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Abstract. The issue of how a semantics should deal with self-attacking
arguments was always a subject of debate amongst argumentation schol-
ars. A consensus exists for extension-based semantics because those ar-
guments are always rejected (as soon as the semantics in question respect
conflict-freeness). In case of gradual semantics, the question is more com-
plex, since other criteria are taken into account. A way to check the
impact of these arguments is to use the principles (i.e. desirable prop-
erties to be satisfied by a semantics) from the literature. Principles like
Self-Contradiction and Strong Self-Contradiction prescribe how to deal
with self-attacking arguments. We show that they are incompatible with
the well-known Equivalence principle (which is satisfied by almost all
the existing gradual semantics), as well as with some other principles
(e.g. Counting). This incompatibility was not studied until now and
the class of semantics satisfying Self-Contradiction is under-explored.
In the present paper, we explore that class of semantics. We show links
and incompatibilities between several principles. We define a semantics
that satisfies (Strong) Self-Contradiction and a maximal number of com-
patible principles. We introduce an iterative algorithm to calculate our
semantics and prove that it always converges. We also provide a char-
acterisation of our semantics. Finally, we experimentally show that our
semantics is computationally efficient.

Keywords: Abstract argumentation · Gradual semantics · Self-attack.4

1 Introduction

Theory of computational argumentation allows to model exchange of arguments
and conflicts between them. Although in most cases a conflict occurs between two
arguments, sometimes an argument may conflict with itself. Such an argument
is called a self-attacking argument. Discussion on how to deal with self-attacking
arguments is often indirectly included in the problems of dealing with odd-length
cycles, because a self-attack is the smallest odd-length cycle. However, in contrast

4 corresponding author : jerome.delobelle@u-paris.fr
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to greater odd-length cycles, the presence of a self-attack is due to inconsistency
in an argument itself.

In order to reason in presence of these arguments, several methods have
been defined in abstract argumentation by proposing to deal with them directly
[11,9,8,16] or indirectly [7]. These methods essentially concern extension-based
semantics. In the context of ranking-based and gradual argumentation semantics
[2,5], little research was conducted to find out how self-attacking arguments
should be dealt with and what is the impact they have on the acceptability
of other arguments. Existing studies are essentially done through the principle-
based study of these semantics. Indeed, defining and studying principles drew
attention of many scholars in this area.

Consider Equivalence, which is one of the well-known principles, stating that
the acceptability degree of an argument should only depend on acceptability de-
grees of its direct attackers and consider the argumentation graph Fex containing
two arguments a and b, and where b is attacked by a self-attacking argument
a (i.e., Fex = ({a, b}, {(a, a), (a, b)})). Equivalence implies that a and b should
be equally acceptable because a and b are both attacked by a self-attacking ar-
gument. However, this is debatable, since the intuition behind a self-attacking
argument is that it is inconsistent in one way or another so we would tend to
accept b being attacked by a (which is self-attacking) rather than accepting a.
Note that, under all semantics returning conflict-free extensions, a self-attacking
argument is always rejected, i.e. it does not belong to any extension. Also, re-
garding the ranking-based and gradual semantics, it was pointed out that it
would be natural to attach the worst possible rank to self-attacking arguments
[19]. Furthermore, two principles were defined to formalise this intuition.

The first one is called Strong Self-Contradiction, and introduced by Matt
and Toni [19]. It says that the acceptability degree of an argument must be
0 if and only if that argument is self-attacking. The second principle, called
Self-Contradiction, was introduced by Bonzon et al. [12] and states that every
self-attacking argument is strictly less acceptable than every non self-attacking
argument. Consider the argumentation graph Fex again and note that, under
every semantics that satisfies Self-Contradiction, b is strictly more acceptable
than a. This example shows that Equivalence and Self-Contradiction are not
compatible, i.e. there exists no semantics that satisfies both of them.

To the best of our knowledge, there exists only one semantics (known as
M&T) that satisfies Self-Contradiction and Strong Self-Contradiction. That se-
mantics was introduced by Matt and Toni [19]. However, this semantics has a
limitation that makes it inapplicable in practice. Namely, as noted by Matt and
Toni themselves, as the space used to calculate the scores grows exponentially
with the number of arguments, even with the optimisation techniques they used
it did not scale to more than a dozen of arguments.

The research objective of the present paper is to study the under-explored
family of semantics that satisfy Strong Self-Contradiction. Our goals are thus
to identify which principles are (in)compatible with Strong Self-Contradiction
and to define a semantics, which we call nsa (no self-attacks), that satisfies
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Strong Self-Contradiction as well as a maximal number of compatible principles.
After introducing the formal setting and recalling the existing principles from
the literature, we prove the incompatibilities between some of the principles, and
identify a maximal set of principles that contains (Strong) Self-Contradiction.
We introduce an iterative algorithm in order to define a new semantics and
prove that it always converges. The acceptability of degree of each argument
with respect to nsa is then defined as the limit of the corresponding sequence.
We provide a characterisation of nsa, i.e. a declarative (non-iterative) definition
and show that the two are equivalent: each semantics satisfying the declarative
definition coincides with nsa. We check which principles are satisfied by nsa

and compare it with the h-categorizer semantics [10] and the M&T semantics in
terms of principle satisfaction. We formally prove that no semantics can satisfy a
strict super-set of the set of principles satisfied by nsa. We experimentally show
that nsa is computationally efficient and compare it with the M&T semantics
and the h-categorizer semantics. The results confirm the hypothesis that the
M&T semantics does not scale.

