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Summary. We present an approach, going back to Rüschendorf [23], to obtain an optimal coupling for random
variables with values in some completely regular topological space S. The main step is to prove a version for random
measures of the Kantorovich-Rubinštein duality theorem. This leads to a family of dependence coefficients defined
over the class of 1-lipschitz functions with respect to a given metric c on S. In particular the β-mixing coefficient
and the well known coupling result of Berbee [1] correspond to the case where c is the discrete metric. To be
complete we show that, contrary to Berbee’s coupling, the more precise “maximal” coupling result of Goldstein
[16] cannot be extended to other metrics than the discrete one.

1 Introduction and notations

Let µ and ν be two probability measures on a Polish space (S, d). In 1970 Dobrušin [12, page 472] proved
that there exists a probability measure λ on S× S with marginals µ and ν, such that

λ({x 6= y, (x, y) ∈ S× S}) =
1
2
‖µ− ν‖v , (1)

where ‖ · ‖v is the variation norm. More precisely, Dobrušin gave an explicit solution to (1) defined by

λ(A×B) = (µ− π+)(A ∩B) +
π+(A)π−(B)

π+(S)
for A, B in BS , (2)

where µ− ν = π+ − π− is the Hahn decomposition of π = µ− ν.
Starting from (2) (see [1, Proposition 4.2.1]), Berbee obtained the following coupling result ([1, Corol-

lary 4.2.5]): let (Ω,A,P) be a probability space, let M be a σ-algebra of A, and let X be a random
variable with values in S. Denote by PX the distribution of X and by PX|M a regular conditional distri-
bution of X given M. If Ω is rich enough, there exists X∗ distributed as X and independent of M such
that

P(X 6= X∗) =
1
2
E(‖PX|M − PX‖v) . (3)

To prove (3), Berbee built a couple (X, X∗) whose conditional distribution given M is the random
probability λω defined by (2), with random marginals µ = PX|M and ν = PX .

It is by now well known that Dobrušin’s result (1) is a particular case of the Kantorovich-Rubinštein
duality theorem (which we recall at the beginning of Section 2) applied to the discrete metric c(x, y) =
1lx6=y (see [20, page 93]). Starting from this simple remark, Berbee’s proof can be described as follows: one
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can find a couple (X,X∗) whose conditional distribution with respect to M solves the duality problem
with cost function c(x, y) = 1lx6=y and random marginals µ = PX|M and ν = PX .

A reasonable question is then: for what class of cost functions can we obtain the same kind of coupling
than Berbee’s? Or, equivalently, given two random probabilities µω and νω on a Polish space (S, d), for
what class of cost functions is there a random probability λω on S×S solution to the duality problem with
marginals (µω, νω)? Combining Proposition 4 in [23] and the Kantorovitch-Rubinštein duality Theorem,
we shall see in point 1 of Theorem 2.1 that such a λω exists provided the cost function c satisfies

c(x, y) = sup
u∈Lip

(c)
S

|u(x)− u(y)| , (4)

where Lip(c)
S is the class of continuous bounded functions u on S such that |u(x) − u(y)| ≤ c(x, y). In

fact, except for the duality, Rüschendorf proved in [23, Proposition 4] a more general result, which is
true for any measurable cost funcion c. In point 2 of Theorem 2.1 we also prove that the parametrized
Kantorovich–Rubinštein theorem given in [5, Theorem 3.4.1] still holds for any cost function c satisfying
(4).

In Section 3, we give the application of Theorem 2.1 to the coupling of random variables, as done in
Section 2 of [23]. In particular, Corollary 1 extends Berbee’s coupling in the following way: if (Ω,A, P)
is rich enough, and if c is a mapping satisfying (4) such that

∫
c(X, x0)dP is finite for some x0 in S, then

there exists a random variable X∗ distributed as X and independent of M such that

E (c(X, X∗)) =
∥∥∥ sup

f∈Lip
(c)
S

∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣
∥∥∥

1
. (5)

If c(x, y) = 1lx 6=y is the discrete metric, (5) is exactly Berbee’s coupling (3). If c = d, (5) has been proved
in [23, Proposition 6]. For more details on the coupling property (5) and its applications, see Section 3.2.

In 1979, Goldstein [16] obtained a more precise result than (1) in the case where S = S∞1 = Π∞
k=1M

is a product space. This result can be written as follows: let µ and ν be two probability measures on S∞1
and let µ(i) and ν(i) be the marginals of µ and ν on S∞i = Π∞

k=iM. There exists a probability measure λ
on S∞1 × S∞1 with marginals λ(i) on S∞i × S∞i , such that λ(· × S∞1 ) = µ(·), λ(S∞1 × ·) = ν(·), and for any
i ≥ 1,

1
2
‖µ(i) − ν(i)‖v = λ(i)({x 6= y, (x, y) ∈ S∞i × S∞i }). (6)

Starting from (6) (see [1, Theorem 4.3.2]), Berbee obtained the following coupling result ([1, Theorem
4.4.7]): let X = (Xk)k≥1 be a S∞1 -valued random variable and let X(i) = (Xk)k≥i. If Ω is rich enough,
there exists X∗ distributed as X and independant of M such that, for any i ≥ 1,

1
2
E(‖PX(i)|M−PX(i) ‖v) = P(X(i) 6= X∗

(i)) , (7)

where PX(i) is the distribution of X(i) and PX(i)|M is a regular distribution of X(i) given M. If (Xk)k∈Z
is a strictly stationary sequence of M-valued random variables and M = σ(Xi, i ≤ 0), the sequences for
which P(X(i) 6= X∗

(i)) converges to zero as i tends to infinity are called β-mixing or absolutely regular
sequences. The property (7) is very powerful (see [21] and [3] for recent applications).

