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A Nonparametric Approach
for Histogram Segmentation

Julie Delon, Agnès Desolneux, José-Luis Lisani, and Ana Belén Petro

Abstract—In this work, we propose a method to segment a 1-D
histogram without a priori assumptions about the underlying den-
sity function. Our approach considers a rigorous definition of an
admissible segmentation, avoiding over and under segmentation
problems. A fast algorithm leading to such a segmentation is pro-
posed. The approach is tested both with synthetic and real data.
An application to the segmentation of written documents is also
presented. We shall see that this application requires the detection
of very small histogram modes, which can be accurately detected
with the proposed method.

Index Terms—Document analysis, histogram analysis, his-
togram segmentation, image segmentation, parameter-free
method.

I. INTRODUCTION

HISTOGRAMS have been extensively used in image anal-
ysis and, more generally, in data analysis, mainly for two

reasons: they provide a compact representation of large amounts
of data, and it is often possible to infer global properties of the
data from the behavior of their histogram. One of the features
that better describes a 1-D histogram is the list of its modes, i.e.,
the intervals of values around the data is concentrated. For ex-
ample, the histogram of hues or intensities of an image made
of different regions shall exhibit several peaks, each one ideally
corresponding to a different region in the image. In this case, a
proper segmentation of the image can be obtained by determing
appropriate thresholds separating the modes in the histogram.
However, it is not always easy to quantify the amount of “data
concentration” in an interval and, hence, to separate modes.

Among the algorithms proposed for 1-D histogram segmenta-
tion, we can distinguish between parametric and nonparametric
approaches. The first ones (see [13]) assume the set of data as
samples of mixtures of random variables of given distribu-
tions, as in the Gaussian mixture models. If is known, opti-
mization algorithms, such as the EM algorithm [11], can esti-
mate efficiently the parameters of these distributions. The esti-
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mated density can then be easily segmented to classify the orig-
inal data. The main drawback of this approach is that histograms
obtained from real data cannot always be modeled as mixtures
of Gaussians, for example, luminance histograms of natural im-
ages, as we shall see in the experimental section. Nonparametric
approaches give up any assumption on the underlying data den-
sity. Among them, bi-level or multilevel thresholding methods,
such as [1], [7], [8], and [22], divide the histogram into several
segments by minimizing some energy criterion (variance, en-
tropy, etc.).

In all cases, the number of modes in the final segmentation
must be estimated. This number can be specified a priori,
becoming a method parameter. It can also be estimated if its
a priori distribution is hypothesized. The selection of this
parameter is crucial since a wrong choice leads to an over or
under segmentation of the data. Generally, ad hoc procedures
are used to estimate the number of modes.

Other nonparametric approaches (for instance, mean shift [9])
find peaks (local maxima) of the histogram without estimating
the underlying density. These methods tend to detect too many
peaks in histograms coming from real noisy data. Some criterion
is, therefore, needed to decide which peaks from the detected
ones correspond to true modes [25]. Indeed, one of the main
challenges of histogram analysis is the detection of small modes
among big ones (see, for example, Fig. 3).

A different approach has been recently proposed in [14]. The
authors propose to fit the simplest density function compat-
ible with the data. Such a method is globally convincing, but
the choice of the data-compatibility threshold is not formalized,
only justified by experiments.

The limitations observed in the previous methods have moti-
vated the development of a new nonparametric approach, robust
to small variations in the histogram due to the limited number of
samples, and local enough to detect isolated small modes. This
new method is based on the automatic detection of unimodal in-
tervals in the histogram, which allow us to segment it.

In Section II, the theoretical framework of the proposed ap-
proach is described in detail. Several tests are presented in Sec-
tion III, with applications to document segmentation.

II. NEW APPROACH TO HISTOGRAM ANALYSIS

A density function is said to be unimodal on some interval
if is increasing on some and decreasing on .