2 Formal Setting and Existing Semantics

An argumentation graph (AG) [17] is a directed graph F = (A,R) where A
is a finite set of arguments and R a binary relation over A, i.e. R ⊆ A×A.
For a, b ∈ A, (a, b) ∈ R means that a attacks b. The notation AttF (a) =
{b | (b, a) ∈ R} represents the set of direct attackers of argument a. For two
graphs F = (A,R) and F ′ = (A′,R′), we denote by F ⊗ F ′ the argumentation
graph F ′′ = (A ∪A′,R∪R′).
Dung’s framework comes equipped with various types of semantics used to eval-
uate the arguments. These include the extension-based semantics (see [6] for an
overview), the labelling-based semantics [14], the ranking-based semantics (see
[12] for an overview) and the gradual semantics. We refer the reader to [13,1] for
a complete overview of the existing families of semantics in abstract argumen-
tation and the differences between these approaches (e.g., definition, outcome,
application). In this article, we focus on gradual semantics which assign to each
argument in an argumentation graph a score, called acceptability degree. This
degree belongs to the interval [0, 1]. Higher degrees correspond to stronger argu-
ments.

Definition 1 (Gradual semantics). A gradual semantics is a function S
which associates to any argumentation graph F = (A,R) a function DegSF :
A → [0, 1]. Thus, DegSF (x) represents the acceptability degree of x ∈ A.

In the rest of the section we recall two gradual semantics. We first introduce h-
categorizer, which is one of the most studied gradual semantics and also satisfies
a maximal compatible set of principles from the literature.5 Then we introduce

5 formally: out of the principles from Section 3, no semantics satisfies a strict superset
of the principles satisfied by h-categorizer.
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M&T semantics which is, to the best of our knowledge, the only semantics known
in the literature to satisfy Self-Contradiction.

2.1 h-categorizer Semantics

The h-categorizer semantics [10,20] uses a categorizer function to assign a value
to each argument by taking into account the strength of its attackers, which
itself takes into account the strength of its attackers, and so on.

Definition 2 (h-categorizer semantics). Let F = (A,R) be an argumenta-
tion graph. The h-categorizer semantics is a gradual semantics such that ∀x ∈ A:

DeghF (x) =
1

1 +
∑

y∈AttF (x)Deg
h
F (y)

2.2 M&T Semantics

The gradual semantics introduced by Matt and Toni [19] computes the accept-
ability degree of an argument using a two-person zero-sum strategic game. For an
AG F = (A,R) and an argument x ∈ A, the set of strategies for the proponent
is the set of all subsets of arguments that contain x: SP (x) = {P | P ⊆ A, x ∈ P}
and for the opponent it is the set of all subsets of arguments: SO = {O | O ⊆ A}.
Given two strategies X,Y ⊆ A, the set of attacks from X to Y is defined by
Y←X
F = {(x, y) ∈ X × Y | (x, y) ∈ R}. From this measurement, Matt and Toni

define the notion of degree of acceptability of a set of arguments w.r.t. another
one used to compute the reward of a proponent’s strategy.

Definition 3 (Reward). Let F = (A,R) be an argumentation graph, x ∈ A
be an argument, P ∈ SP (x) be a strategy chosen by the proponent and O ∈ SO

be a strategy chosen by the opponent. The degree of acceptability of P w.r.t. O
is φ(P,O) = 1

2

[
1 + f(|O←P

F |)− f(|P←O
F |)

]
with f(n) = n

n+1 . The reward of P
over O, denoted by rF (P,O), is defined by:

rF (P,O) =

0 iff P is not conflict-free
1 iff P is conflict-free and|P←O

F | = 0
φ(P,O) otherwise

Proponent and opponent have the possibility of using a strategy accord-
ing to some probability distributions, respectively p = (p1, p2, . . . , pm) and q =
(q1, q2, . . . , qn), with m = |SP | and n = |SO|. For each argument x ∈ A, the
proponent’s expected payoff E(x, p, q) is E(x, p, q) =

∑n
j=1

∑m
i=1 piqjri,j with

ri,j = rF (Pi, Oj) where Pi (respectively Oj) represents the ith (respectively jth)
strategy of SP (x) (respectively SO). The proponent can expect to get at least
minq E(x, p, q), where the minimum is taken over all the probability distribu-
tions q available to the opponent. Hence the proponent can choose a strategy
which will guarantee her a reward of maxp minq E(x, p, q). The opposite is also
true with minq maxpE(x, p, q).
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Definition 4 (M&T semantics). The semantics M&T is a gradual semantics
that assigns a score to each argument x ∈ A in F as follows:

DegMTF (x) = max
p

min
q
E(x, p, q) = min

q
max

p
E(x, p, q)

3 Principles for Gradual Semantics

Principles have been introduced by [4] in order to better understand the behavior
of the gradual semantics, choose a semantics for a particular application, guide
the search for new semantics, compare semantics with each other, etc. We do not
claim that all of these principles are mandatory (we will see later that some of
them are incompatible). In the rest of this section, we introduce the principles.6

The first one, called Anonymity, states that the name of an argument should
not impact its acceptability degree.

Principle 1 (Anonymity) A semantics S satisfies Anonymity iff for any two
AGs F = (A,R) and F ′ = (A′,R′) for any isomorphism f from F to F ′,
∀a ∈ A, DegSF (a) = DegSF ′(f(a)).

Independence says that the acceptability degree of an argument should be
independent of unconnected arguments.

Principle 2 (Independence) A semantics S satisfies Independence iff, for
any two AGs F = (A,R) and F ′ = (A′,R′) such that A ∩ A′ = ∅, ∀a ∈ A,
DegSF (a) = DegSF⊗F ′(a).