In Section 4, we shall see that, contrary to (1), the property (6) is characteristic of the discrete metric.
Hence, no analogue of (7) is possible if the underlying cost function is not proportional to the discrete
metric.

Preliminary notations

For any topological space T, we denote by BT the Borel σ–algebra of T and by P(T) the space of
probability laws on (T,BT), endowed with the narrow topology, that is, for every mapping ϕ : T → [0, 1],
the mapping µ 7→ ∫

T
ϕdµ is l.s.c. if and only if ϕ is l.s.c.
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Throughout, S is a given completely regular topological space and (Ω,A, P) a given probability space.
Note that in [23], both Ω and S were assumed to be Polish. However the results are valid in much more
general spaces, without significant changes in the proofs. The reader who is not interested by this level
of generality may assume as well in the sequel that all topological spaces we consider are Polish. On the
other hand, we give in appendix some definitions and references which might be useful for a complete
reading.

2 Parametrized Kantorovich–Rubinštein theorem

Most of the ideas of this Section are contained in [23], except for the duality part of point 2 of Theorem
1, which draws inspiration from [5, §3.4].

For any µ, ν ∈ P(S), let D(µ, ν) be the set of probability laws π on (S × S,BS×S) with marginals µ
and ν, that is, π(A× S) = µ(A) and π(S×A) = ν(A) for every A ∈ BS. Let us recall the

Kantorovich–Rubinštein duality theorem [18], [20, Theorem 4.6.6] Assume that S is a com-
pletely regular pre-Radon space4, that is, every finite τ–additive Borel measure on S is inner regular with
respect to the compact subsets of S. Let c : S × S → [0, +∞] be a universally measurable mapping. For
every (µ, ν) ∈ P(S)× P(S), let us denote

∆
(c)
KR(µ, ν) := inf

π∈D(µ,ν)

∫

S×S
c(x, y) dπ(x, y),

∆
(c)
L (µ, ν) := sup

f∈Lip
(c)
S

(µ(f)− ν(f))

where Lip(c)
S = {u ∈ Cb (S) ; ∀x, y ∈ S |u(x)− u(y)| ≤ c(x, y)}. Then the equality ∆

(c)
KR(µ, ν) = ∆

(c)
L (µ, ν)

holds for all (µ, ν) ∈ P(S)× P(S) if and only if (4) holds.

Note that, if c satifies (4), it is the supremum of a set of continuous functions, thus it is l.s.c. Every
continuous metric c on S satisfies (4) (see [20, Corollary 4.5.7]), and, if S is compact, every l.s.c. metric
c on S satisfies (4) (see [20, Remark 4.5.6]).

Now, we denote

Y(Ω,A, P;S) = {µ ∈ P(Ω × S,A⊗ BS); ∀A ∈ A µ(A× S) = P(A)}.

When no confusion can arise, we omit some part of the information, and use notations such as Y(A) or
simply Y (same remark for the set Y c,1(Ω,A, P;S) defined below). If S is a Radon space, every µ ∈ Y
is disintegrable, that is, there exists a (unique, up to P-a.e. equality) A∗µ-measurable mapping ω 7→ µω,
Ω → P(S), such that

µ(f) =
∫

Ω

∫

S
f(ω, x) dµω(x) dP(ω)

for every measurable f : Ω × S → [0,+∞] (see [27]). If furthermore the compact subsets of S are
metrizable, the mapping ω 7→ µω can be chosen A-measurable, see the Appendix.

Let c satisfy (4). We denote

Y c,1(Ω,A, P;S) = {µ ∈ Y;
∫

Ω×S
c(x, x0) dµ(ω, x) < +∞}

4 In [18] and [20, Theorem 4.6.6], the space S is assumed to be a universally measurable subset of some compact
space. But this amounts to assume that it is completely regular and pre-Radon: see [20, Lemma 4.5.17] and
[15, Corollary 11.8].
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where x0 is some fixed element of S (this definition is independent of the choice of x0). For any µ, ν ∈ Y,
let D(µ, ν) be the set of probability laws π on Ω × S× S such that π(.× .× S) = µ and π(.× S× .) = ν.
We now define the parametrized versions of ∆

(c)
KR and ∆

(c)
L . Set, for µ, ν ∈ Y c,1,

∆
(c)
KR(µ, ν) = inf

π∈D(µ,ν)

∫

Ω×S×S
c(x, y) dπ(ω, x, y).

Let also Lip(c) denote the set of measurable integrands f : Ω×S→ R such that f(ω, .) ∈ Lip(c)
S for every

ω ∈ Ω. We denote
∆

(c)
L (µ, ν) = sup

f∈Lip(c)
(µ(f)− ν(f)) .