It seems appropriate to segment a histogram by looking for seg-
ments on which it is “likely” that the histogram is the realization
of a unimodal law. On such intervals, we will say that the his-
togram is “statistically unimodal” (this expression will be pre-
cisely defined later). Obviously, such a segmentation is gener-
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ally not unique. In particular, the segmentation defined by all the
local minima of the histogram has this property. However, small
variations due to the sampling procedure should clearly not be
detected as modes. In order to get a “minimal” division of the
histogram, these fluctuations should be neglected. We arrive at
two requirements for an admissible segmentation:

• in each segment, the histogram is “statistically unimodal;”
• there is no union of several consecutive segments on which

the histogram is “statistically unimodal.”
What are the right tests to decide whether a histogram is “sta-

tistically unimodal” on an interval or not? In a nonparametric
setting, any unimodal density on the considered interval should
be hypothesized and the compatibility between this density and
the observed histogram distribution should be tested. Unfortu-
nately, this leads to a huge number of tests and this is, therefore,
impossible. There is, however, a way to address this question by
testing a small number of adequate unimodal laws. In [16], this
problem was solved for the case of decreasing laws. Our pur-
pose here is to extend this method to the segmentation of any
histogram into meaningful modes. We shall treat the problem in
three stages in Sections II-A–C:

• step A: testing a histogram against a fixed hypothesized
density;

• step B: testing a histogram against a qualitative assumption
(decreasing, increasing);

• step C: segmenting a histogram and generating an estimate
of its underlying density.

A. Distribution Hypothesis Testing

Consider a discrete histogram , with sam-
ples on bins . The number is the value of in the
bin . It follows that:

(1)

For each discrete interval of , let be the
proportion of points in

(2)

Assume that an underlying discrete probability law
is hypothesized for . One would like to

test the adequacy of the histogram to this given density. For

TABLE I
NUMBER OF SEGMENTS FOUND BY THE FTC ALGORITHM

FOR 100 SAMPLES OF SIZE 2000 OF DIFFERENT LAWS

each interval of , let be the probability
for a point to fall into the interval

(3)

Consider the hypothesis that originates from . In other
words, the samples of the histogram have been sampled in-
dependently on with law . A simple way to accept
or to reject is to test for each interval the similarity
between and . Under the hypothesis , the prob-
ability that contains at least samples among is
given by the binomial tail , where

(4)

In the same way, the probability that contains less than
samples is . If one

of these probabilities is too small, the hypothesis can be
rejected. We define for each interval its number of false
alarms [see (5), shown at the bottom of the page].

Definition 1: An interval is said to be an -meaningful
rejection of if

(6)

Proposition 1: Under the hypothesis , the expectation of
the number of -meaningful rejections among all the intervals
of is smaller than .

The proof of proposition 1 is obvious [12] and uses a
Bonferroni argument, taking into account the number of tests

(the number of different intervals in ).
This means that testing a histogram following a law will
lead on the average to less than wrong rejections. It may
be asked how reliable this estimate is. In [7], Grompone and
Jakubowicz have shown that the expectation of -meaningful
events could be approximated by . This will be confirmed
in Section III (see Table I). Thus, in practice, we fix , and
just talk about meaningful rejections.

if

if .
(5)
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Fig. 1. Histograms of N = 10000 samples distributed on L = 100 bins,
tested against the unifom law on [1;100]. (a) Realization of the uniform law on
[1;100]. (b) Realization of a mixture of two uniform laws: [1;50] with a weight
0.45, and [51;100] with weight 0.55.

Definition 2: We say that a histogram follows the law on
if contains no meaningful rejection for .

Fig. 1 shows two histograms which have been tested against
the uniform law on . The first one is a realization of this
law, and no rejection is found. The second is a mixture of two
uniform laws on different intervals. In this case, several rejec-
tions of the uniform law on are found. The rejection with
the lowest (the interval ) is shown in Fig. 1(b).