Directionality states that the acceptability of argument x can depend on y
only if there is a path from y to x.

Principle 3 (Directionality) A semantics S satisfies Directionality iff, for
any AG F = (A,R) and F ′ = (A,R′) such that a, b ∈ A, R′ = R ∪ {(a, b)} it
holds that : ∀x ∈ A, if there is no path from b to x, then DegSF (x) = DegSF ′(x).

Neutrality states that an argument with an acceptability degree of 0 should
have no impact on the arguments it attacks.

Principle 4 (Neutrality) A semantics S satisfies Neutrality iff, for any AG
F = (A,R) if ∀a, b ∈ A, AttF (b) = AttF (a) ∪ {x} with x ∈ A \AttF (a) and
DegSF (x) = 0 then DegSF (a) = DegSF (b).

Equivalence says that if two arguments have the same attackers, or more
generally attackers of the same strength, they should have the same acceptability
degree.

Principle 5 (Equivalence) A semantics S satisfies Equivalence iff, for any
AG F = (A,R), ∀a, b ∈ A, if there exists a bijective function f from AttF (a) to
AttF (b) s.t. ∀x ∈ AttF (a), DegSF (x) = DegSF (f(x)) then DegSF (a) = DegSF (b).

6 We do not include the Proportionality principle since it is only applicable when
arguments are attached intrinsic weights.
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Maximality states that a non-attacked argument should have the highest
acceptability degree.

Principle 6 (Maximality) A semantics S satisfies Maximality iff, for any AG
F = (A,R), ∀a ∈ A, if AttF (a) = ∅ then DegSF (a) = 1.

Counting states that a non-zero degree attacker should impact the accept-
ability of the attacked argument.

Principle 7 (Counting) A semantics S satisfies Counting iff for any AG F =
(A,R), ∀a, b ∈ A, if i) DegSF (a) > 0 and ii) AttF (b) = AttF (a) ∪ {y} with
y ∈ A\AttF (a) and DegSF (y) > 0 then DegSF (a) > DegSF (b).

Weakening says that the acceptability of an argument should be strictly lower
than 1 if it has at least one attacker with a non-zero acceptability degree.

Principle 8 (Weakening) A semantics S satisfies Weakening iff for any AG
F = (A,R), ∀a ∈ A, if ∃b ∈ AttF (a) s.t. DegSF (b) > 0, then DegSF (a) < 1.

Weakening Soundness states that if the acceptability degree of an argument
is not maximal, it must be that it is attacked by at least one non-zero degree
attacker.

Principle 9 (Weakening Soundness) A semantics S satisfies Weakening
Soundness iff, for any AG F = (A,R), ∀a ∈ A, if DegSF (a) < 1 then ∃b ∈
AttF (a) such that DegSF (b) > 0.

Reinforcement states that the acceptability degree increases if the accept-
ability degrees of attackers decrease.

Principle 10 (Reinforcement) A semantics S satisfies Reinforcement iff for
any AG F = (A,R), ∀a, b ∈ A, if i) DegSF (a) > 0 or DegSF (b) > 0, ii)
AttF (a)\AttF (b) = {x}, iii) AttF (b)\AttF (a) = {y}, iv) DegSF (y) > DegSF (x),
then DegSF (a) > DegSF (b).

Resilience states that no argument in an argumentation graph can have a
acceptability degree of 0. It is certainly not a mandatory principle.

Principle 11 (Resilience) A semantics S satisfies Resilience if for any AG
F = (A,R), ∀a ∈ A, DegSF (a) > 0.

The last three principles are incompatible with each other. The first princi-
ple, called Cardinality Precedence states, roughly speaking, that the greater the
number of direct attackers of an argument, the lower its acceptability degree.

Principle 12 (Cardinality Precedence) A semantics S satisfies Cardinality
Precedence iff for any AG F = (A,R), ∀a, b ∈ A, if i) DegSF (b) > 0, and ii)
|{x ∈ AttF (a) s.t. DegSF (x) > 0}| > |{y ∈ AttF (b) s.t. DegSF (y) > 0}| then
DegSF (a) < DegSF (b).
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Quality Precedence states, roughly speaking, that the greater the acceptabil-
ity degree of the strongest attacker of an argument, the lower its acceptability
degree.

Principle 13 (Quality Precedence) A semantics S satisfies Quality Prece-
dence if for any AG F = (A,R), ∀a, b ∈ A, if i) DegSF (a) > 0 and ii) ∃y ∈
AttF (b) s.t. ∀x ∈ AttF (a), DegSF (y) > DegSF (x) then DegSF (a) > DegSF (b).

Compensation states that several attacks from arguments with a low accept-
ability degree may compensate one attack from an argument with high accept-
ability degree. 7

Principle 14 (Compensation) A semantics S satisfies Compensation iff both
Cardinality Precedence and Quality Precedence are not satisfied.

In the literature, two principles directly refer to the self-attacking arguments.
The first one, called Self-Contradiction, was introduced by [12] and states that
the degree of a self-attacking argument should be strictly lower than the degree
of an argument that does not attack itself.

Principle 15 (Self-Contradiction) A semantics S satisfies Self-Contradiction
iff, for any AG F = (A,R) with two arguments a, b ∈ A, if (a, a) ∈ R and
(b, b) /∈ R then DegSF (b) > DegSF (a).

The second principle was introduced by Matt and Toni [19]. Its original
name was “Self-contradiction must be avoided”. We rename it for clarity reasons,
namely in order to avoid the confusion with the name of Principle 15. This
principle states that an argument that attacks itself should have the smallest
acceptability degree (i.e. 0).

