lp/2 = O(n*?) (apply Theorem
2 in Wu and Zhao (2006)). Applying then the result in Heyde and Brown (1970), we get that if

(X,)iez is a stationary martingale difference sequence in L” such that (2.2) is satisfied then
1= o = O(n™ 7).
where F,, is the distribution function of n=%/2S,, and ®, is the d.f. of G,2. Now
1F, — @y lloe < (1+ 071 (2m) V)L, .

Consequently the bounds obtained in (2.3) improve the one given in Heyde and Brown (1970),
provided that (2.1) holds.

Remark 2.4. Notice that if (X;);cz is a stationary martingale difference sequence in L3 such
that E(X2) = o? and
> ETPR(XE|F) — 07|32 < o0, (2.4)
k>0
then the conditions (2.1) and (2.2) hold for p = 3. Consequently, if (2.4) holds, then Remark
2.3 gives ||F,, — @5l = O(n™"/*y/logn). This result has to be compared with Theorem 6 in
Jan (2001), which states that ||F, — ®,||c = O(n=4) if 3, |E(XZ|Fo) — 02|32 < oo

Remark 2.5. Notice that if (X;);ez is a stationary martingale differences sequence, then the

conditions (2.1) and (2.2) are respectively equivalent to

> 22 B(SY | Fo) — 0*[l1e, < 00, and Y 20|27 B(SS | Fy) — 0,2 < 0.

j=0 J=0

To see this, let A, = ||E(S%[Fo) — E(S?)|1,0p and B, = ||E(S%[Fo) — E(S2)|l,/2. We first
show that A, and B, are subadditive sequences. Indeed, by the martingale property and the

stationarity of the sequence, for all positive ¢ and j

Aiyj = |E(S? 4 (Siv; — Si)?*|Fo) — E(S? + (Sits — Si)H)l1,0.
< A+ |E((Sivg — Si)* —E(S2) |Fo) 1,0, -
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Proceeding as in the proof of (4.6), p. 65 in Rio (2000), one can prove that, for any o-field .4
and any integrable random variable X, [|E(X|A)|l1.0, < | X]/1.6,- Hence

IE((Sivs — S0 = E(S) [Fo) [1.0p < IE((Siv; — 8:)* = E(S)) 1Fi) 1.0 -

By stationarity, it follows that A;; < A; + A;. Similarly B;;; < B; + B;. The proof of the
equivalences then follows by using the same arguments as in the proof of Lemma 2.7 in Peligrad
and Utev (2005).

3 Rates of convergence for stationary sequences

In this section, we give estimates for the ideal distances of order r for stationary sequences which

are not necessarily adapted to F;.

Theorem 3.1. Let (X;)iez be a stationary sequence of centered random variables in P with
p €]2,3[, and let 02 = n~'E(S?). Assume that

> E(Xu|Fo) and Y (X_, — E(X_,|Fy)) converge in L7, (3.1)
n>0 n>0
and
> TR T B(SH F) = 022 < 0. (3.2)
n>1

2

Then the series )., Cov(Xo, Xj) converges to some nonnegative 0%, and

1. G(Pyippg,, Goz) = O(n=P/2) forr € [p—2,2],
2. ((Py1/2g,,Gp2) = O(n'=?/2) forr €]2,pl.

Remark 3.1. According to the bound (5.35), we infer that, under the assumptions of Theorem
3.1, the condition (3.2) is equivalent to

> TR T R(S) | Fo) — 0°[lpye < 00 (3.3)

n>1
The same remark applies to the next theorem with p = 3.
Remark 3.2. The result of item 1 is valid with o, instead of ¢. On the contrary, the result of

item 2 is no longer true if o, is replaced by o, because for r €]2,3], a necessary condition for

¢r(i,v) to be finite is that the two first moments of v and p are equal. Note that under the



assumptions of Theorem 3.1, both W,.(P,-1/2g, ,G,2) and W,.(P,-1/25, , G52 ) are of the order of

—(p—2)/2 max(1,r

n ). Indeed, in the case where r €]2, p], one has that

WT(Pnﬂ/zSn, Gy2) < Wr<Pn71/2sn, GU%) + WT(GU%, Gy2),
and the second term is of order |0 — o,,| = O(n~1/?).

In the case where p = 3, the condition (3.1) has to be strengthened.

Theorem 3.2. Let (X;)icz be a stationary sequence of centered random variables in L3, and let
02 =n"'E(S?). Assume that

Z%‘)ZE<Xk\fO)‘)3<oo and Z%‘)Z(X_k—E(X_k\fo))‘) oo, (3.4

3
n>1 k>n k>n

Assume in addition that

> 02T B(SHF) — olllsg2 < 0. (3.5)

n>1
Then the series Y, Cov(Xy, Xi) converges to some nonnegative o* and
1. (P, Gor) = O(n~ 2 log ),
2. (P12, , Goz) = O(n~Y?) forr €]1,2],

8. G (P12, Goz) = O(n~Y?2) for r €]2,3].

4 Applications

4.1 Martingale differences sequences and functions of Markov chains

Recall that the strong mixing coefficient of Rosenblatt (1956) between two o-algebras A and B
is defined by a(A, B) = sup{|P(ANB) —P(A)P(B)| : (A, B) € AxB}. For a strictly stationary
sequence (X;)iez, let F; = o(Xg, k < i). Define the mixing coefficients a4(n) of the sequence
(Xi)iEZ by

ai(n) = a(Fo,0(X,)).

Let @ be the quantile function of | X[, that is the cadlag inverse of the tail function z —

P(|Xo| > x). According to the results of Section 2, the following proposition holds.



Proposition 4.1. Let (X;);ez be a stationary martingale difference sequence. Assume moreover
that the series

ai(k) 2/p
Zﬁ / (1V Tog(1/u))22Q2(w)du. and Z#( /0 Qp(u)du)/ (4.1)

ai (k)
E>1 0 E>1

are convergent. Then the conclusions of Theorem 2.1 hold.

Remark 4.1. From Theorem 2.1(b) in Dedecker and Rio (2007), a sufficient condition to get
Wi(P, 125, ,Gy2) = O(n~1/?logn) is

Z/al(n) Q3 (u)du < oo .
0

k>0
This condition is always strictly stronger than the condition (4.1) when p = 3.

We now give an example. Consider the homogeneous Markov chain (Y;);cz with state space
Z described at page 320 in Davydov (1973). The transition probabilities are given by py, 41 =
Pn—n—1 = ay for n >0, ppo=p_pno=1—a, forn >0, po=0,a0=1/2and 1/2 <a, <1
for n > 1. This chain is irreducible and aperiodic. It is Harris positively recurrent as soon
as . <o HZ;%ak < 00. In that case the stationary chain is strongly mixing in the sense of
Rosenblatt (1956).

Denote by K the Markov kernel of the chain (Y;);cz. The functions f such that K(f) =0
almost everywhere are obtained by linear combinations of the two functions f; and f, given by
fi1) =1, fi(=1) = =1 and fi(n) = fi(-n) = 0if n # 1, and f>(0) =1, fo(1) = foa(=1) =0
and fo(n+1) = fo(—n—1) =1—a,' if n > 0. Hence the functions f such that K(f) =0 are
bounded.

If (X;)iez is defined by X; = f(Y;), with K(f) = 0, then Proposition 4.1 applies if

a1 (n) = O(n*?2(logn)~?/?7) for some € > 0, (4.2)

which holds as soon as Py(7 = n) = O(n~'"P/2(logn)~P/>=¢), where P, is the probability of the
chain starting from 0, and 7 = inf{n > 0, X,, = 0}. Now Py(7 = n) = (1 — a,)I[7"}'a; for n > 2.
Consequently, if

1
a; =1— g(l + i E) for i large enough ,
)

log 1
the condition (4.2) is satisfied and the conclusion of Theorem 2.1 holds.