B. Testing the Monotone Hypothesis

Next, we test if a histogram follows a decreasing hypoth-
esis on (the increasing case can be deduced by symmetry).
This test will be useful later to give a suitable meaning to the ex-
pression “being statistically unimodal on an interval.” The aim
of a ideal test is to examine the adaptation of to any decreasing
density on . This operation is obviously impossible but can
be circumvented by using an estimate of the most likely de-
creasing law that fits .

Let be the space of discrete probability distributions on
, i.e., the vectors such that

and (7)

Let be the space of all decreasing densities on
. If is the normalized histogram

of our observations, let be the Grenander estimator of . In-
troduced by Grenander in 1956 [16], this estimator is defined as
the nonparametric maximum likelihood estimator restricted to
decreasing densities on the line.

Definition 3: The distribution is the only distribution of
which achieves the minimal Kullback–Leibler distance

from to , i.e.,

(8)

where , .
Grenander shows in [16] (see also [3]) that is merely “the

slope of the smallest concave majorant function of the empirical
repartition function of .” also achieves the minimal -dis-
tance from to . It can easily be derived from by an
algorithm called “Pool Adjacent Violators” (see [2] and [4]).

Fig. 2. (a) Original histogram. (b) Grenander estimator obtained from the “Pool
Adjacent Violators” algorithm.

Pool Adjacent Violators: Consider the operator
defined by: for , and for each

interval on which is increasing, i.e.,
and and , set

for

and otherwise (9)

This operator replaces each increasing part of by a constant
value (equal to the mean value on the interval). A finite number
(less than the size of ) of iterations of yields a decreasing
distribution denoted

(10)

An example of discrete histogram and its Grenander estimator
are shown in Fig. 2.

The previous definitions of meaningful rejections can obvi-
ously be applied to this case by taking in the hypothesis

, with the Grenander estimator of .
Definition 4: Let be a histogram of samples and the

Grenander estimator of . An interval is said
to be a meaningful rejection for the decreasing hypothesis if

(11)

where is defined for any density law in (5).
Definition 5: We say that a histogram follows the de-

creasing hypothesis (respectively, the increasing hypothesis)
on an interval if the restriction of the histogram to
[i.e., ] contains no meaningful
rejection for the decreasing (resp. increasing) hypothesis.

C. Piecewise Unimodal Segmentation of a Histogram

Definition 6: We say that a histogram follows the uni-
modal hypothesis on the interval if there exists
such that follows the increasing hypothesis on and fol-
lows the decreasing hypothesis on .

We call segmentation of a sequence
. The number is termed length of the segmentation.

Our aim is to find an “optimal” segmentation of , such that
follows the unimodal hypothesis on each interval of
. If is the segmentation defined by all the local minima of ,
follows obviously the unimodal hypothesis on each of its seg-

ments, but this segmentation is not reasonable in general [see
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Fig. 3. (a) Initialization of the algorithm (all the local minima of the histogram).
The histogram presents small oscillations, which create several local minima.
(b) Final segmentation after FTC algorithm. Three modes are detected in this
histogram, one is very small.

Fig. 3(a)]. A segmentation following the unimodal hypothesis
on each segment is generally not unique. In order to be sure to
build a minimal (in terms of number of separators) segmenta-
tion, we introduce the notion of “admissible segmentation.”

Definition 7: Let be a histogram on . A segmenta-
tion of is admissible if it satisfies the following properties:

• follows the unimodal hypothesis on each interval
;

• there is no interval with , on which
follows the unimodal hypothesis.

The first requirement avoids under segmentations, and the
second one avoids over segmentations. It is clear that such a
segmentation exists. Starting from the segmentation defined by
all the local minima of , merge recursively the consecutive in-
tervals until both properties are satisfied.

Fine to Coarse (FTC) Segmentation Algorithm

1) Initialize as the finest segmentation of
the histogram, i.e., the list of all the local minima, plus the
endpoints and .