Principle 16 (Strong Self-Contradiction) A semantics S satisfies Strong
Self- Contradiction iff, for any AG F = (A,R) with a ∈ A, DegSF (a) = 0
iff (a, a) ∈ R.

4 Analysis of Principles and Links Between Them

In this section we analyse the links between principles and identify two maximal
mutually compatible sets of principles. Let us first observe that Strong Self-
Contradiction implies Self-Contradiction. The next proposition follows directly
from the definitions of the respective principles.

Proposition 1. If a gradual semantics S satisfies Strong Self-Contradiction, it
satisfies Self-Contradiction.

7 There are several version of this principle. We use the version that allows to clearly
distinguish between the three cases (CP, QP, Compensation). Namely, each seman-
tics satisfies exactly one of the three principles.
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Proof. Let us suppose that Strong Self-Contradiction is satisfied by S. This
means that those and only those arguments that have the minimum score are the
self-attacking arguments (∀a ∈ A, DegSF (a) = 0 iff (a, a) ∈ R). This implies that
all arguments that do not attack themselves have an acceptability degree greater
than 0. Formally, ∀b ∈ A, DegSF (b) > 0 iff (b, b) /∈ R. Consequently, for two
arguments a, b ∈ A, if (a, a) ∈ R and (b, b) /∈ R then DegSF (b) > DegSF (a) = 0.
�

As discussed in the introduction, the next result shows that Equivalence and
Self-Contradiction are incompatible.

Proposition 2. There exists no gradual semantics S that satisfies both Equiv-
alence and Self-Contradiction.

Proof. We provide a proof by contradiction. Let us suppose that a gradual se-
mantics S satisfies both Equivalence and Self-Contradiction and consider the
argumentation graph F = (A,R) with A = {a, b} and R = {(a, a), (a, b)}.
From Self-Contradiction, we have DegSF (a) < DegSF (b), while from Equivalence,
we have DegSF (a) = DegSF (b).
Contradiction. Hence, S does not satisfy both Equivalence and Self-Contradiction.
Since S was arbitrary, we conclude that there exists no semantics that satisfies
both Equivalence and Self-Contradiction. �

However, the Equivalence principle is not the only one incompatible with
Strong Self-Contradiction. Some other incompatibilities exist mainly because
self-attacking arguments are treated differently from other arguments. Indeed,
according to Strong Self-Contradiction, self-attacking arguments are directly
classified as the worst arguments, whereas the other principles just consider
a self-attack as an attack like any other (i.e. an attack between two distinct
arguments).

Proposition 3. There exists no gradual semantics S that satisfies both Strong
Self-Contradiction and Resilience.

Proof. We provide a proof by contradiction. Let us suppose that a gradual se-
mantics S satisfies both Strong Self-Contradiction and Resilience, and consider
the argumentation graph F = (A,R) where A = {a} and R = {(a, a)}.
From Strong Self-Contradiction, we have DegSF (a) = 0, while from Resilience,
we have DegSF (a) > 0.
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and
Resilience. Since S was arbitrary, there exists no semantics that satisfies both
Resilience and Strong Self-Contradiction. �

Proposition 4. There exists no gradual semantics S that satisfies both Strong
Self-Contradiction and Weakening Soundness.

Proof. We provide a proof by contradiction. Let us suppose that a gradual
semantics S satisfies both Strong Self-Contradiction and Weakening Sound-
ness, and consider the argumentation graph F = (A,R) where A = {a} and
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R = {(a, a)}.
From Strong Self-Contradiction, we have DegSF (a) = 0, while from Weaken-
ing Soundness, we have DegSF (a) > 0 because a is the only attacker of a and
DegSF (a) = 0.
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and
Weakening Soundness. Since S was arbitrary, there exists no semantics that
satisfies both Strong Self-Contradiction and Weakening Soundness. �

Proposition 5. There exists no gradual semantics S that satisfies both Strong
Self-Contradiction and Reinforcement.

Proof. We provide a proof by contradiction. Let us suppose that a gradual se-
mantics S satisfies both Strong Self-Contradiction and Reinforcement, and con-
sider the argumentation graph F = ({a, b, c, d}, {(a, a), (c, c), (c, a), (a, b), (d, b)}).
From Strong Self-Contradiction, we have 0 = DegSF (a) < DegSF (b).
From Reinforcement, we have DegSF (a) > DegSF (b) because i) DegSF (b) > 0,
ii) AttF (a)\AttF (b) = {c}, iii) AttF (b)\AttF (a) = {d}, and iv) DegSF (d) >
DegSF (c).
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and Re-
inforcement. Since S was arbitrary, there exists no semantics that satisfies both
Strong Self-Contradiction and Reinforcement. �

Proposition 6. There exists no gradual semantics S that satisfies both Strong
Self-Contradiction and Neutrality.

Proof. We provide a proof by contradiction. Let us suppose that a gradual se-
mantics S satisfies both Strong Self-Contradiction and Neutrality, and consider
the argumentation graph F = ({a, b, x}, {(x, x), (b, b), (x, b), (b, a)}).
From Strong Self-Contradiction, we have 0 = DegSF (b) < DegSF (a).
From Neutrality, we have DegSF (a) = DegSF (b) because AttF (b) = AttF (a)∪{x}
with DegSF (x) = 0.
Contradiction. Hence, S does not satisfy both Strong Self-Contradiction and
Neutrality. Since S was arbitrary, there exists no semantics that satisfies both
Strong Self-Contradiction and Neutrality. �

Taking these incompatibilities into account, our goal is now to study two
maximal mutually compatible sets of principles we are interested in. For this,
we need the notion of dominance. A semantics S dominates a semantics S′ on
the set of principles P if the subset of principles from P satisfied by S is a strict
superset of the subset of principles from P satisfied by S′. In the rest of the
discussion, we suppose that P is the set of all principles studied in Section 3.
Note that if a semantics S satisfies a maximal for set inclusion set of principles,
it is not dominated by any semantics.