Theorem 1 (Parametrized Kantorovich–Rubinštein theorem) Assume that S is a completely
regular Radon space and that the compact subsets of S are metrizable (e.g. S is a regular Suslin space).
Let c : S× S → [0, +∞[ satisfy (4). Let µ, ν ∈ Y c,1 and let ω 7→ µω and ω 7→ νω be disintegrations of µ
and ν respectively.

1. Let G : ω 7→ ∆
(c)
KR(µω, νω) = ∆

(c)
L (µω, νω) and let A∗ be the universal completion of A. There exists

an A∗–measurable mapping ω 7→ λω from Ω to P(S× S) such that λω belongs to D(µω, νω) and

G(ω) =
∫

S×S
c(x, y) dλω(x, y).

2. The following equalities hold:

∆
(c)
KR(µ, ν) =

∫

Ω×S×S
c(x, y) dλ(ω, x, y) = ∆

(c)
L (µ, ν),

where λ is the element of Y(Ω,A, P; S× S) defined by λ(A×B ×C) =
∫

A
λω(B ×C) dP(ω) for any

A in A, B and C in BS. In particular, λ belongs to D(µ, ν), and the infimum in the definition of
∆

(c)
KR(µ, ν) is attained for this λ.

Remark 1. In the case where both Ω and S are Polish spaces, point 1 and the first equality in point 2 of
Theorem 1 are contained in Proposition 4 of Rüschendorf [23]. The proof we give below follows that of
Proposition 4 in [23] and of Theorem 3.4.1 in [5]. As in [23], the main argument is a measurable selection
lemma given in [6].

The set of compact subsets of a topological space T is denoted by K(T).

Lemma 1 (A measurable selection lemma) Assume that S is a Suslin space. Let c : S×S→ [0,+∞]
be an l.s.c. mapping. Let B∗ be the universal completion of the σ–algebra BP(S)×P(S). For any µ, ν ∈ P(S),
let

r(µ, ν) = inf
π∈D(µ,ν)

∫
c(x, y) dπ(x, y) ∈ [0, +∞].

The function r is B∗–measurable. Furthermore, the multifunction

K :
{P(S)× P(S) → K (P(S× S))

(µ, ν) 7→ {
π ∈ D(µ, ν);

∫
c(x, y) dπ(x, y) = r(µ, ν)

}

has a B∗–measurable selection, that is, there exists a B∗–measurable mapping λ : (µ, ν) 7→ λµ,ν defined
on P(S)× P(S) with values in K (P(S× S)), such that λµ,ν ∈ K(µ, ν) for all µ, ν ∈ P(S).
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Proof. Observe first that the mapping r can be defined as

r : (µ, ν) 7→ inf {ψ(π); π ∈ D(µ, ν)} ,

with

ψ :
{P(S× S) → [0, +∞]

π 7→ ∫
S×S c(x, y) dπ(x, y).

The mapping ψ is l.s.c. because it is the supremum of the l.s.c. mappings π 7→ π(c ∧ n), n ∈ N (if c is
bounded and continuous, ψ is continuous). Furthermore, we have D = Φ−1, where Φ is the continuous
mapping

Φ :
{P(S× S) → P(S)× P(S)

λ 7→ (λ(.× S), λ(S× .))

(recall that D(µ, ν) is the set of probability laws π on S×S with marginals µ and ν). Therefore, the graph
gph (D) of D is a closed subset of the Suslin space X =

(P(S) × P(S)
) × P(S× S). Applying Lemma

III.39 of [6] as done in [23], we infer that r is B∗–measurable. Now the fact that K has a B∗–measurable
selection follows from the application of Lemma III.39 given in paragraph 39 of [6].

Proof of Theorem 1. By the Radon property, the probability measures µ(Ω× .) and ν(Ω× .) are tight,
that is, for every integer n ≥ 1, there exists a compact subset Kn of S such that µ(Ω × (S \Kn)) ≤ 1/n
and ν(Ω× (S \Kn)) ≤ 1/n. Now, we can clearly replace S in the statements of Theorem 1 by the smaller
space ∪n≥1Kn. But ∪n≥1Kn is Suslin (and even Lusin), so we can assume without loss of generality that
S is a regular Suslin space.

We easily have

∆
(c)
L (µ, ν) = sup

f∈Lip(c)

∫

Ω

∫

S

∫

S
(f(ω, x)− f(ω, y)) dµω(x) dνω(y) dP(ω)

≤
∫

Ω

∫

S

∫

S
c(x, y) dµω(x) dνω(y) d P(ω)

≤ ∆
(c)
KR(µ, ν). (8)

So, to prove Theorem 1, we only need to prove that ∆
(c)
KR(µ, ν) ≤ ∆

(c)
L (µ, ν) and that the minimum in

the definition of ∆
(c)
KR(µ, ν) is attained.