Remark 4.2. If f is bounded and K(f) # 0, the central limit theorem may fail to hold for
Sn =Y (f(Y;) —E(f(Y;))). We refer to the Example 2, page 321, given by Davydov (1973),

where S, properly normalized converges to a stable law with exponent strictly less than 2.

8



Proof of Proposition 4.1. Let BP(Fy) be the set of Fy-measurable random variables such
that || Z||, < 1. We first notice that

IE(XEFo) = o®llp2 = sup  Cov(Z,X7).
ZeBP/(P*2)(]-'o)

Applying Rio’s covariance inequality (1993), we get that

a1(k) 2/p
R -l <2( [ @)™,

which shows that the convergence of the second series in (4.1) implies (2.2). Now, from Fréchet
(1957), we have that

IECXF) — 00 = sup {E((LV [ 273 B(X\F) — 0?]), Z Fymeasurable, Z ~ N'(0,1)}
Hence, setting e, = sign(E(X?|Fy) — o?),
IE(X7|Fo) — 0%|l1,0, = sup {Cov(ex(1 V |Z|P~?), X}), Z Fo-measurable, Z ~ N(0,1)} .

Applying again Rio’s covariance inequality (1993), we get that

a1 (k)
IBCEF) ol < C( [ (1 logtum) P 22Q wyu).
0

which shows that the convergence of the first series in (4.1) implies (2.1).

4.2 Linear processes and functions of linear processes

Theorem 4.1. Let (a;)icz be a sequence of real numbers in (* such that Y ez @i converges to
some real A. Let (g;)iez be a stationary sequence of martingale differences in P for p €]2,3].
Let Xy, = ) icpa6k—j, and 02 = n'E(S2). Let by = ap — A and b; = a; for j # 0. Let
An =375 O ko bij)?. If Ay = o(n), then o7 converges to o = A*E(eg5). If moreover

S el (5

Fo) — E(&})

< 00, (4.3)

p/2

then we have
1. If A, = O(1), then (1(P,-1/25,,Gy2) = O(n='21og(n)), for p =3,
2. If A, = O(n"T22/7) then (.(Py-125,, Go2) = O(n*™P/2), forr € [p—2,1] and p # 3,
8. If A, = O(n®7P), then (. (P12, Goz) = O(n=P/2), for r €]1,2],

9



4' ]f An = O(n3—p); then Cr(Pn*1/2Sna GJ%) = O(nl—p/2); fO’f’ r 6]2,]9]-

Remark 4.3. If the condition given by Heyde (1975) holds, that is

i(Zak) < oo and Z(Zak> < 00, (4.4)

n=1 k>n n=1 k<-n

then A, = O(1), so that it satisfies all the conditions of items 1-4. On the other and, one has

the bound
A, <4B,, where Z ((Z ;| ) ( Z |aj|>2> : (4.5)

>k

Proof of Theorem 4.1. We start with the following decomposition:

Sn:Aisj Z (Zbk j)gj (4.6)

j=—00

Let R, = ZJ__OO(Zk Lbe_j)gj. Since | R, |3 = A,|leol|? and since |0, — o < n7V2||R,|2, the
fact that A, = o(n) implies that o,, converges to 0. We now give an upper bound for ||R,||,.
From Burkholder’s inequality, there exists a constant C' such that

|Rally < ] > (jbk_j)i-g p/2}1/2 < Clleollpv/A.. (4.7)
j=—c0 k=1

The result follows by applying Theorem 2.1 to the martingale AY"}'_, e (this is possible because
of (4.3)), and by using Lemma 5.2 with the upper bound (4.7). To prove Remark 4.3, note first

that
Z(ZamL Z al) +Z(Zal) +Z< Z )

j=1 I=—oc0 =1 l=—i—n+1

It follows easily that A,, = O(1) under (4.4). To prove the bound (4.5), note first that

n+i—1

A,<38,+ 3 (X lal) + 3 ( i ).

i=n+1 =1 i=n+1 [=—i—n+1
Let T, = S27°. oy and Q; = 3,7 |a|. We have that

n+i—1 00

Z ( Z ‘“l|) < Ton Y (Ti=Tows) STy,
i=n-+1 =1 i=n+1
S ) £ 0 Y (@ Q) <0y
i=n+1 I=—i—n+1 i=n+1

10



Since n(T72,, + Q2 ,1) < By, (4.5) follows. [

In the next result, we shall focus on functions of real-valued linear processes
Xk = h(Zaiak_i) —E(h(Zaiek_i)) y (48)
i€Z i€Z

where (g;);ez is a sequence of iid random variables. Denote by wy,(., M) the modulus of continuity
of the function h on the interval [—M, M], that is

wy(t, M) = sup{|h(z) — h(y)|, |z —y| < t, x| < M, |y| < M}.

Theorem 4.2. Let (a;)icz be a sequence of real numbers in ? and (&;)icz, be a sequence of iid
random variables in L2, Let X}, be defined as in (4.8) and o2 = n™'E(S?). Assume that h is
v-Hélder on any compact set, with wy,(t, M) < Ct"M®*, for some C > 0, v €]0,1] and o > 0. If
for some p €]2,3],

/2
B(leof ) <00 and Y (Y a2)" < oo, (4.9)

i>1 =
then the series Y, ., Cov(Xo, X)) converges to some nonnegative o*, and
1. G(Pyorag,, Go) = O(n~V2logn), forp =3,
2. ((Py1png, , Goz) = O(nYP/2) forr € [p—2,2] and (r,p) # (1,3),
8. G (P12, Go2) = O(n'=P/2) forr €]2,p].
Proof of Theorem 4.2. Theorem 4.2 is a consequence of the following proposition:

Proposition 4.2. Let (a;)icz, (€i)icz and (X;)iez be as in Theorem 4.2. Let (g})iez be an

independent copy of (&;)icz. Let Vo =Y . .p aie—; and
Ml,i = |‘/0| V ‘ Z a;E_; + Zaje'_j and Mgﬂ' = |‘/0| V ’ Z ajel_j + ZCL]’E_]'

J<i J=i J<i J=i

If for some p €]2, 3],

E Z»p/2—1 wh<‘ E a;€_j
j>i

1>1

< 00,
p

7Ml,i>

7M2,—i>

/21
< oo and Zzp/ Hwh(’ Z a;e_;j
p i>1 j<—i

(4.10)
then the conclusions of Theorem 4.2 hold.