A first maximal (for set inclusion) set of principles has been identified by [4]
and is a direct consequence of their Proposition 1. We define this set of princi-
ples as PCREW = {Anonymity, Independence, Directionality, Neutrality, Equiva-
lence, Maximality, Weakening, Counting, Weakening Soundness, Reinforcement,
Resilience and Compensation}.
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Theorem 1 ([4]). PCREW is a maximal for set inclusion set of principles.

We can formally show that there is a unique maximal set of principles com-
patible with Compensation, Resilience, Equivalence and Weakening Soundness.

Theorem 2. Let P be the set of all principles defined in Section 3 (Principles
1-16). Let S be a gradual semantics that satisfies Compensation, Resilience,
Equivalence and Weakening Soundness. If S is not dominated w.r.t. P , then S
satisfies exactly the principles from PCREW .

Proof. On one hand, we know from the work by [4] that h-categorizer satisfies all
the principles from PCREW . On the other hand, it is clear from the incompatibil-
ity results between the principles that S cannot satisfy Strong Self-Contradiction
which is incompatible with Resilience (see Proposition 3), Self-Contradiction
which is incompatible with Equivalence (see Proposition 2), Cardinality/Quality
Precedence which are both incompatible with Compensation (see [4]). Thus, in
order not to be dominated by h-categorizer, S must satisfy all the principles
from PCREW ; due to the incompatibilities, S cannot satisfy any more principles.
�

In this paper we choose to explore the space of principles compatible with
Strong Self-Contradiction (which is not in PCREW ). One naturally wants to max-
imise the set of satisfied principles. Can we satisfy Strong Self-Contradiction and
all the other principles? The answer is negative (see Propositions 2-6). First, one
has to choose between Cardinality Precedence, Quality Precedence and Compen-
sation. In this paper, we explore the possibility of satisfying Compensation. This
choice is based on the fact that this principle is satisfied by virtually all seman-
tics, as showed by Amgoud et al. [4]. Indeed, Cardinality Precedence and Quality
Precedence represent, roughly speaking, drastic or extreme cases and are satis-
fied only by the semantics specifically designed to satisfy them, like max-based
semantics and card-based semantics [4] or by semantics having other specifici-
ties. For instance, iterative schema [18], which satisfies Quality Precedence, is
a discrete semantics (it takes only three possible values). This yields another
maximal set of principles which includes those two principles. We define this
set of principles as P2S2C = {Anonymity, Independence, Directionality, Max-
imality, Weakening, Counting, Compensation, Self-Contradiction, Strong Self-
Contradiction}.

Theorem 3. P2S2C is a maximal for set inclusion set of principles.

Proof. Firstly, all the principles in P2S2C are compatible because nsa satisfies
all of them (see Proposition 7). Secondly, P2S2C is maximal because for each
remaining principle p ∈ {Equivalence, Weakening Soundness, Neutrality, Rein-
forcement, Cardinality Precedence, Quality Precedence and Resilience}, there
exists (at least) one principle in P2S2C which is incompatible with p, i.e. Equiva-
lence and Self-Contradiction are incompatible (see Proposition 2); Neutrality and
Strong Self-Contradiction are incompatible (see Proposition 6); Reinforcement
and Strong Self-Contradiction are incompatible (see Proposition 5); Weakening
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Soundness and Strong Self-Contradiction are incompatible (see Proposition 4);
Cardinality Precedence and Compensation are incompatible (see [4]); Quality
Precedence and Compensation are incompatible (see [4]); and Resilience and
Strong Self-Contradiction are incompatible (see Proposition 3). �

We now show that there is a unique maximal set of principles compatible
with Strong Self-Contradiction and Compensation. This follows from the fact
that if a semantics satisfies Strong Self-Contradiction, it cannot satisfy several
principles (see Propositions 2-6) but can satisfied all the others (as witnessed by
the semantics we introduce in this paper).

Theorem 4. Let P be the set of all principles defined in Section 3 (Princi-
ples 1-16). Let S be a gradual semantics that satisfies Strong Self-Contradiction
and Compensation. If S is not dominated w.r.t. P , then S satisfies exactly the
principles from P2S2C .

Proof. It is clear that from the incompatibility results between different prin-
ciples, S cannot satisfy (i) Resilience, Equivalence and Weakening Soundness
which are incompatible with Strong Self-Contradiction (or Self-Contradiction),
and (ii) Cardinality Precedence and Quality Precedence which are both incom-
patible with Compensation. The set of remaining principles corresponds exactly
to P2S2C which is a maximal for set inclusion set of principles. However, S cannot
satisfy exactly a subset of P2S2C because, in this case, S will be dominated by a
semantics that satisfies the principles of P2S2C . Consequently, when S satisfies
Strong Self-Contradiction and Compensation, the only way to ensure that S is
not dominated is when S satisfies exactly the principles from P2S2C . �

To the best of our knowledge, no semantics that satisfy all the principles
from P2S2C has been presented in the literature. In the next section, we define
a semantics that satisfies this set of principles.