Using the notations of Lemma 1, we have G(ω) = r(µω, νω), thus G is A∗–measurable (indeed, the
mapping ω 7→ (µω, νω) is measurable for A∗ and B∗ because it is measurable for A and BP(S)×P(S)). From
Lemma 1, the multifunction ω 7→ D(µω, νω) has an A∗–measurable selection ω 7→ λω such that, for every
ω ∈ Ω, G(ω) =

∫
S×S c(x, y) dλω(x, y). We thus have

∆
(c)
KR(µ, ν) ≤

∫

Ω×S×S
c(x, y) dλ(ω, x, y) =

∫

Ω

G(ω) d P(ω). (9)

Furthermore, since µ, ν ∈ Y c,1, we have G(ω) < +∞ a.e. Let Ω0 be the almost sure set on which
G(ω) < +∞. Fix an element x0 in S. We have, for every ω ∈ Ω0,

G(ω) = sup
g∈Lip

(c)
S

(µω(g)− νω(g)) = sup
g∈Lip

(c)
S , g(x0)=0

(µω(g)− νω(g)) .

Let ε > 0. Let µ̃ and ν̃ be the finite measures on S defined by

µ̃(B) =
∫

Ω×B

c(x0, x) dµ(ω, x) and ν̃(B) =
∫

Ω×B

c(x0, x) dν(ω, x)
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for any B ∈ BS. Let S0 be a compact subset of S containing x0 such that µ̃(S \ S0) ≤ ε and ν̃(S \ S0) ≤ ε.
For any f ∈ Lip(c), we have

∣∣∣∣
∫

Ω

(µω − νω)(f(ω, .)) dP(ω)−
∫

Ω

(µω − νω)(f(ω, .) 1lS0) dP(ω)
∣∣∣∣

=
∣∣∣∣
∫

Ω

(µω − νω)(f(ω, .) 1lS\S0) dP(ω)
∣∣∣∣ ≤ 2ε. (10)

Set, for all ω ∈ Ω0,
G′(ω) = sup

g∈Lip
(c)
S , g(x0)=0

(µω − νω)(g 1lS0).

We thus have ∣∣∣∣
∫

Ω0

Gd P−
∫

Ω0

G′ dP
∣∣∣∣ ≤ 2ε. (11)

Let Lip(c)
S S0

denote the set of restrictions to S0 of elements of Lip(c)
S . The set S0 is metrizable, thus Cb (S0)

(endowed with the topology of uniform convergence) is metrizable separable, thus its subspace Lip(c)
S S0

is also metrizable separable. We can thus find a dense countable subset D = {un; n ∈ N} of Lip(c)
S for

the seminorm ‖u‖Cb(S0) := supx∈S0 |u(x)|. Set, for all (ω, x) ∈ Ω0 × S,

N(ω) = min
{
n ∈ N;

∫

S
un(x) d(µω − νω)(x) ≥ ∆

(c)
L (µω, νω)− εG′(ω)− ε

}
, and

f(ω, x) = uN(ω)(x).

We then have, using (10) and (11),

∆
(c)
L (µ, ν) ≥

∫

Ω0×S
f d(µ− ν) ≥

∫

Ω0×S0
f d(µ− ν)− 2ε

≥
∫

Ω0

G′ dP−3ε ≥
∫

Ω0

Gd P−5ε.

Thus, in view of (8) and(9),

∆
(c)
KR(µ, ν) =

∫

Ω×S×S
c(x, y) dλ(ω, x, y) = ∆

(c)
L (µ, ν).

3 Application: coupling for the minimal distance

In this section S is a completely regular Radon space with metrizable compact subsets, c : S×S→ [0,+∞]
is a mapping satisfying (4) and M is a sub-σ-algebra of A. Let X be a random variable with values in
S, let PX be the distribution of X, and let PX|M be a regular conditional distribution of X given M
(see Section 5 for the existence). We assume that

∫
c(x, x0) PX(dx) is finite for some (and therefore any)

x0 in S (which means exactly that the unique measure of Y(M) with disintegration PX|M(·, ω) belongs
to Y c,1(M)). The proof of the following result is comparable to that of Corollary 4.2.5 in [1] and of
Proposition 5 in [23].
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Theorem 2 (A general coupling theorem) Assume that Ω is rich enough, that is, there exists a
random variable U from (Ω,A) to ([0, 1],B([0, 1])), independent of σ(X) ∨M and uniformly distributed
over [0, 1]. Let Q be any element of Y c,1(M). There exists a σ(U)∨σ(X)∨M-measurable random variable
Y , such that Q. is a regular conditional probability of Y given M, and

E (c(X,Y )|M) = sup
f∈Lip

(c)
S

∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)Q.(dx)
∣∣∣ P-a.s. . (12)

Proof. We apply Theorem 1 to the probability space (Ω,M,P) and to the disintegrated measures
µω(·) = PX|M(·, ω) and νω = Qω. As in the proof of Theorem 1, we assume without loss of generality
that S is Lusin regular. From point 1 of Theorem 1 we infer that there exists a mapping ω 7→ λω

from Ω to P(S × S), measurable for M∗ and BP(S×S), such that λω belongs to D(PX|M(·, ω), Qω) and
G(ω) =

∫
S×S c(x, y)λω(dx, dy).

On the measurable space (M, T ) = (Ω × S× S,M∗ ⊗ BS ⊗ BS) we put the probability

π(A×B × C) =
∫

A

λω(B × C) P(dω) .