2) Repeat:
Choose randomly in . If the pair of
segments on both sides of can be merged into a single
interval following the unimodal hypothesis,
group them. Update .
Stop when no more pair of successive intervals in follows
the unimodal hypothesis. has decreased by one
with each merging. Now .

3) For from 3 to , repeat step 2 with the unions of seg-
ments.

The necessity of step 3) comes from the fact that a union
of successive segments can follow the unimodal hypothesis
whereas no more union of successive segments for
does.

The result of this algorithm on a histogram is shown in Fig. 3.
In the histogram of Fig. 3, an energy-minimizing algorithm

(for example, the one presented in [1]) gives similar results if
it is specified that three segments are required. The separator
between the second and third modes is not located exactly at
the same place, but this variation has a negligible effect on the
classification, since very few points are represented in this zone
of the histogram. If only two segments are required, the second
and third modes are united. It is interesting to note that for the
energy defined in [1], the bimodal segmentation has almost the

same energy as the three-modal segmentation. This implies that
with a term penalizing the number of segments in the energy, the
bimodal segmentation would certainly be chosen instead of the
three-modal one. Therefore, the small mode cannot be found by
this kind of method.

Fig. 6 shows the result of the FTC algorithm on a more os-
cillating histogram. Popular techniques of histogram analysis,
such as mean shift [9], would over segment this histogram, as
noted in [25], since many of the observed small oscillations
would be detected as peaks.

III. EXPERIMENTS

The experimental section is organized as follows. First, some
experiments on synthetic data are performed to test the ability
of the method to segment mixtures of laws without a priori as-
sumption. Then, some experiments on image segmentation are
displayed, and the validity of modeling real data histograms by
Gaussian mixtures is discussed. The section ends with exper-
iments on document segmentation, and the robustness of the
method is tested.

A. Some Results On Synthetic Data

From a given probability law, 100 histograms of
samples each were generated and quantized on 50 bins. For
each distribution, the number of segments found by the FTC
algorithm was noted. Table I shows for different classical laws
the number of distributions among the 100 leading to one, two,
or three segments. The laws used here are the uniform law, a
Gaussian distribution of standard deviation ten and mixtures of
two Gaussian functions , with

and , or .
For a uniform or a Gaussian law, the number of segments is

almost always found to be 1. For Gaussian mixtures, the results
are of course closely related to the distance between the means
of the Gaussian distributions. When , the FTC algo-
rithm always finds a single segment. It begins to find two seg-
ments when , and finds two segments in 99% of the
cases as soon as . Fig. 4 shows that these results cor-
respond to intuition. When , the two Gaussian functions
cannot be distinguished, whereas the mixture clearly shows two
modes when . These results also obviously depend on the
number of points. The larger is, the more each histogram
looks like the real mixture law, and the sooner the algorithm
finds two segments. Of course, segmenting Gaussian mixtures
can be made more efficiently by dedicated algorithms if we re-
ally know they are Gaussian. In practice, observed mixtures are
seldom Gaussian mixtures.

B. Some Experiments on Image Segmentation

Fig. 5 displays an image that contains a uniform background
and a set of small objects of different intensities. The intensity
histogram shows a large peak corresponding to the background
and very small groups of values corresponding to the objects in
the foreground. The FTC algorithm segments the histogram into
four modes. The associated regions are shown in Fig. 5, each one
of them corresponding to a different object in the scene.

Modes of a gray level histogram do not necessarily corre-
spond to semantical visual objects. In general, modes simply
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Fig. 4. Examples of Gaussian mixtures of the form (1=2)N (�; �) +
(1=2)N(�+ d; �), where � = 5. (a) Case d = 2�. (b) d = 3�. (c) d = 4�.
For d = 2�, the FTC algorithm finds no separator. For the other mixtures, the
vertical line indicates the segmentation found.