11



To prove Theorem 4.2, it remains to check (4.10). We only check the first condition. Since
wy(t, M) < Ct'M* and the random variables ¢; are iid, we have

HthZajg—jaMl,i) < C‘Hzagg—y Vol® 5—) “Ilp
. p
Jj=i
so that
Jon (| 2 ase-sf 21
i b
oty v o
<o wey | | (vt +27] | Yase—] ] ))-
j>i j<i

From Burkholder’s inequality, for any G > 0,
B B B/2
H’Zaﬁ—j‘ = Hzaﬁ—j < K(Zéﬁ) lzoll5vgy -
! P .y Bp .y
Jj=i Jj>i j>i

Applying this inequality with 8 = v or 8 = a + 7, we infer that the first part of (4.10) holds

under (4.9). The second part can be handled in the same way. [

Proof of Proposition 4.2. Let F; = o(gy, k < i). We shall first prove that the condition (3.2)
of Theorem 3.1 holds. We write

n n—i

IE(S21F0) — E(S)lpz <2 D IE(XiXiril Fo) — E(XiXpss) /2

i=1 k=0

< A Y IEXGX k| Fo)llpz + 2D D IE(X Xl Fo) — B(X Xiti)lpy2 -

1=1 k=i i=1 k=1

We first control the second term. Let ¢ be an independent copy of e, and denote by E.(-) the

conditional expectation with respect to €. Define
Y, = Z ajeij, Y] = Zaﬁ;—j Ly = Z ajei—j, Z; = Zajgg—j
j<i j<i i j>i
and mq; = |Y/ + Z;| V |Y] + Z]|. Taking F; = o(e;,i < £), and setting hg = h —E(h(>_, . aici)),
we have
|[E(X Xk Fo) — E(Xi Xpri)[lp/2
= (B (R + Zoho(Viys + Ziss)) = Be(ho(¥ + ZDho(Vis + Zi) ) |

p/2

12



Hence,

IE(Xi Xeril Fo) = E(XiXiri)llprz < Iho(Yiys + Zevi)lp

!/
wh(‘ E :aj(fi—j - Ei—j) ;
Jj=i
/
Wh a;(Eki-j — Ehti—j
j>k+i

)

) ml,k+i>
p

p

+ 1B (Y] + Z)l,

By subadditivity,

Hth Zaj(fi—j - 5;’_]') >m1,z') < Hth Z ajci—j >m1,i) + Hwh(’ Zaﬁ;_j >m1,i>
j>i g j>i g j>i ?
< o[ S fan)
g p
jzi

In the same way

Hwh(‘ Z a;j(Ekti-g — 5;9+i—j)

j>k+i

, Ml,k+i)

‘ p

) ml,k—i—i)

<o e
P j>k+i
Consequently

1 n 7
2 ] DO BN Xyl Fo) = B(Xi Xppi) /2 < 00

n>1 i=1 k=1
provided that the first condition in (4.10) holds.
We turn now to the control of D7 | >/ ||E(X; Xy4:|Fo)||p/2- We first write that

IE(X; Xpril Fo)llpe = B((Xs — B(X| Firpor2) Xt Fo) llpy2 + 1B Fitpor2) Xnril Fo) |2
= [ Xollpl| X = E(Xi| Firpie2)lp + [ Xollp E(X kgi| Fig a2 [l -

Let b(k) = k — [k/2]. Since ||E(Xiri|Fitir/2)llp = E(Xpw)|Fo)l|p, we have that
IE(X | Fit /2 [l
—‘ ( ( aaé‘b(k i Z aj€p(k)— >_h< Z a]‘gb(k i Z ajgb ))
j<b(k j>b(k j<b(k) j>b(k)
Using the same arguments as before, we get that

IECX kil Fspisa)ll < 2w (| D ases
J2b(k)

; Ml,b(k))

p

In the same way,

|~ B )|

‘ (( Z a;gi—j + Z a]»s,])— ( Z a]ZJ+ Z aJEZ]))

—[k/2] jz=[k/2] —[k/2] —[k/2]

Y
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so that
HXz' — E(Xi| Fite/2)

<tol] 5 o

i<—[k/2]

7M2,—[k/2]> H -
p

Consequently
1 n n
> s > D IEX i Xiil Fo)lpj2 < 00
n>1 i=1 k=i
provided that (4.10) holds. This completes the proof of (3.2). Using the same arguments, one
can easily check that the condition (3.1) of Theorem 3.1 (and also the condition (3.4) of Theorem
3.2 in the case p = 3) holds under (4.10). O

4.3 Functions of ¢-dependent sequences

In order to include examples of dynamical systems satisfying some correlations inequalities, we

introduce a weak version of the uniform mixing coefficients (see Dedecker and Prieur (2007)).

Definition 4.1. For any random variable Y = (Y3, - - ,Y}) with values in R* define the function
92.j(t) = Li<, — P(Y; < x). For any o-algebra F, let

E(f[ng,j(yj) f) - E(ﬁgw(yj)> Hoo

For a sequence Y = (Y;);ez, where Y; = Yy o T% and Yj is a Fo-measurable and real-valued r.v.,
let

¢k,Y(n) = Imax sup ¢(f07 (}/;17 s 7}/;'1))‘

I<ISE 4>..>i>n

Definition 4.2. For any p > 1, let C(p, M, Px) be the closed convex envelop of the set of
functions f which are monotonous on some open interval of R and null elsewhere, and such that
E([f(X)PP) < M.

Proposition 4.3. Let p €]2,3] and s > p. Let X; = f(Y;) —E(f(Y;)), where Y; = Yoo T" and f
belongs to C(s, M, Py,). Assume that

§ /2D ) g, ()6 < o (4.11)

i>1
Then the conclusions of Theorem 4.2 hold.
Remark 4.4. Notice that if s = p = 3, the condition (4.11) becomes Y5, ¢y (i)"/* < 00, and

if s = oo, the condition (4.11) becomes Y-, iP~2/2¢y v (i) < oo.

14



Proof of Proposition 4.3. Let BP(Fy) be the set of Fy-measurable random variables such
that || Z||, < 1. We first notice that

[E(Xk[Fo)llp < [[E(Xk[Fo)lls = sup  Cov(Z, f(Yx))-
ZEBS/(Sfl)(]:o)

According to Corollary 6.2 and since ¢(o(Z2), Yr) < ¢1v(k), we get that
g Yy , g
IE(Xk|Fo)lls < 8MY*(¢y v (k))7D* (4.12)

It follows that the conditions (3.1) (for p €]2,3[) or (3.4) (for p = 3) are satisfied under (4.11).
The condition (3.2) follows from the following lemma by taking b = (4 — p)/2.

Lemma 4.1. Let X; be as in Proposition 4.3, and let b €]0, 1.
1
If i/ g, ()7 < oo, then —— |E(S2|Fo) — E(S2)||p/2 < o0
; ; nl+b p/

Proof of Lemma 4.1. Since,

n n—i

IE(S2IFo) = E(S2) o2 <2 > IE(X:Xpssl Fo) = E(XiXis) 2
1=1 k=0

we infer that there exists C' > 0 such that

> 1+f,||1*3(52|9”o) E(S)llps2 < CZZ IIE XiXprilFo) = B(XiXppi)[lp2 - (4.13)

n>1 >0 k>0
We shall bound up ||E(X; Xy Fo) — E(X;Xp14)||p/2 in two ways. First, using the stationarity
and the upper bound (4.12), we have that
E(X X5i] Fo) = E(XiX i) llpr2 < 20 XoE(Xk | Fo)llpy2 < 16]|Xo[l, MY (1,3 (k)7

Next, using again Corollary 6.2,

, N Fy) — , , < . N\ < 2/s ) (5—2)/s
p i — ’
| E(X Xpqi| Fo) — E(X Xppa) | p/2 sup Cov(Z, X;Xkti) < 32M*(¢o.y (7)) .
ZeBs/(5=2)(Fo)

From (4.13) and the above upper bounds, we infer that the conclusion of Lemma (4.1) holds
provided that

[i(s=2)/(s=1)] [k(s—1)/(s=2)]

Z ( Z (z—l—l ) >(¢2Y e + Z ( Z (z jk)b)(qbl,Y(k))(s_l)/s < 00.