If I = (I1, I2, I3) is the identity on M, we see that a regular conditional distribution of (I2, I3) given I1 is
given by P(I2,I3)|I1=ω = λω. Since PX|M(·, ω) is the first marginal of λω, a regular conditional probability
of I2 given I1 is given by PI2|I1=ω(·) = PX|M(·, ω). Let λω,x = PI3|I1=ω,I2=x be a regular conditional
distribution of I3 given (I1, I2), so that (ω, x) 7→ λω,x is measurable for M∗ ⊗ BS and BP(S). From the
uniqueness (up to P-a.s. equality) of regular conditional probabilities, it follows that

λω(B × C) =
∫

B

λω,x(C)PX|M(dx, ω) P-a.s. . (13)

Assume that we can find a random variable Ỹ from Ω to S, measurable for σ(U) ∨ σ(X) ∨M∗ and
BS, such that PỸ |σ(X)∨M∗(·, ω) = λω,X(ω)(·). Since ω 7→ PX|M(·, ω) is measurable for M∗ and BP(S), one
can check that PX|M is a regular conditional probability of X given M∗. For A in M∗, B and C in BS,
we thus have

E
(
1lA 1lX∈B 1lỸ ∈C

)
= E

(
1lAE

(
1lX∈BE

(
1lỸ ∈C |σ(X) ∨M∗) |M∗))

=
∫

A

( ∫

B

λω,x(C)PX|M(dx, ω)
)
P(dω)

=
∫

A

λω(B × C)P(dω) .

We infer that λω is a regular conditional probability of (X, Ỹ ) given M∗. By definition of λω, we obtain
that

E
(
c(X, Ỹ )|M∗

)
= sup

f∈Lip
(c)
S

∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)Q.(dx)
∣∣∣ P-a.s. . (14)

Since S is Lusin, it is standard Borel (see Section 5). Applying Lemma 2, there exists a σ(U)∨σ(X)∨M-
measurable modification Y of Ỹ , so that (14) still holds for E(c(X,Y )|M∗). We obtain (12) by noting
that E (c(X,Y )|M∗) = E (c(X, Y )|M) P-a.s.

It remains to build Ỹ . Since S is standard Borel, there exists a one to one map f from S to a Borel subset
of [0, 1], such that f and f−1 are measurable for B([0, 1]) and BS. Define F (t, ω) = λω,X(ω)(f−1(]−∞, t])).
The map F (·, ω) is a distribution function with càdlàg inverse F−1(·, ω). One can see that the map
(u, ω) → F−1(u, ω) is B([0, 1]) ⊗M∗ ∨ σ(X)-measurable. We now use the fact that Ω is rich enough:
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the existence of the random variable U uniformly distributed over [0, 1] and independent of σ(X) ∨M
allows some independent randomization. Let T (ω) = F−1(U(ω), ω) and Ỹ = f−1(T ). It remains to see
that PỸ |σ(X)∨M∗(·, ω) = λω,X(ω)(·). For any A in M∗, B in BS and t in R, we have

E
(

1lA 1lX∈B 1lỸ ∈f−1(]−∞,t])

)
=

∫

A

1lX(ω)∈B 1lU(ω)≤F (t,ω)P(dω).

Since U is independent of σ(X) ∨M, it is also independent of σ(X) ∨M∗. Hence

E
(

1lA 1lX∈B 1lỸ ∈f−1(]−∞,t])

)
=

∫

A

1lX(ω)∈BF (t, ω) P(dω)

=
∫

A

1lX(ω)∈Bλω,X(ω)(f−1(]−∞, t])) P(dω).

Since {f−1(]−∞, t]), t ∈ [0, 1]} is a separating class, the result follows.

Coupling and dependence coefficients

Define the coefficient

τc(M, X) =
∥∥∥ sup

f∈Lip
(c)
S

∣∣∣
∫

f(x)PX|M(dx)−
∫

f(x)PX(dx)
∣∣∣
∥∥∥

1
. (15)

If Lip(c)
S is a separating class, this coefficient measures the dependence between M and X (τc(M, X) = 0

if and only if X is independent of M). From point 2 of Theorem 1, we see that an equivalent definition is

τc(M, X) = sup
f∈Lip

(c)
S,M

∫
f(ω, X(ω))P(dω)−

∫ ( ∫
f(ω, x)PX(dx)

)
P(dω) .

where Lip(c)
S,M is the set of integrands f from Ω × S → R, measurable for M⊗ BS, such that f(ω, .)

belongs to Lip(c)
S for any ω ∈ Ω.

Let c(x, y) = 1lx6=y be the discrete metric and let ‖ · ‖v be the variation norm. From the Riesz-
Alexandroff representation theorem (see [29, Theorem 5.1]), we infer that for any (µ, ν) in P(S)×P(S),

sup
f∈Lip

(c)
S

|µ(f)− ν(f)| = 1
2
‖µ− ν‖v .

Hence, for the discrete metric τc(M, X) = β(M, σ(X)) is the β-mixing coefficient between M and σ(X)
introduced in [24]. If c is a distance for which S is Polish, τc(M, X) has been introduced in [23, Inequality
(10)] in its“dual” form, and in [8], [10] in its present from (obviously the reference to [23] is missing in
these two papers).