Fig. 5. (a) Original image (399� 374 pixels). (b) Its intensity histogram seg-
mented into four modes. (c) Regions of the image corresponding to the four
obtained histogram modes (in decreasing level of intensity, the background is
either white or black depending on the mean intensity of the represented mode).

correspond to regions with uniform intensity and segmenting
the histogram boils down to quantizing the image on the so-de-
fined levels. This is the case in Fig. 6. The histogram of “Lena” is
automatically divided into seven modes, and the corresponding
image quantization is shown in Fig. 6(c). Remember that no in-
formation about the spatial relations between image pixels is
used to obtain the segmentation. Some authors (e.g., [23] and

Fig. 6. (a) Image (256� 256 pixels) Lena. (b) Its intensity histogram seg-
mented into seven modes by the FTC algorithm. Observe that this histogram
presents strong oscillations. In the initialization, the histogram presented 60
local minima among 256 bins. The segments have been merged until they follow
Definition 7 of an admissible segmentation. (c) Image Lena quantized on the 7
levels defined by the histogram segmentation shown in (b). (d) Best mixture of
14 Gaussian laws for the histogram (b), found by an EM algorithm. The local
minima of this mixture, indicated by the vertical lines, correspond almost ex-
actly to the separators found in (b).

[8]) propose the use of such information to improve the results
of histogram thresholding techniques.

As mentioned in the beginning of Section II, segmenting a
histogram consists of two steps: 1) choosing a set of possible
densities and 2) looking for the simplest of these densities which
better adapts itself to the histogram for some statistical test. In
the FTC algorithm, the densities proposed are a set of mixtures
of unimodal laws, constructed from local Grenander estimators
of the histogram. The test consists in looking for meaningful re-
jections. Another option is to use an EM algorithm to look for
the best mixture of Gaussian laws fitting the histogram. For
each , the adequacy of the mixture to the histogram is measured
by a Kolmogorov–Smirnov test. The final segmentation is then
defined by all the local minima of the selected mixture. This can
be tested on the “Lena” histogram. The EM algorithm is initial-
ized by a -means algorithm. For a significance level of 5%, the
first value of leading to an accepted mixture is (the

-value for this mixture is 0.053). The adaptation between this
mixture and the histogram is confirmed by a Cramer von Mises
test at a significance level of 5% ( -value ). Fig. 6(d)
shows this best mixture of 14 Gaussian laws and indicates its
local minima. Observe that this density is constituted of seven
modes that correspond exactly to the modes found previously.

With more demanding tests (a Chi-square test, or the search
of meaningful rejections presented in Section II-A), all mixtures
are rejected until (the modes found in this case are still
the seven same modes). This illustrates the discrepancy between
the number of Gaussians needed to correctly represent the law
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Fig. 7. (a) “Beans” image. (b) Hue histogram of the image and corresponding
segmentation in six modes (remember that the hue histogram is circular).
(c) Corresponding segmentation of the image.

and the actual number of modes. This discrepancy can be ex-
plained by the following observation: when a digital picture is
taken, the sensors of the camera and the postprocessing that is
used to store the picture into a file are nonlinear. Even if the real
intensity values of a given object followed a Gaussian law, the
intensity distribution of this object on the picture would not be
well represented by a Gaussian function. In particular, the cor-
responding mode on the histogram can be highly nonsymmetric
(see, e.g., Fig. 6). Such a mode needs several Gaussian laws to
be well represented, whereas a unique unimodal law fits it. As
a consequence, looking for a mixture of unimodal laws is more
adapted in this case than looking for Gaussian mixtures.

Fig. 7 shows an example of image segmentation using the
hues instead of the gray levels. Remember that hue histograms
are circular. The FTC algorithm is perfectly adapted to this case.