Before doing that, let us comment on the non satisfaction of some princi-
ples. It is tempting to change the principles in order to treat the self-attacks in
another way, and consequently make the principles fit some definitions or theo-
rems. We argue that it is better to start by having a full picture of what happens
with existing principles. Indeed, the principles should be the most stable part
of a theory. We are not against introduction of new principles (or changing the
existing ones). This might be part of future work.

5 No Self-Attack h-categorizer Semantics

In this section, we define a new gradual semantics, called no self-attack h-
categorizer (nsa) semantics, inspired by the h-categorizer semantics. The main
difference is that we assign 0 degree to the self-attacking arguments.
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Definition 5 (nsa). Let F = (A,R) be an AG. We define fF,i
nsa : A → [0,+∞]

as follows : for every argument a ∈ A for i ∈ {0, 1, 2, ..},

fF,i
nsa (a) =


0 if (a, a) ∈ R
1 if (a, a) /∈ R and i = 0

1

1 +
∑

b∈AttF (a) f
F,i−1
nsa (b)

if (a, a) /∈ R and i > 0

(1)

By convention, if AttF (a) = ∅,
∑

b∈AttF (a) f
F,i−1
nsa (b) = 0.

Although nsa is inspired by the h-categorizer semantics, the modifications
made change the result obtained requiring the verification that nsa also con-
verges to a unique result. Thus, in the next result, we show that for every argu-
mentation graph F = (A,R), for every argument a ∈ A, fF,i

nsa (a) converges as i
approaches infinity. Roughly speaking, the next theorem aims to formally check
that assigning zero values to self-attacking arguments does not impact the con-
vergence of the scores. Thus, applying nsa to the original argumentation graph
F provides the same result as when the h-categorizer semantics is applied on a
restricted version of F where the self-attacking arguments are deleted.

Theorem 5. For every argumentation graph F = (A,R), for every a ∈ A, if
(a, a) /∈ R, we have lim

i→∞
fF,i
nsa (a) = DeghF ′(a) where F ′ = (A′,R′) with A′ =

{x ∈ A| (x, x) /∈ R} and R′ = {(x, y) ∈ R | x ∈ A′ and y ∈ A′}.

Proof. Let F = (A,R) be an AG and F ′ = (A′,R′) be an AG such that A′ =
{x ∈ A|(x, x) /∈ R} and R′ = {(x, y) ∈ R | x ∈ A′ and y ∈ A′}. Without loss of
generality, let us denote A = {a0, a1, . . . , an}.

Let us recall the iterative version of h-categorizer, that can be used to calcu-
late the scores of arguments [20]: for every a, for i ∈ N

fF,i
h (a) =


1 if i = 0

1

1 +
∑

b∈AttF (a) f
F,i−1
h (b)

if i > 0
(2)

We prove by induction on i that for each a ∈ A′:

fF,i
nsa (a) = fF

′,i
h (a)

Base: Let i = 0. From the formal definition of nsa (Definition 5) and equation

(2), we have fF,0
nsa (a) = fF

′,0
h (a) = 1. Thus, the inductive base holds.

Step: Let us suppose that the inductive hypothesis is true for every k ∈
{0, 1, . . . i} and let us show that it is true for i+ 1. We need to prove :

fF,i+1
nsa (a) = fF

′,i+1
h (a)
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From the inductive hypothesis, we know that for each argument a ∈ A′,

fF,i
nsa (a) = fF

′,i
h (a). Thus, from equation (1), we have:

fF,i+1
nsa (a) =

1

1 +
∑

b∈AttF (a) f
F,i
nsa (b)

From equation (2), we have

fF
′,i+1

h (a) =
1

1 +
∑

b∈AttF′ (a) f
F ′,i
h (b)

Let us note AttF (a) = AttF ′(a)∪{b0, . . . , bm} with m ≥ 0 and remark that ∀b ∈
{b0, . . . , bm}, we have (b, b) ∈ R. According to equation (1), ∀b ∈ {b0, . . . , bm},
fF,i
nsa (b) = 0. Consequently, as 0 is the neutral element of the addition, we have

∀a ∈ A′, fF,i+1
nsa (a) = fF

′,i+1
h (a).

By induction, we conclude that for every i ∈ N and for every a ∈ A′

fF,i
nsa (a) = fF

′,i
h (a)

Since fh converges when i→∞ and fnsa coincides with fh for every argument
of A′, we conclude that fnsa converges too. Formally, ∀a ∈ A′, lim

i→∞
fF,i
nsa (a) =

lim
i→∞

fF,i
h (a) = DeghF ′(a). �

We can now introduce the formal definition of nsa.

Definition 6 (nsa). The no self-attack h-categorizer semantics is a function
nsa which associates to any argumentation framework F = (A,R) a function
DegnsaF (a) : A→ [0, 1] as follows: DegnsaF (a) = lim

i→∞
fF,i
nsa(a).

We can now show that the acceptability degrees attributed to arguments by nsa

satisfy the equation from Definition 5 (naturally, not taking into account the
second line of the equation, since it considers the case i = 0).

Theorem 6. For any F = (A,R), for any a ∈ A,

DegnsaF (a) =


0 if (a, a) ∈ R

1

1 +
∑

b∈AttF (a)Deg
nsa
F (b)

otherwise

Proof. Let F = (A,R) be an argumentation graph and a ∈ A.
The case where a is a self-attacking argument is trivial.
In the rest of the proof we consider the case where a is not a self-attacking
argument. Letting lim

i→∞
in the following equality

f i+1
nsa (a) =

1

1 +
∑

b∈AttF (a) f
i
nsa(b)
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and using the fact that arithmetical operations and sum are continuous functions,
we obtain :

lim
i→∞

f i+1
nsa (a) =

1

1 +
∑

b∈AttF (a) lim
i→∞

f insa(b)

then

DegnsaF (a) =
1

1 +
∑

b∈AttF (a)Deg
nsa
F (a)

�

We now show that the equation from Theorem 6 is not only satisfied by nsa,
but is also its characterization. More precisely, the next result proves that if an
arbitrary semantics D satisfies that equation, it must be that D coincides with
nsa.