>0 k>0

15



Here, note that

[i(s=2)/(s=1)] 1 [k(s=1)/(s=2)) [2k(s=1)/(s=2)]
s— (s—1)
E < i_bﬂj and E < E — < DY E
P (t+ k)b — — (t+ k)b — — mb — ’

for some D > 0. Since ¢y y(k) < ¢oy(k), the conclusion of lemma (4.1) holds provided

s o 1y (s—1) s—
Zi_bﬂj@y(i)% < oo and Zk(l Vi ¢2,Y(]f)Tl < 0.

i>1 k>1

One can prove that the second series converges provided the first one does. [

4.3.1 Application to Expanding maps

Let BV be the class of bounded variation functions from [0, 1] to R. For any h € BV, denote
by ||dh|| the variation norm of the measure dh.

Let T be a map from [0, 1] to [0, 1] preserving a probability u on [0, 1], and let

n

Sa(f) =D (foTF—pu(f)).

k=1

Define the Perron-Frobenius operator K from L2([0, 1], 1) to L?([0, 1], 1) via the equality

1 1
| wn@ @) = [ ) 1)ntds). (1.14)
0 0
A Markov Kernel K is said to be BV-contracting if there exist C' > 0 and p € [0, 1] such that
[dK" (h)|| < Cp"||dhl|. (4.15)

The map T is said to be BV-contracting if its Perron-Frobenius operator is BV -contracting.
Let us present a large class of BV-contracting maps. We shall say that 7" is uniformly
expanding if it belongs to the class C defined in Broise (1996), Section 2.1 page 11. Recall that
if 7' is uniformly expanding, then there exists a probability measure px on [0, 1], whose density
f,. with respect to the Lebesgue measure is a bounded variation function, and such that p is

invariant by 7. Consider now the more restrictive conditions:
(a) T is uniformly expanding.
(b) The invariant measure p is unique and (7, ;) is mixing in the ergodic-theoretic sense.

(c) —1y,50 is a bounded variation function.

Fu
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Starting from Proposition 4.11 in Broise (1996), one can prove that if 7" satisfies the assumptions
(a), (b) and (c) above, then it is BV contracting (see for instance Dedecker and Prieur (2007),

Section 6.3). Some well known examples of maps satisfying the conditions (a), (b) and (c) are:
1. T(z) = px — [Bz] for § > 1. These maps are called S-transformations.
2. I is the finite union of disjoint intervals (Ix)1<g<n, and T'(x) = apx+0by on Iy, with |ag| > 1.

3. T(z) =a(z™' — 1) — [a(z! — 1)] for some a > 0. For a = 1, this transformation is known

as the Gauss map.

Proposition 4.4. Let 02 = n=YE(S2(f)). If T is BV -contracting, and if f belongs to C(p, M, 1)

with p €]2,3], then the series p((f — pu(f))?) +2> oo n(foT™ - (f — u(f))) converges to some

2 and

nonnegative o
1. G(Py-1s25, (), Go2) = O(n='?logn), for p =3,
2. G (Pp-125,(p), Goz) = O(n*=?/%) forr € [p—2,2] and (r,p) # (1,3),
3. G(Py-1s25,(5y: Goz2) = O(n'7?/2) for r €]2,p).

Proof of Proposition 4.4. Let (Y;);>1 be the Markov chain with transition Kernel K and
invariant measure p. Using the equation (4.14) it is easy to see that (Yo, ...,Y,) it is distributed
as (T™*1,...,T). Consequently, to prove Proposition 4.4, it suffices to prove that the sequence
X; = f(Yi) — u(f) satisfies the condition (4.11) of Proposition 4.3.

According to Lemma 1 in Dedecker and Prieur (2007), the coefficients ¢o v (i) of the chain
(Y;)iso with respect to F; = o(Y;,j < i) satisfy ¢oy(i) < Cp' for some p €]0,1] and some
positive constant C'. It follows that (4.11) is satisfied for s = p.

5 Proofs of the main results

From now on, we denote by C' a numerical constant which may vary from line to line.

Notation 5.1. For [ integer, ¢ in |I,{ + 1] and f [-times continuously differentiable, we set

[fla, = sup{lz =y fO () = FOy)| : (2,9) € R xR}
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5.1 Proof of Theorem 2.1

We prove Theorem 2.1 in the case ¢ = 1. The general case follows by dividing the random
variables by o. Since (,.(P,x, P.y) = |a|"(.(Px, Py), it is enough to bound up (.(Ps,,G,). We
first give an upper bound for ¢, y := Cp(PSQN ,Gan).

Proposition 5.1. Let (X;)icz be a stationary martingale differences sequence. Let M, =

E(|Xo|?). Then for any p in |2,3] and any natural integer N,

2v/2

where Zx = B(S2%|Fo) — B(S2¢) and Ay = 30—t 272K/2|| Z || o

N
1 2/p 2
272N/l < (Mp +575 > 2K(p/2_2)||ZK||1,<I>7p> + ]—DAN, (5.1)
K=0

Proof of Proposition 5.1. The proof is done by induction on N. Let (Y;);en be a sequence
of N(0,1)-distributed independent random variables, independent of the sequence (X;);cz. For
m>0,let T, =Y +Ys+---4Y,,. Set Sy =T, =0. For f numerical function and m < n, set

Joem(2) = E(f(x + T, — Tp)).

Then, from the independence of the above sequences,

E(f(Sn) = f(Tn)) = Dy with Dy = E(faem(Sm-1 + Xim) = facm(Sm1+ Yi)).  (5.2)

m=1
Next, from the Taylor integral formula at order two, for any two-times differentiable function g
and any ¢ in |2, 3],

(1 =D)lg"(x + th) — g"(x)|dt

1
(1= 1)[th|*?|gla,dt,

lg(z + h) — g(z) — ¢'(x)h — 3h°g"(x)] < P°

h2

IA

S— o—

whence
1

q(q—1)

lg(z + h) — g(z) — g'(x)h - %th”(ft)l < |2l 71g]a,- (5-3)

Let
From (5.3) applied twice with ¢ = f,,_n, © = S;—1 and h = X,,, or h = Y}, together with the
martingale property,

1
<

D, —=D.| <
p(p—1)

2 m

‘ 1

|fn—m|ApE(|Xm|p + |Ym|p)
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Now E(|Y,,|”) <p—1<(p—1)M,. Hence
| D = (D /2)] < M| frmla, (5.4)

Moreover, if f belongs to A,, then the smoothed function f,,_,, belongs to A,. Hence, summing

on m, we get that
E(f(S,) — f(T,)) < nM,+ (D'/2) where D' = D} + Dy +---+ D). (5.5)

Suppose now that n = 2V. To bound up D', we introduce a dyadic scheme.

Notation 5.2. Set mg = m — 1 and write my in basis 2: mg = ZiNzo b;2" with b; =0 or b; = 1
(note that by = 0). Set mp = Zf\LL bi2', so that my = 0. Let I =]k2%, (kK + 1)2X) NN (note
that Iy, =2, 25+1), uP = ety , Xi and UM = > ier,, Yi. For the sake of brevity, let
Uéo) = U, and Uéo) =U;.