C. Some Experiments in Document Image Analysis

Histogram thresholding is widely used as a preprocessing
step for document understanding and character recognition. Its
main use in this domain is to sort out the background and the
characters in scanned documents. In this kind of document, the
intensity histogram generally presents two different modes: one
large mode that represents the background, and another one,
much smaller, corresponding to the text. Many different bina-
rization methods have been proposed (see [15] and [21]) to find
the best histogram thresholds for grayscale images. Nowadays,
different methods are still studied, using simple spatial features
[10], texture features [20], or mathematical morphology infor-
mation [6].

However, binarization methods present two drawbacks.
First, when the foreground region (the text here) is too small
in comparison to the background (see Fig. 8), the position of

Fig. 8. (a) Original image (1010� 661 pixels). (b) Intensity histogram and the
threshold obtained. (c) Pixels corresponding to the left segment of the histogram.

the threshold becomes arbitrary, and the foreground may not
be well detected. Second, binarization methods are not adapted
to any kind of written documents (see Fig. 10). When the
background pattern is complicated, or when different inks are
used in the text, segmenting the histogram in only two modes
is not a good solution. Finding automatically the number of
modes in the histogram allows one to get more than two modes
when necessary.

In simple written documents, where only one ink has been
used, the segmentation found by the FTC algorithm is bimodal.
This is the case of the example shown in Fig. 8. The histogram
is segmented into two modes, one of them corresponding to the
text characters [see Fig. 8(c)]. This example shows that the FTC
algorithm is able to find very small modes when they are isolated
enough. In Fig. 9, although the image presents several different
gray shades, the FTC algorithm also segments the histogram
into two modes Fig. 9(b), separating clearly the characters in
the check from the background, as we can see in Fig. 9(c). In
these experiments, it must be underlined that the size of the im-
ages can interfere in the results. In a text image, the larger the
proportion of the white pixels, the more difficult it becomes to
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Fig. 9. (a) Original image (755� 201 pixels). (b) Intensity histogram of the
original image and corresponding segmentation. This histogram presents several
local minima, but the final segmentation is bimodal. (c) Pixels corresponding to
the first segment of the histogram.

Fig. 10. (a) Original image (246� 156 pixels). (b) Intensity histogram with the
three modes obtained. The first mode on the left corresponds to the lower and
darker band of the image, the middle mode corresponds to the text and the stars,
and the last mode is the background one.

extract a black mode from the histogram, since it tends to be-
come negligible in front of the white one. In these cases, it is
interesting to narrow the image around the text.

In the case of the histogram of the image shown in Fig. 10,
the algorithm finds three different modes, corresponding to three
intensity regions in the image. The first mode represents the
band in the bottom of the image, the second mode corresponds
to the text and the stars of the image, and the third one is the
background. A bi-level histogram thresholding method could
not yield this separation (e.g., [20] and [22]

D. Sensitivity of the Method

Generally, two factors can influence the segmentation: the
noise in images and the histogram quantization noise.

Theoretically, if we add a noise to an image , its intensity
distribution becomes , where is the gray level his-
togram of , and the noise histogram. This results in a blur
in the histogram. If the image has pixels, and if the noise is
an impulse noise, added to of the pixels, then

Fig. 11. Performance evaluation of the FTC algorithm in the presence of ad-
ditive noise. Top, reference image (256� 256) and its histogram. Middle and
bottom, images corrupted with uniform noise (SNR= 24 dB and SNR= 18 dB,
respectively), and their corresponding histograms. The segmentation results are
marked on the histograms.

, which is not really disturbing for
the FTC algorithm (adding a uniform noise on a histogram does
not change its unimodality property on a given interval). More-
over, this kind of noise can be easily removed by a median filter
on the image.

In the case of additive noise (Gaussian or uniform noise), the
operation smoothes the shape of the histogram . As a con-
sequence, the number of modes found can decrease when the
standard deviation of the noise increases too much. However,
this kind of image noise can be efficiently handled by NL-means
algorithms [5] before computing the histogram.