Theorem 7. Let F = (A,R) be an AG with a ∈ A and D : A → [0, 1] be a
function with the following formula:

D(a) =


0 if (a, a) ∈ R

1

1 +
∑

b∈AttF (a)D(b)
otherwise

(3)

then D ≡ DegnsaF .

Proof. Let F = (A,R) be an AG and suppose that D : A → [0, 1] is the function
from equation (3).

Let A = {a1, .., an} and let F : [0, 1]n → [0, 1]n be the function such that
F (x1, .., xn) = (F1(x1, .., xn), ..., Fn(x1, ..., xn)) where the functions Fi are de-
fined by the following equality:

Fi(x1, . . . , xn) =


0 if (ai, ai) ∈ R

1

1 +
∑

j:aj∈AttF (ai)

xj
otherwise (4)

We also define the partial order ≤ on Rn in the following way: if x =
(x1, . . . , xn) and y = (y1, . . . , yn) then x ≤ y iff for every i it holds that xi ≤ yi.
Thus, from Equation (3), it follows that F (D(a1), ..., D(an)) = (D(a1), ..., D(an)).

Observe that F is a non-increasing function and that G = F ◦ F is a non-
decreasing function, and that :

(f i+1
nsa (a1), ..., f i+1

nsa (an)) = F ((f insa(a1), ..., f insa(an)))

for every i ∈ N. Since (f0nsa(a1), ..., f0nsa(an)) ∈ [0, 1]n with f0nsa(ai) = 0 iff
(ai, ai) ∈ R and f0nsa(ai) = 1 otherwise, by the inequalities, we obtain

(f0nsa(a1), ..., f0nsa(an)) ≥ (D(a1), ..., D(an)) (5)
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From (5), and since F is non-increasing, we have:

(f1nsa(a1), ..., f1nsa(an)) ≤ (D(a1), ..., D(an)) (6)

From (6), and since G = F ◦ F is non-decreasing, we have:

(f2insa(a1), ..., f2insa(an)) ≥ (D(a1), ..., D(an)) (7)

and
(f2i+1

nsa (a1), ..., f2i+1
nsa (an)) ≤ (D(a1), ..., D(an)) (8)

for every i ∈ N.
Since all f i converge, from (7) and (8) we obtain

(DegnsaF (a1), . . . , DegnsaF (an)) ≥ (D(a1), ..., D(an))

and
(DegnsaF (a1), . . . , DegnsaF (an)) ≤ (D(a1), ..., D(an))

and thus ∀a ∈ A, DegnsaF (a) = D(a). �

Below is an example of the nsa semantics applied on an argumentation graph.

Example 1 Let us apply the no self-attack h-categorizer semantics (nsa) on
the argumentation graph illustrated in Fig. 1. By definition, the self-attacking

a0 a1 a2

a3a4a5

DegSF nsa h MT

a0 0 0.618 0

a1 0.732 0.495 0.25

a2 0 0.618 0

a3 0.477 0.398 0.167

a4 0.399 0.401 0.25

a5 1 1 1

Fig. 1. On the left, an argumentation graph F and, on the right, the table containing
the degrees of acceptability of each argument of F w.r.t. the no self-attack h-categorizer
semantics (nsa), the h-categorizer semantics (h) and the semantics M&T (MT).

arguments have an acceptability degree of 0 : DegnsaF (a0) = DegnsaF (a2) = 0.
The non-attacked arguments or the arguments only attacked by self-attacking
arguments have, by definition, the maximum score: DegnsaF (a5) = 1. Applying
the formula from Theorem 6, we obtain the following acceptability degrees for
a1 and a4 : DegnsaF (a1) = 0.732 and DegnsaF (a4) = 0.399. Finally, following the
same method, here are the details concerning a3 :

DegnsaF (a3) =
1

1 +DegnsaF (a1) +DegnsaF (a2) +DegnsaF (a4)
= 0.477
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In order to have an overview of the difference between nsa and the gradual se-
mantics introduced in Section 2, the degrees of acceptability of arguments w.r.t.
the h-categorizer semantics and the M&T semantics have also been added in the
table of Fig. 1. This comparison clearly shows that nullifying the impact of self-
attacking arguments more or less significantly changes the degree of acceptability
of other arguments (e.g. a1 and a3).

6 Principle-Based Evaluation of Semantics

In this section we evaluate the nsa semantics with respect to principle compli-
ance, and compare the results with two existing semantics, namely M&T and
h-categorizer. We first show that nsa satisfies all the principles from P2S2C , and
thus cannot be dominated by any semantics.

Proposition 7. The gradual semantics nsa satisfies all principles from P2S2C .
The other principles are not satisfied.

In order to axiomatically compare nsa with the two other gradual semantics, let
us check for the principles studied in this paper those that are satisfied by M&T
and recall those satisfied by the h-categorizer semantics.

Proposition 8. The gradual semantics M&T satisfies Anonymity, Maximality,
Independence, Directionality, Weakening, Compensation, Self-Contradiction and
Strong Self-Contradiction. The other principles are not satisfied.