Applying Theorem 2 with Q = P⊗PX , we see that this coefficient has a characteristic property which
is often called the coupling or reconstruction property.

Corollary 1 (reconstruction property) If Ω is rich enough (see Theorem 2), there exists a σ(U) ∨
σ(X) ∨M-measurable random variable X∗, independent of M and distributed as X, such that

τc(M, X) = E (c(X,X∗)) . (16)
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If c(x, y) = 1lx 6=y, (16) is given in [1, Corollary 4.2.5] (note that in Berbee’s corollary, S is assumed to
be standard Borel. For other proofs of Berbee’s coupling, see [4], [23, Proposition 5 and Remark 2 page
123] and [22, Section 5.3]). If c is a distance for which S is a Polish space, (16) has been proved in [23,
Proposition 6] (in [23] a more general result for sequences is given, in the spirit of [2]. For an other proof
of (16) when (S, c) is Polish, see [8]).

Coupling is a very useful property in the area of limit theorems and statistics. Many authors have
used Berbee’s coupling to prove various limit theorems (see for instance the review paper [19] and the
references therein) as well as exponential inequalities (see for instance the paper [13] for Bernstein-type
inequalities and applications to empirical central limit theorems). Unfortunately, these results apply only
to β-mixing sequences, but this property is very hard to check and many simple processes (such as iterates
of maps or many non-irreducible Markov chains) are not β-mixing. In many cases however, this difficulty
may be overcome by considering another distance c, more adapted to the problem than the discrete metric
(typically c is a norm for which S is a separable Banach space). The case S = R and c(x, y) = |x− y|, is
studied in the paper [9], where many non β-mixing examples are given. In this paper the authors used
the coefficients τc to prove Bernstein-type inequalities and a strong invariance principle for partial sums.
In the paper [10, Section 4.4] the same authors show that if T is an uniformly expanding map preserving
a probability µ on [0, 1], then τc(σ(Tn), T ) = O(an) for c(x, y) = |x− y| and some a in [0, 1[.

The following inequality (which can be deduced from [19, page 174]) shows clearly that β(M, σ(X))
is in some sense the more restrictive coefficient among all the τc(M, X): for any x in S, we have that

τc(M, X) ≤ 2
∫ β(M,σ(X))

0

Qc(X,x)(u)du , (17)

where Qc(X,x) is the generalized inverse of the function t 7→ P(c(X, x) > t). In particular, if c is bounded
by M , τc(M, X) ≤ 2Mβ(M, σ(X)).

A simple example

Let (Xi)i≥0 be a stationary Markov chain with values in a Polish space S, satisfying the equation Xn+1 =
F (Xn, ξn+1), where (ξi)i>0 is a sequence of independent and identically distributed random variables
with values in some measurable space M and independent of X0, and F is a measurable function from
S ×M to S. Let X∗

0 be a random variable distributed as X0 and independent of (X0, (ξi)i>0), and let
X∗

n+1 = F (X∗
n, ξn+1). The sequence (X∗

i )i≥0 is independent of X0 and distributed as (Xi)i≥0. From the
definition (15) of τc, we easily infer that

τc(σ(X0), Xk) ≤ E(c(Xk, X∗
k)) .

Let µ be the distribution of X0 and (X(x)
n )n≥0 the chain starting from X

(x)
0 = x. With these notations,

we have that
E(c(Xk, X∗

k)) =
∫∫

E(c(X(x)
k , X

(y)
k ))µ(dx)µ(dy) .

If there exists a sequence (δi)i≥0 of nonnegative numbers such that E(c(X(x)
k , X

(y)
k )) ≤ δkc(x, y) , then

τc(σ(X0), Xk) ≤ δkE(c(X0, X
∗
0 )) .

For instance, in the case where E(c(F (x, ξ0), F (y, ξ0))) ≤ κc(x, y) for some κ < 1, we can take δk = κk.
An important example is the case where S = M is a separable Banach space and Xn+1 = f(Xn) + ξn+1

for some κ lipschitz function f with respect to c.
Let us consider the well known example 2Xn+1 = Xn + ξn+1, where X0 has uniform distribution λ

over [0, 1] and ξ1 is Bernoulli distributed with parameter 1/2. If c(x, y) = |x − y|, it follows from our
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preceding remarks that τc(σ(X0), Xk) ≤ 2−k. However, it is well known that this chain is not β mixing.
Indeed, it is a stationary Markov chain with invariant distribution λ and transition kernel

K(x, ·) =
1
2
(δx/2 + δ(x+1)/2) ,

so that ‖Kk(x, .)− λ‖v = 2. Consequently β(σ(X0), σ(Xk)) = 1 for any k ≥ 0.

A simple application

Let (Xi)i∈Z be a stationary sequence of real-valued random variables with common distribution function
F . Let M0 = σ(Xk, k ≤ 0), and let FXk|M0 be a conditional distribution function of Xk given M0. Let
Fn = n−1

∑n
i=1 1lXi≤t be the empirical distribution function. Let µ be a finite measure on (R,B(R)). In

[7, Example 2, Section 2.2], it is proved that the process {t 7→ √
n(Fn(t) − F (t))} converges weakly in

L2(µ) to a mixture of L2(µ)-valued Gaussian random variables as soon as

∑

k>0

E
( ∫

|FXk|M0(t)− F (t)|2µ(dt)
)1/2

< ∞ . (18)

Let X∗
k be a random variable distributed as Xk and independent of M0, and let Fµ(x) = µ(] −∞, x[).