The performance of the FTC algorithm in the presence of
additive noise can be evaluated as follows [19], [24]: 1) create a
synthetic image (Fig. 11, top) and segment it manually; 2) add
increasing quantities of uniform noise (Fig. 11, middle and
bottom); and 3) segment the histograms using FTC and evaluate
the probability of error

(12)

where is the number of regions in the manually segmented
image ( in our example), is the proportion of
pixels in the th region and is the proportion of pixels
in the th region assigned to the th region by the FTC algorithm.

The results of this evaluation are shown in Table II. Since
the histogram of the original synthetic image was composed of
four Gaussians, the EM algorithm was also used to estimate this
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TABLE II
PERFORMANCE EVALUATION. P(ERROR) FOR DIFFERENT LEVELS OF NOISE

Fig. 12. Gray level histograms of images in Fig. 11 after denoising with
NL-means algorithm. This algorithm improves the SNR of the images from
(left histogram) 24 to 34 dB and from (right histogram) 18 to 23 dB. The
segmentation results of the FTC algorithm are marked on the histograms.
Compare them to the ones shown in Fig. 11 (middle and bottom rows).

mixture. Remember that when the SNR decreases, the Gaussian
mixture hypothesis no longer holds and the EM algorithm gives
poor results. The FTC method, however, is able to cope with this
distortion down to lower SNR values.

The performance of the histogram segmentation method
after denoising with NL-means algorithm has also been tested.
Fig. 12 displays the histograms of some of the denoised images.
The denoising method improves the SNR of the images, thus
reducing the probability of error, both for the EM and the FTC
algorithms, but, again, FTC gives better results than EM up to
higher levels of noise (no segmentation errors are observed for
SNR bigger than 17 dB; see Table II).

The real noise in histograms is the quantization noise, coming
from the fact that the histograms have a finite number of sam-
ples. If a histogram originates from an underlying density ,
the larger is, the more looks like . When , a seg-
mentation algorithm should segment the histogram at each local
minima of its limit . Consider the example of Fig. 13. An image
of size 1600 1200 is subsampled several times by a factor of 2.
Each intermediate image yields a histogram. These histograms
can all be considered as realizations of the density given by the
histogram of the original image. The smaller the number of sam-
ples, the less information we have, and the less the histogram
can be segmented with certainty. Fig. 13 shows that the number
of segments found by the FTC algorithm increases with . The
segmentation tends towards the separators of the deterministic
histogram of the continuous underlying image.

IV. CONCLUSION

This paper presents a new approach to segment a histogram
without a priori assumptions about the number or shape of its
modes. The central idea is to test the simplest multimodal law
fitting the data. The proposed adequacy test, called “meaningful
rejections,” is a multiple test which presents the advantage of
being simultaneously local and global. This method is more
generic than looking for Gaussian mixtures and avoids overes-
timating the number of modes. The corresponding algorithm is
able to detect very small modes when they are isolated, which

Fig. 13. Sensitivity of the method to quantization. The larger the number of
samples, the more certain the segmentation. It follows that the histogram is
more and more segmented when N increases. The segmentation tends towards
the segmentation of the deterministic histogram of the continuous underlying
image. (a) Original image, 1600� 1200 wide. (b) Histogram of the original
image (1920000 samples). (c) Histogram of the image subsampled by a factor
of 2 (480000 samples).(d) Histogram of the image subsampled by a factor of
4 (120000 samples). (e) Histogram of the image subsampled by a factor of 8
(30000 samples).

makes it well adapted to document analysis. The statistical as-
pect of the approach makes it robust to quantization noise: the
larger the number of samples is, the more the histogram can be
considered as deterministic and the more it is segmented. Sev-
eral tests on histograms computed from real or synthetic data
endorse the efficiency of the method. Now, it is clear that such
a method should be extended to higher dimension in order to
segment color histograms. First results have been obtained by
segmenting hierarchically color histograms in the HSV space.
A direct adaptation of the method to any dimension is currently
studied.
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