Proposition 9 ([3]). The gradual semantics h-categorizer satisfies all the prin-
ciples from PCREW . The other principles are not satisfied.

Note that nsa dominates M&T, i.e. it satisfies strictly more principles. Ob-
serve that nsa and h-categorizer are incomparable in terms of principles sat-
isfaction. Indeed, nsa represents one choice, i.e. the position to satisfy Strong
Self-Contradiction and Compensation. It also satisfies all the compatible princi-
ples. h-categorizer represents another choice, namely that to satisfy Compensa-
tion, Resilience, Equivalence and Weakening Soundness. Concretely, a semantics
satisfying PCREW considers that a self-attacking argument is a path like the
other ones. So an argument which attacks itself (and is not attacked by any
other argument) can be stronger than an argument which is attacked by several
arguments. On the contrary, a semantics which satisfies P2S2C considers that
a self-attacking argument is intrinsically flawed, without even requiring other
arguments to defeat it. Note that there exist other maximal sets of compatible
principles, for example the one containing Resilience and Self-Contradiction. We
leave a detailed study of these maximal sets of compatible principles for future
work.

7 Experimental Results

We now empirically compare nsa with M&T and h-categoriser semantics. We
consider a large experimental setting representing three different models used
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Principles M&T h-cat nsa

Anonymity X X X
Independence X X X
Directionality X X X

Neutrality × X ×
Equivalence × X ×
Maximality X X X
Weakening X X X
Counting × X X

Weakening Soundness × X ×
Reinforcement × X ×

Resilience × X ×
Cardinality Precedence × × ×

Quality Precedence × × ×
Compensation X X X

Self-Contradiction X × X
Strong Self-Contradiction X × X

Table 1. Principles satisfied by the M&T, h-categorizer and nsa semantics. The
shaded cells contain the results already proved in the literature.

during the ICCMA competition (http://argumentationcompetition.org/) as
a way to generate random argumentation graphs: i) the Erdös-Rényi model (ER)
which generates graphs by randomly selecting attacks between arguments, ii)
the Barabasi-Albert model (BA) which provides networks, called scale-free net-
works, with a structure in which some nodes have a huge number of links, but
in which nearly all nodes are connected to only a few other nodes, and iii) the
Watts-Strogatz model (WS) which produces graphs which have small-world net-
work properties, such as high clustering and short average path lengths. The
generation of these three types of AGs was done by the AFBenchGen2 gen-
erator [15]. We generated a total of 2160 AGs evenly distributed between the
three models. For each model, the number of arguments varies among Arg =
{5, 10, 15, 25, 50, 100, 250, 500} with 90 AGs for each of these values. The param-
eters used to generate graphs are as follows: for ER, 10 random instances for each
(numArg, probAttacks) in Arg×{0.2, 0.3, . . . , 1}; for BA, 9 random instances for
each (numArg, probCycles) inArg×{0, 0.1, . . . , 0.9}; for WS, (numArg, probCycles,
β, K) in Arg × {0.25, 0.5, 0.75} × {0, 0.25, 0.5, 0.75, 1} × {k ∈ 2N s.t. 2 ≤ k ≤
|Arg| − 1}. We refer the reader to [15] for the meaning of the parameters.

In order to compare the execution times of the three semantics studied in
this paper, we have implemented them in C and ran the program on a cluster
of identical computers with dual quad-core processors with 128 GB RAM.8

8 The code and benchmarks are available online at https://github.com/jeris90/

nsa_code.git.

http://argumentationcompetition.org/
https://github.com/jeris90/nsa_code.git
https://github.com/jeris90/nsa_code.git
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Fig. 2. Execution speed for the nsa (in green), the M&T (in blue) and the h-categorizer
(in red) semantics. x-axis shows the number of arguments of the instances (Arg =
{5, 10, 15, 25, 50, 100, 250, 500}). y-axis shows the execution time in seconds (with a
timeout of 900 seconds).

Fig. 3. A zoomed-in version of the graph from Fig. 2 to better see the difference
between the execution speed for the nsa and the h-categorizer semantics.

Fig. 2 shows the average execution time obtained by each semantics for the
instances classified according to the number of arguments. A first remark is that,
unlike the other two semantics, the M&T semantics quickly explodes in time
since it systematically reaches the timeout (900 seconds) when the number of
arguments is greater than 15. A second remark is that, unsurprisingly, the nsa

and h-categorizer semantics have very similar execution times for each of the
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instances. Fig. 3 shows the difference between nsa and h-categorizer semantics
more precisely. Moreover, they allow us to quickly compute (with an average
smaller than one second) the degree of acceptability of each argument even for
large AGs. Only a few very dense instances (i.e. those with a high probability of
cycles) require between 1 and 2 seconds when numArg = 500.

8 Summary

We studied the question of the treatment of self-attacks by gradual semantics
following a principle-based approach. We showed links and incompatibilities be-
tween principles, defined a new semantics called no self-attack h-categorizer se-
mantics and proved that it dominates the only existing semantics satisfying Self-
Contradiction principle. Moreover, we showed that our semantics satisfies a max-
imal possible amount of principles (i.e. no semantics satisfying Self-Contradiction
can satisfy more principles) and is usable in practice as it returns results very
quickly (on average less than 1 second) even on large and dense AGs.
In addition to the future work already discussed in the paper, we think it would
be interesting to extend the approach we used for the h-categorizer semantics to
other gradual semantics (if possible). Finally, the work presented in this paper
concerns ”classic” argumentation graphs but one could naturally ask the same
question about AGs containing more information (support relation, weight on
arguments and/or attacks, etc.).
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