Since F = FX∗
k |M0 , it follows that

E
( ∫

|FXk|M0(t)− F (t)|2µ(dt)
)1/2

≤ E
(√

|Fµ(Xk)− Fµ(X∗
k)|

)
.

Let dµ(x, y) =
√|Fµ(x)− Fµ(y)|. From (16) it follows that one can choose X∗

k such that

E
(√

|Fµ(Xk)− Fµ(X∗
k)|

)
= τdµ(M0, Xk) .

Consequently (18) holds as soon as
∑

k>0 τdµ(M0, Xk) < ∞. This is an example where the natural cost
function dµ is not the discrete metric c(x, y) = 1lx 6=y nor the usual norm c(x, y) = |x− y|.

4 A counter example to maximal coupling

In this section we prove that no analogue of Goldstein’s maximal coupling (see [16]) is possible if the cost
function is not proportional to the discrete metric.

More generally, we consider the following problem. Let M be a Polish space and S = M ×M. Let c
be any symmetric measurable function from M ×M to R+, such that c(x, y) = 0 if and only if x = y.
Let F be the class of symmetric measurable functions ϕ from R+ × R+ to R+, such that x 7→ ϕ(0, x) is
increasing. For ϕ ∈ F , we define the cost function cϕ((x1, x2), (y1, y2)) = ϕ(c(x1, y1), c(x2, y2)) on S× S.

The question Q is the following. For which couples (ϕ, c) do we have the property: for any probability
measures µ, ν on S with marginals µ(2)(A) = µ(M×A) and ν(2)(A) = ν(M×A), there exists a probability
measure λ in D(µ, ν) with marginal λ(2)(A×B) = λ(M×A×M×B), such that

∆
(cϕ)
KR (µ, ν) =

∫
ϕ(c(x1, y1), c(x2, y2))λ(dx1, dx2, dy1, dy2) (19)

∆
(c)
KR(µ(2), ν(2)) =

∫
c(x2, y2)λ(2)(dx2, dy2) ? (20)

From Goldstein’s result we know that the couple (ϕ(x, y) = x ∨ y, c(x, y) = 1lx6=y) is a solution to Q.
The following proposition shows that, if c is not proportional to the discrete metric, no couple (ϕ, c) can
be a solution to Q.
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Proposition 1 Suppose that c is not proportional to the discrete metric. There exist a1, b1, a2, b2 in M
such that a1 6= b1 and a2 6= b2 and two probabilities µ and ν on {(a1, a2), (a1, b2), (b1, a2), (b1, b2)} for
which, for any ϕ ∈ F , there is no λ in D(µ, ν) satisfying (19) and (20) simultaneously.

Proof. Since c is not proportional to the discrete metric, there exist at least two points (a1, b1) and
(a2, b2) in M×M such that a1 6= b1, a2 6= b2 and c(a1, b1) > c(a2, b2) > 0. Define the probabilities µ and
ν by

µ(a1, a2) = 1
2 ν(a1, a2) = 0

µ(a1, b2) = 0 ν(a1, b2) = 1
2

µ(b1, a2) = 0 ν(b1, a2) = 1
2

µ(b1, b2) = 1
2 ν(b1, b2) = 0

The set D(µ, ν) is the set of probabilities λα such that λα(a1, a2, a1, b2) = λα(b1, b2, b1, a2) = α,
λα(a1, a2, b1, a2) = λα(b1, b2, a1, b2) = 1/2− α, for α in [0, 1/2]. Consequently, for any ϕ in F ,

∫
ϕ(c(x1, y1), c(x2, y2))λα(dx1, dx2, dy1, dy2) = 2α ϕ(0, c(a2, b2)) + (1− 2α)ϕ(c(a1, b1), 0) . (21)

Since c(a1, b1) > c(a2, b2), since ϕ is symmetric, and since x 7→ ϕ(0, x) is increasing, ϕ(c(a1, b1), 0) >
ϕ(0, c(a2, b2)). Therefore, the unique solution to (19) is λ1/2. Now

∫
c(x2, y2)λ1/2(dx1, dx2, dy1, dy2) = c(a2, b2) > 0 .

Since µ(2) = ν(2), ∆
(c)
KR(µ(2), ν(2)) = 0. Hence λ1/2 does not satisfy (20).

Remark 2. If now c is the discrete metric c(x, y) = 1lx6=y, the right hand term in equality (21) is
ϕ(c(a1, b1), 0). Consequently, any λα is solution to (19) and λ0 is solution to both (19) and (20). We
conjecture that if c is the discrete metric, then any couple (ϕ, c), ϕ ∈ F , is a solution to Q.