Since my = 0, the following elementary identity is valid

N-1
Dl = S By (Sme) = Fitg s (S DX = 1)),
L=0

Now my, # my,; only if by = 1, then in this case m; = k2¥ with k odd. It follows that

Z Z ( n—1— k2L(Sk2L) - fg—1—(k—1)2b(5(k—1)2L)) Z (X72n - ‘72)> . (5-6)

=0 k€In_r,0 {m:mp=k2L}
k odd

Note that {m : my = k2!'} = I . Now by the martingale property

Epoe (3 (X2 = 0%) = B (UL)2) — E(UI)) 1= 210

ST
Since (X;)ieny and (Y;);en are independent, we infer that

Z > ( Fo1-kor (Skae) = £ _gor (Ste—1)20 + Thor —T(k—l)%))zék))- (5.7)

L=0 keln_ L,0
k odd

By using (1.2), we get that
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From the stationarity of (X;);eny and the above inequality,
1N
~ o2 (1
52 2Bk — U1 Z¢))- (5.8)
K=0

Now let Vi be the N(0,25)-distributed random variable defined from Uy via the quantile

transformation, that is
Vi = 2520 Y (Fg(Ug — 0) 4 0 (Fx(Ux) — Fx(Ug —0)))

where Fi denotes the d.f. of Uy, and (dx) is a sequence of independent uniformly distributed
r.v.’s, independent of the underlying random variables. Now, from the subadditivity of z — 2P~2,
|UK — UK‘p—2 < |UK — VK|p—2 + |VK — 0}(‘17—2. Hence

E(|Ux — U P21 Z0]) < Uk = Vil 2128 o2 + E(Vic = UklP2120) . (5.9)

By definition of Vi, the real |Ux — V||, is the so-called Wasserstein distance of order p between
the law of UI(?) and the N(0,2%) normal law. Therefrom, by Theorem 3.1 of Rio (2007) (which
improves the constants given in Theorem 1 of Rio (1998)), we get that

Uk = Vicllp < 2(2(p — 1)G6) 7. (5.10)

Now, since Vi and Uy are independent, their difference has the N (0, 25+1) distribution. Hence,

by definition of the envelope norm || . ||1,¢ p,
E(|Vic — Uk [P 2§]) < 20H0®2D) 2|y g, (5.11)
From (5.9), (5.10) and (5.11), we get that
E(|Ux — U2 Z01) < 2792¢ 7 || Zicllpya + 2040020 Zi g, (5.12)

Then, from (5.5), (5.8) and (5.12), we get

N-1
27NN < M, + QP2 4 2P 4/pz2 K pKHZK||p/27
K=0

where Ay = SIN_LoK®/2-2)| 7|l 4, Consequently we get the induction inequality
N-1

_ 1
2 NCp,N <M, + ﬁA + 22 K pK ||ZKH:D/2 (5.13)
K=0
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We now prove (5.1) by induction on N. Assume that ¢, 1, satisfies (5.1) for any L in [0, N — 1].
Starting from (5.13), using the induction hypothesis and the fact that A% < Aly, we get that

N-1
2Ny Myt 4 3 2 2o (04 ) 2 )
2\/5 K=0 \/_ p

Now 272K/7|| Z |,/ = A1 — A Consequently

1 AN 1 2/p 9 \p/2-1
2N M, + —=A) +/ ((M +—A’) —I——x) dz,
i = 2v2" " " o o N p
which implies (5.1) for (, y. O

In order to prove Theorem 2.1, we will also need a smoothing argument. This is the purpose
of the lemma below.

Lemma 5.1. For any 7 in )0,p], (,(Ps,,Gn) < 2¢.(Ps, * G1, G, % G1) + 4/2.

Proof of Lemma 5.1. Throughout the sequel, let Y be a N(0, 1)-distributed random variable,
independent of the o-field generated by the random variables (X;); and (Y;);.

For r < 2, since (, is an ideal metric with respect to the convolution,
gr(PSnv Gn) S CT(PSn * le Gn * Gl) + 2@“(507 Gl) S CT(PSn * le Gn * Gl) + 2E|Y|T
which implies Lemma 5.1 for < 2. For r > 2, from (5.3), for any f in A,,

F(S) = F(Su+Y) + F(S)Y = Lf7(S,)Y? <

Taking the expectation and noting that E|Y|” < r — 1 for r in ]2, 3], we infer that

E(f(S.) — F(Su+Y) — 4f(S.) < .

Obviously this inequality still holds for T}, instead of S,, and — f instead of f, so that adding the

so obtained inequality,

E(f(Sn) = f(Tn) <E(f(Sn+Y) = f(T, +Y)) + 3E(f"(Sn) — f(T5)) + 1
It follows that
¢+ (Ps,, Gn) < G(Ps, * G1, Gy % G1) + 3¢—2(Ps,, Gp) + 1.

Now r — 2 < 1. Hence

Gr—2(Ps,,, Gn) = Wy_s((Ps,, Gp) < (Wy(Ps,, Gn)) 2.

n’
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Next, by Theorem 3.1 in Rio (2007), W,(Ps,, G,) < (32¢.(Ps,, G,))Y/". Furthermore

n?

(32CT(PS7L’ Gn))l_wr < CT’(PSna Gn)

as soon as (.(Ps,,G,) > 207/275 This condition holds for any 7 in ]2, 3] if (.(Ps,, Gy) > 4v/2.

Then, from the above inequalities

CT(PSm Gn) < CT(PSn * G, G * Gl) + %CT(PS Gn) +1,

n?

which implies Lemma 5.1 [J

We go back to the proof of Theorem 2.1. We will first complete the proof in the case p = r.
Next we will derive the general case at the end of the proof.

Let (¥ v = sup,<on Gp(Ps, . Gr). We will bound up ¢y by induction on N. Let n ]2V, 2V+1],
Hence n = 2V + ¢ with £ € [1,2"]. We first notice that

C”'(PSTM Gn) < C’Y‘(Psrﬂ PS@ * G2N) + CT(PSZ * G2N7 Gy * G2N) :
Now, with the same notation as in the proof of Proposition 5.1, we have

Gr(Ps, * Gon, G * Gon ) = sup E(fon (Se) — fon (1)) < |f * ponsz|a, G(Ps,, Go) -

feA,

Applying Lemma 6.1, we infer that
Gr(Ps,: Gn) < G(Ps,, P, x Gon) + ¢, 2V P12¢,(Ps, G (5.14)

On the other hand, setting S, = X;_y + - - + X,, we have that S, is distributed as Sy + Syn.

Using Lemma 5.1, we then derive that

((Ps,, Ps, * Gon ) < 4v2 + 2 sup E(f(Se + Sonv +Y) — f(Se + Tow +Y)) (5.15)
feA,
Let D! = E(fé’N_mH(Sg + Sm_1)(X2 —1)). Following the proof of Proposition 5.1, we get that

E(f(Se4 Sov +Y) = f(Se+Ton +Y)) = (D) + -+ Din) /24 Ry + - - - + Ron, (5.16)

where, as in (5.4),
Ry < M| fav—mala, - (5.17)

In the case r = p — 2, we will need the more precise upper bound
1 1
Bon < E(XA (15 i loe A SRl Xinl) ) + 1A IE(Yl®), (5.18)

22



which is derived from the Taylor formula at orders two and three. From (5.17) and Lemma 6.1
we have that

R:=Ri+- -+ Ryn = 02N0=P2/2) if > -2 and R=O(N) if (r,p) = (1,3). (5.19)

It remains to consider the case r = p — 2 and r < 1. Applying Lemma 6.1, we get that for
1> 2,

||f2(2—m+1||oo < Cm'(2N —m + 1)(7’—i)/2

) (5.20)
It follows that
S B (1l A X)) < €3 LB (XQ(M' '))
—m~+11100 2N —m1lloel<2m = 1—r/2
m=1 m:lm / \/m
X2y oo 5
X5 | Xo
= CE( Z ml-r/2 + Z m(3—r)/2) ’
m=1 m=[X2]+1

Consequently for r =p —2 and r < 1,

Ri+ -+ Roy < C(M, +E(IY])). (5.21)
We now bound up D} +

-+ Diy. Using the dyadic scheme as in the proof of Proposition
5.1, we get that

=z

D =

~
=)

(35 S+ S ) = vy, (St S )X = 1) + E(fin (S (X2 = 1)
= Dy +E(f(5)(X% ~ 1)),

Notice first that

S TE(f(S)(X2 — 1)) = E((fsn (Se) — fon (T))ZY)) .

Hence using Lemma 6.1, we get that

D (S (5)(X5, = 1)) < C2Y0PPR(S, — T Z0))
Proceeding as to get (5.12), we have that

~ _ 0 _ _ 0 _ 0
E(|Se — ToP 21 Z))) < 207%(Gy(Ps,, Go)) P22 Z o + (20721 ZQ 1o
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Using Remark 2.5, (2.1) and (2.2) entail that ||Z](\?)||p/2 = 0(2?"/?) and ||Z](\?)||17<p,p = o(2N-P/2),

Hence, for some €(N) tending to 0 as N tends to infinity, one has
D+ -+ Diy < C(E(N)21\7((T—p)/2+2/p(Cp(psl7 GZ))(p—2)/p + QN(T+2—:D)/2) i (5.22)

Next, proceeding as in the proof of (5.7), we get that
Dl < S E((f”N (S + Skt ) — i o (St + Stporyor + Thor — T, L))Z““))
m < oN _por (00 + Ok oN koL (90r + O(k—1)2 k2 (k—1)2 L)

If r >p—2or (r,p) = (1,3), from Lemma 6.1, the stationarity of (X;);en and the above

inequality,
2N N— ~
d by o< Z > @Y — kb PRE(|UL - UL 2))))
m=1 L=0 k€INn_L 0
k odd
It follows that
N
Sopr < eNUTPREN LR (U, - O 2P)) it > p -2, (5.23)
L=0
N
YDi < ONY 27'E(|Up - U]]2y"|) ifr=1andp=3. (5.24)
L=0

In the case r = p — 2 and r > 1, we have

ZD" <oy Y B (1 _gar oo A L f35 _garlloe U2 = T ) 20])

L=0 keIn_r,0
k odd

Applying (5.20) to i = 2 and i = 3, we obtain

oN oN—L
1 5
leD// <CZ2T 2L/2E<‘Z ‘ Z k,r 2/2(1/\2L/2\/E‘UL—ULD>,

Proceeding as to get (5.21), we have that

2N L
r—2)/ _ (r=2)/ — —
; k=2 2(1/\2L/2\F}UL U)) ;k: 272(1 A L/2\/,}UL Up|) <OlUp - U]
It follows that
2N N
S <> 2 E(|vp - uf']2)]) ifr=p-2andr<1. (5.25)
m=1 L=0
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Now by Remark 2.5, (2.1) and (2.2) are respectively equivalent to

> 250D 210y < 00, and D 27| Zicllyyz < oo

K>0 K>0

Next, by Proposition 5.1, {, x = O(2K) under (2.1) and (2.2). Therefrom, taking into account
the inequality (5.12), we derive that under (2.1) and (2.2),

TLE(‘UL - ﬁL‘p_z‘Zg)D < C27P) Z e+ C2VPP72 | Zk |10y - (5.26)

Consequently, combining (5.26) with the upper bounds (5.23), (5.24) and (5.25), we obtain that

. (5.27)
O(N) ifr=1andp=3.

m=1

SR { @Y%) ifr>p—2.and (r.p) # (1,3)

From (5.14), (5.15), (5.16), (5.19), (5.21), (5.22) and (5.27), we get that if » > p — 2 and
(r,p) # (1,3),

CT(PSnuG ) <ec, QN(T p/2Cp(PSmGZ> +C(2N (r+2-p)/2 +2N((r p)/2+2/p) ( )(gp(PSsz))(p 2/p)
(5.28)
and if r =1 and p = 3,

(1(Ps,,Gn) < C(N +27NG(Ps,, Go) + 273 (C3(Ps,, Go)'?) . (5.29)
Since ( y = sup,,<on Gp(Ps,, Gr), we infer from (5.28) applied to r = p that
Gy S Gyt ceN+ 22N/p€(N)(C;,N)(p_2)/p) .

Let Ny be such that Ce(N) < 1/2 for N < Ny, and let K > 1 be such that Grng < K2No,
Choosing K large enough such that K > 2C, we can easily prove by induction that ¢y < K 2N
for any N > Ny. Hence Theorem 2.1 is proved in the case r = p.

For r in [p — 2, p[, Theorem 2.1 follows by taking into account the bound ¢y < K 2N valid
for any N > Ny, in the inequalities (5.28) and (5.29).

5.2 Proof of Theorem 3.1
By (3.1), we get that (see Volny (1993))
X(] = D(] + Z(] - ZO 9] T, (530)

where

=Y E(XilFo1) = (X —E(X_4|Fy)) and Do =Y E(Xi|Fo) — E(X4F_1).
= k=1

keZ
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Note that Dy € IL?, Dy is Fo-measurable, and E(Dy|F_;) = 0. Let D; = DyoT?, and Z; = ZyoT".
We obtain that
Sy =M, +7Zy — Zpy1, (5.31)

where M,, = >"_, D;. We first bound up E(f(S,) — f(M,)) by using the following lemma

Lemma 5.2. Let p €]2,3] and r € [p — 2,p|. Let (X;)icz be a stationary sequence of centered
random variables in L2". Assume that S, = M, + R, where (M, — M,_1),~1 s a strictly
stationary sequence of martingale differences in 12", and R, is such that E(R,) = 0. Let
no? =E(M?), no? =E(S?) and a,, = 0, /0.

1. Ifr € [p—2,1] and E|R,|" = O(n"*+27P)/2) then (. (Ps,, Pu,) = O(n(r+2—p)/2)_

2. If r €]1,2] and || Ry, = O(n®P/2), then .(Ps,, Py,) = O(nU"H20)/2),

3. Ifr €]2,p], 0 > 0 and ||R,||, = O(nG=P)/2), then (.(Ps,, Po,,) = O(n(r+2—p)/2)_

4. If r €]2,p], 0> =0 and | R,||, = O(n"27P)/27) then (,.(Ps,, Gro2) = O(n(r+2-p)/2),
Remark 5.1. All the assumptions of Lemma 5.2 are satisfied as soon as sup,,- || Rn ||, < co.

Proof of Lemma 5.2. For r €]0, 1], (.(Ps,, Pu,) < E(|R,|"), which implies item 1. If f € A,
with r €]1, 2], from the Taylor integral formula and since E(R,,) = 0, we get

1

BU/(S) ~ F(M) = B(Ra(£/00) = FO)+ [ (FOL+t(R) - (1))

0
< N Rallollf' (M) = £/ Ol pr—1y + 1 Rally < N Ralle[1Mll77 + 1Rl

Since | M, ||, < [|M,||2 = v/no, we infer that (,.(Ps,, Py, ) = O(n277)/2),

Now if f € A, with r €]2,p] and if ¢ > 0, we define g by

g(t) = f(t) — tf'(0) —t*f"(0)/2.