5 Appendix: topological and measure-theoretical complements

Topological spaces

Let us recall some definitions (see [25, 15] for complements on Radon and Suslin spaces). A topological
space S is said to be

• regular if, for any x ∈ S and any closed subset F of S which does not contain x, there exist two disjoint
open subsets U and V such that x ∈ U and F ⊂ V ,

• completely regular if, for any x ∈ S and any closed subset F of S which does not contain x, there
exists a continuous function f : S → [0, 1] such that f(x) = 0 and f = 1 on F (equivalently, S is
uniformizable, that is, the topology of S can be defined by a set of semidistances),

• pre-Radon if every finite τ–additive Borel measure on S is inner regular with respect to the compact
subsets of S (a Borel measure µ on S is τ–additive if, for any family (Fα)α∈A of closed subsets of S
such that ∀α, β ∈ A ∃γ ∈ A Fγ ⊂ Fα ∩ Fβ , we have µ(∩α∈AFα) = infα∈A µ(Fα)),

• Radon if every finite Borel measure on S is inner regular with respect to the compact subsets of S,
• Suslin, or analytic, if there exists a continuous mapping from some Polish space onto S,
• Lusin if there exists a continuous injective mapping from some Polish space onto S. Equivalently, S is

Lusin if there exists a Polish topology on S which is finer than the given topology of S.
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Obviously, every Lusin space is Suslin and every Radon space is pre-Radon. Much less obviously, every
Suslin space is Radon. Every regular Suslin space is completely regular.

Many usual spaces of Analysis are Lusin: besides all separable Banach spaces (e.g. Lp (1 ≤ p < +∞),
or the Sobolev spaces Ws,p(Ω) (0 < s < 1 and 1 ≤ p < +∞)), the spaces of distributions E ′, S ′, D′,
the space H(C) of holomorphic functions, or the topological dual of a Banach space, endowed with its
weak∗–topology are Lusin. See [25, pages 112–117] for many more examples.

Standard Borel spaces

A measurable space (M,M) is said to be standard Borel if it is Borel-isomorphic with some Polish space
T, that is, there exists a mapping f : T → M which is one-one and onto, such that f and f−1 are
measurable for BT and M. We say that a topological space S is standard Borel if (S,BS) is standard
Borel.

If τ1 and τ2 are two comparable Suslin topologies on S, they share the same Borel sets. In particular,
every Lusin space is standard Borel.

A useful property of standard Borel spaces is that every standard space S is Borel-isomorphic with a
Borel subset of [0, 1]. This a consequence of e.g. [17, Theorem 15.6 and Corollary 6.5], see also [26] or [11,
Théorème III.20]. (Actually, we have more: every standard Borel space is countable or Borel-isomorphic
with [0, 1]. Thus, for standard Borel spaces, the Continuum Hypothesis holds true!)

Another useful property of standard Borel spaces is that, if S is a standard Borel space, if X :
Ω 7→ S is a measurable mapping, and if M is a sub-σ-algebra of A, there exists a regular conditional
distribution PX|M (see e.g. [14, Theorem 10.2.2] for the Polish case, which immediately extends to
standard Borel spaces from their definition). Note that, if S is radon, then the distribution PX of X is
tight, that is, for every integer n ≥ 1, there exists a compact subset Kn of S such that PX(S\Kn) ≥ 1/n.
Hence one can assume without loss of generality that X takes its values in ∪n≥1Kn. If moreover S has
metrizable compact subsets, then ∪n≥1Kn is Lusin (and hence standard Borel), and there exists a regular
conditional distribution PX|M. Thus, if S is Radon with metrizable compact subsets, every element µ of
Y has an A-measurable disintegration. Indeed, denoting A′ = A⊗ {∅, S}, one only needs to consider the
conditional distribution PX|A′ of the random variable X : (ω, x) 7→ x defined on the probability space
(Ω × S,A⊗ BS, µ).

For any σ–algebra M on a set M, the universal completion of M is the σ-algebra M∗ = ∩µM∗
µ,

where µ runs over all finite nonegative measures on M and M∗
µ is the µ–completion of M. A subset of a

topological space S is said to be universally measurable if it belongs to B∗S . The following lemma can be
deduced from e.g. [28, Exercise 10 page 14] and the Borel-isomorphism theorem.

Lemma 2 Assume that S is a standard Borel space. Let X : Ω → S be A∗–measurable. Then there exists
an A–measurable modification Y : Ω → S of X, that is, Y is A–measurable and satisfies Y = X a.e.

References

1. Henry C. P. Berbee, Random walks with stationary increments and renewal theory, Mathematical
Centre Tracts, vol. 112, Mathematisch Centrum, Amsterdam, 1979.

2. I. Berkes and W. Philipp, Approximation theorems for independent and weakly dependent random
vectors, Ann. Probab. 7 (1979), 29-54.

3. S. Borovkova, R. Burton and H. Dehling, Limit theorems for functionals of mixing processes with
application to U-statistics and dimension estimation, Trans. Amer. Math. Soc. 353 (2001) 4261-4318.

4. W. Bryc, On the approximation theorem of I. Berkes and W. Philipp, Demonstratio Mathematica
15 (1982), no. 3, 807–816.

5. Charles Castaing, Paul Raynaud de Fitte, and Michel Valadier, Young measures on topological spaces.
With applications in control theory and probability theory, Kluwer Academic Publishers, Dordrecht,
2004.



Parametrized Kantorovich-Rubinštein theorem and coupling 13
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