The function g is then also in A, and is such that ¢'(0) = ¢”(0) = 0. Since o?E(M?) = E(S?),
we have

E(f(Sn) = flanMy)) = E(g(Sn) — glany)) . (5.32)
Now from the Taylor integral formula at order two, setting R, = R, + (1 — ) M,

E(g(Sa) = 9(enMy)) = E(Rug'(anMy)) + 2E((R )" (0 M,,))

+E((R,)? /0 (1= )(g" (an My + tRy) — g (an M,,))dt

~—

1 Rally

1 ~ . 1, =
< - 1E(|Rn||anMn‘ )+ 5HRnnaHg//(anMn)||r/(r—2

1 r—1 r— 1 r—2|| D r— r
O IRl M+ Son 2 R IZIMal 1772 + ([ Rl

l\DI»—t
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Now a, = O(1) and || Ru |, < [|Rullr + |1 — | [ Myl Since [[[Sullz — [|Mall2| < [|Rall2, we infer
that |1 — a,,| = O(n?7P/2). Hence, applying Burkhélder’s inequality for martingales, we infer
that ||R |, = O(n®=P/2) and consequently (,.(Ps,, Pa,11,) = O(n(r+2-p)/2),

If 02 = 0, then S, = R,,. Using that E(f(S,) — f(v/ne,Y)) = E(g(R,) — g(v/no,Y)), and
applying again Taylor’s formula, we obtain that

1 D, r— e r— D ||T
sup [E(f(5,) = F(VAoaY )| € — [ Bl VAoV I + S IRl lvaon 72 + [ Rall

FEAr
where R, = R,, — \/no,Y. Since \/no, = ||R,||2 = O(n"*27P)/21) the result follows. (]
By (5.31), we can apply Lemma 5.2 with R, := Z; — Z,41. Then for p — 2 < r < 2, the

result follows if we prove that under (3.2), M, satisfies the conclusion of Theorem 2.1. Now if
2 <r <pando? >0, we first notice that

CT(POCnMn? GTLO’%) = a;CT’(PMym GTLO'2) .

Since a,, = O(1), the result will follow by Item 3 of Lemma 5.2, if we prove that under (3.2),
M, satisfies the conclusion of Theorem 2.1. We shall prove that

> /2||E(M2|fo) E(M)p/2 < o0 (5.33)
n>1 n
In this way, both (2.1) and (2.2) will be satisfied. Suppose that we can show that
> ,,/2||E(M2|fo) E(S|Fo)llp/2 < 00, (5.34)
n>1

then by taking into account the condition (3.2), (5.33) will follow. Indeed, it suffices to notice
that (5.34) also entails that

> - p/zlE(Sz) E(M;)] < oo, (5.35)
n>1
and to write that
[E(MZ|Fo) = E(M) |y < [E(MZ]Fo) — E(S2IF0)ps2
+[[E(SZFo) — E(S2) /2 + [E(S7) — E(M7)] .

Hence, it remains to prove (5.34). Since S, = M, + Z; — Z, 1, and since Z; = Zy o T" is in L?,
(5.34) will be satisfied provided that

> 3,,/2||S< — Zoy1)llpj2 < 00 (5.36)

n>1
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Notice that
152(Zy = Znsi)lpr2 < NIMallpll 21 = Zngallp + 1121 = Znall2

From Burkholder’s inequality, ||M,||, = O(v/n) and from (3.1), sup,, ||Z1 — Z,11]|, < oo. Con-
sequently (5.36) is satisfied for any p in |2, 3[.

5.3 Proof of Theorem 3.2

Starting from (5.31) we have that
M, := S, + R, + R, (5.37)
where

Ry= > E(XilF)—D E(Xi|Fo) and R, = > (X —E(X_[Fp)— > (Xp—E(X_4| 7).

kE>n+1 k>1 k>0 k>—n

Arguing as in the proof of Proposition 3.1 the proposition will follow from (3.5), if we prove that

=1
> —HIEGM2IF) — E(S2Fo)lly2 < o0 (5.38)
n>1

Under (3.4), sup,,>; || Rn|ls < co and sup,,», | R, ||l5 < co. Hence (5.38) will be verified as soon as

o 1 ~
> E(S(Ba + Rn)|Fo)lsy2 < 0. (5.39)
n=1

We first notice that the decomposition (5.37) together with Burkholder’s inequality for martin-
gales and the fact that sup,, || Rp||s < oo and sup,, ||R,||s < oo, implies that

1Sulls < Cv/n. (5.40)
Now to prove (5.39), we first notice that

. (5.41)

[=(s0 > EalF|R) |, , < IBSIF) ]| 3]
E>1 k>1

which is bounded by using (3.4). Now write

E(Sy Y E(XF)|R) =E(S. Y E(XlF)

k>n+1 k>2n+1

fo) 4 B(SuE(San — Sl Fo)lFo)
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Clearly

[B(s. 3 BxEI|R)|,, < lsids| X ECIE)],

k>2n+1 k>2n+1

vl 3w, e

k>n+1

IA

by using (5.40). Considering the bounds (5.41) and (5.42) and the condition (3.4), in order to
prove that

[e.e]

Y =3 3/2 IE(S, Rl Fo) |32 < 00, (5.43)
n=1
it is sufficient to prove that
> B E (S — Sl F)Flys < oo (5.44)
n=1

With this aim, take p, = [\/n] and write

E(S,E(Son — Sul F)[Fo) = E((Sp — Sy, JE(Son — Sl F) | Fo)
FE(Snp, E(Son — SulF)| Fo)- (5.45)

By stationarity and (5.40), we get that

. Pn

> g IE((S — SupJE(San — Sl o) lya < cz V(S o) s

n=1
which is finite under (3.4), since p, = [v/n]. Hence from (5.45), (5.44) will follow if we prove
that

[e.9]

Z 3/2 [E(Sn—p B(S2n = S| Fn)|Fo)ls/2 < 00 (5.46)

n=1

With this aim we first notice that

||E((Sn—pn - E(Sn—pn

Fnpn JE(S2n = SnlFn)[Fo)la/2
< [15n—pn = E(Sn—pn| Frp) I3 [1E(S2n = SulFn)lls

which is bounded under (3.4). Consequently (5.46) will hold if we prove that

[e.e]

> 3/2||IE( (Sn—p [ Fnp JE(S2n = Snl Fn)[Fo)l3/2 < 00 (5.47)

n=1

We first notice that

E(E(Sn—pn|~7:n—pn)E(S2n - Sn|]:n)|]:0) = E(E(Sn—pn

Fn—pn)E(S% - Sn|~7:n—pn)|f0) ’
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and by stationarity and (5.40)

E(E(Sn—po | Fn—p )E(S2n = SulFnp )| Fo)llzrz < [1Sn—p, [ls[[E(S2n — SulFnp,) 3
< CVlE(Snip, — Spul Fo)lls -

A

Hence (5.47) will hold provided that

H 3 E(XF) H (5.48)

n>1 " k()

The fact that (5.48) holds under the first part of the condition (3.4) follows from the following
elementary lemma applied to h(z) = || 32,5, E(Xx[Fo)|ls-

Lemma 5.3. Assume that h is a positive function on R satisfying h(v/x + 1) = h(y/n) for any
xin [n—1,n[. Then Y -, n~"h(y/n) < oo if and only if 3, n~"h(n) < occ.

It remains to show that -

Y s 3/2 (S R Fo)l32 < 00 (5.49)

n=1

Write

SuR = Su( Do (Xok = BXAlR) = 3 (Xoi— E(X_i|7)

k>0 k>—n
= Su(E(SulF) = S0+ D (B(XIF) — E(X417))) .
k>0
Notice first that
IE(S(Sa — E(SulF) 1) lz = NE((Sh = E(Sal Fa))?1Fo) e

< ISh = E(SalF)ll5

which is bounded under the second part of the condition (3.4). Now for p, = [\/n], we write

D (B ) ~E(X-4170)) = 3 EX-A7) =B Fy)+ 3 Bl ) ~ECX-1170)

N_otethat _

H;O XulFp) —E(X )|, = H;O (X~ B(X_4l0)) = k2>0<x_k—<E<X_k|fn>>H3
s H;m— ], +| E s worum)],
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which is bounded under the second part of the condition (3.4). Next, since the random variable
> k0 (B(X k| Fp,) — E(X 4| Fo)) is Fp,-measurable, we get

[E(s S e -2 dmiz),
< |l=( an< (X4l F,) —E(X—klfo»lfo)Hg/Q

k>0

+IB(S, — Sy, | Fp )l H > (B(X_i|Fp) (X—k|f0))H3

k>0

< (ISpulls + IE(SampalFo)ls) | DB -4l F,) — Bl |, < OV,

by using (3.4) and (5.40). Hence, since p, = [v/n], we get that

n3/2 HE<S Z Xkl Fp,) (X—k|]:0))}‘7:o) H3/2 < 00.

It remains to show that

n3/2HE(S Y (EB(X 4| F) - E(X —klfpn)))Fo)H < 00. (5.50)

3/2
k>0 /

Note first that

| S ExF) - ExF)| = Hzx_k— X)) = 3Kk = BXF,)]|

k>0 k>0 k>0
< | =B F) s + 1D (X — B
k>n k>pn ’

It follows that

|E(s. Z X[ Fa) — E(X _k|fpn>>|fo)H3/2
< C\/_O Z (Xop — (E(X | Fo)) + H + H Z (Xp—(E (X—k|f0))H3> :

by taking into account (5.40). Consequently (5.50) will follow as soon as

1 5 o], <o
n>1 k> \f]

which holds under the second part of the condition (3.4), by applying Lemma 5.3 with h(z) =

1> (X — E(X_£|F0))ll5. This ends the proof of the theorem.
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6 Appendix

6.1 A smoothing lemma.

Lemma 6.1. Let r > 0 and f be a function such that |f|x, < oo (see Notation 5.1 for the
definition of the seminorm |- |z, ). Let ¢y be the density of the law N(0,t*). For any real p > r
and any positive t, | f * ¢i|a, < crpt" 7P| f|a, for some positive constant c,, depending only on r

and p. Furthermore c¢,, = 1.
Remark 6.1. In the case where p is a positive integer, the result of Lemma 6.1 can be written

as [|f # &1 oo < crpt™ | I, -

Proof of Lemma 6.1. Let j be the integer such that j < r < j+ 1. In the case where p is a

positive integer, we have
(Fx () = [ () = 19@)o¢ @ - wdu sincep—j 1.
Since |f(j)(u) - f(j)(x)| < |o —u|"7?|f|a,, we obtain that
(002 @] < Ifla, [ fo =l 160 @ = w)ldu < [fla, [ a2 1o¢w)ldu.

Using that ¢ (z) = t 71"~ (2 /1), we conclude that Lemma 6.1 holds with the constant
Crp = [ 12817 (2)dz.
The case p = r is straightforward. In the case where p is such that j <r <p < j+1, by

definition
[f9 5 () = f9 5 du(y)] < |fla |z =yl
Also, by Lemma 6.1 applied with p =5 + 1,
795 60(2) = 1O % 3iy)] <l = ylIFI* 5 Gl < |flargint”™ "l — gl
Hence by interpolation,
F9 % 0u(@) = 19 % du(y)] < |fla, 8 el T =y
It remains to consider the case where r < i < p < i+ 1. By Lemma 6.1 applied successively

with p =17 and p =7+ 1, we obtain that
| s gy(@)| < | flascriat™ " and |fO x gy(2)] < [fla it
Consequently
FD 5 g(@) = fD 5 au(y)] < [ Flat ™ eri A criat ™ |z = yl),

and by interpolation,

O % Gulw) = FO % 6u(y)] < [F1at" P (2ens) PH e =yl
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6.2 Covariance inequalities.

In this section, we give an upper bound for the expectation of the product of k£ centered random
variables I1¥_, (X; — E(X;)).

Proposition 6.1. Let X = (X, -, X}) be a random variable with values in R¥. Define the

number

oV = o(o(X), X1, .., X1, Xigr, -, Xi) (6.1)
k k
— sup IE( I1 (]IXJ.>$Z.—IP’(X,->9:,-))|U(X¢)>—E( ] (Ixm0, — P(X: > @) )H
rERk j=1,ji j=1,j#i

Let F; be the distribution function of X; and Q; be the quantile function of | X;| (see Section 4.1 for
the definition). Let F;™' be the generalized inverse of F; and let D;(u) = (F; ' (1—u) — F *(u))4.

(2

We have the inequalities

k 1 k
B[]~ 200)| < [ (T]Ditw/o™)du (62)
i=1 0 "=t
and i -
(T —Eex)| <2 [ (TT@iw/o)du. (63)
i=1 =1
In addition, for any k-tuple (p1,...,px) such that 1/p1 + ...+ 1/pr = 1, we have
([T 200) <2 [l

Proof of Proposition 6.1. We have that

(HX E(X ) /(H][Xm— Xi>xi))dx1...dxk. (6.5)

Now for all 4,

k
E( T Txoe — POX > xi))
i=1

—E <11Xi>mi (E( f[ (T e, — P(X; > 20))[0(X;) ) — B( f[ (Tx, o0, — P(X; > xi))))>
J=1j#i J=1j#i

~E <1le<$1 E f[ (T e, — (X > ))|0(X)) ~ E f[ (Ly,o0, — B(X, > m)))
J=1,j#1 J=1,j#1



Consequently, for all i,
k
E( T Txime, = PO > 21)) < 6OR(Y, < ) AR, > 2). (6.6)
i=1

Hence, we obtain from (6.5) and (6.6) that

‘E< H Xi— E(XZ)) ‘ < / (H / ]Iu/¢(i)<]P’(Xi>xi)][u/¢(i)§P(Xi§xi)dxi> du
i=1 .
= / H/ F (u/o®)<wi<F] (1—u/¢(i>)d$i>d%

and (6.2) follows. Now (6.3) comes from (6.2) and the fact that D;(u) < 2Q;(u) (see Lemma 6.1
in Dedecker and Rio (2006)). O

Definition 6.1. For a quantile function @ in L, ([0, 1], A), let F(Q, Px) be the set of functions f
which are nondecreasing on some open interval of R and null elsewhere and such that Q| fx) < Q.
Let C(Q, Px) denote the set of convex combinations Y. \; f; of functions f; in F(Q, Px) where
Y2 il <1 (note that the series > oo; A; fi(X) converges almost surely and in L, (Py)).

Corollary 6.1. Let X = (Xy,---,X}) be a random variable with values in RF and let the ¢V ’s
be defined by (6.1). Let (fi)1<i<k be k functions from R to R, such that f; € C(Q;, Px,). We

have the inequality

({400 -] <2 [ TTa ()

Proof of Corollary 6.1. Write for all 1 <4 <k, f; =372, Ajifj; where > 22 [\;;| <1 and
fii € F(Qi, Px,). Clearly

({1400 - =0ic0)

IA

> i;mw DT 55) - BG50)|

(Hfh 2(f.400))) | (6.7

< sup
G121k 21

Since each fj, ; is nondecreasing on some interval,

S0 (fi:a(Xi))s [ (X0)s s fimnimt (Xima), Frupnaitn (Xinn)s - Fon (X)) < 2871010
Then applying (6.3) on the right hand side of (6.7), we derive that

(T - 00)] <2 [ T (e
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and the result follows by a change-of-variables. [

Recall that for any p > 1, the class C(p, M, Px) has been introduced in the definition 4.2.

Corollary 6.2. Let X = (Xy,---,X}) be a random variable with values in RF and let the ¢V ’s
be defined by (6.1). Let a k-tuple (p1,...,px) such that 1/py+ ...+ 1/pr =1 and let (fi)1<i<k
be k functions from R to R, such that f; € C(pi, M;, Px,). We have the inequality

(00 - )| <2 T

=1
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