Optimal Transport for image processing

Julie Delon

introduction à l'imagerie numérique

Color distributions and optimal transport

Color histograms

$$\begin{split} h_u &= \sum_{i \in I} s_i \delta_{\lambda_i} \text{ with } \lambda_i \text{ on a fixed grid}, \ \sum_i s_i = 1 \\ \text{and } s_i &\geq 0. \end{split} \ \text{(Eulerian formulation)} \end{split}$$

$$h_u = \frac{1}{|\Omega|} \sum_{x \in \Omega} \delta_{u(x)} \text{ (Lagrangian formulation)}$$

Optimal transport for color distributions

Color based retrieval

Affine color transfer

Reinhard et al. Color Transfer between Images, 2001.

Affine color transfer

Reinhard et al. Color Transfer between Images, 2001.

Reminders on Optimal transport

Monge, 1781

Lich de Dala

666. Mémoires de l'Académie Royale

MÉMOIRE SURLA THÉORIE DES DÉBLAIS ET DES REMBLAIS. Par M. MONGE.

Monge optimal transport

Total cost of the mass transfer = sum of costs of displacements of elementary masses.

$$\inf_{T # \mu_0 = \mu_1} \int c(x, T(x)) d\mu_0(x)$$

Finding T???

Difficult Problem, lack of symmetry, not convex.

Linear programming

A.N.Tostoi, 1930

L. Kantorovich, 1939

F.L. Hitchcock, 1941 T.C. Koopmans, 1942

G. Dantzig, J. Von Neumann, 40's, 50's

Couplings

Couplings

 $\Pi(\mu_0,\mu_1) = \text{probability distributions on } X \times X \text{ with marginals } \mu_0$ and μ_1

General formulation

[Kantorovich, On the transfer of masses, 1942] $W_{c}(\mu_{0}, \mu_{1}) = \inf_{\gamma \in \Pi(\mu_{0}, \mu_{1})} \int_{X \times X} c(x, y) d\gamma(x, y).$

Discrete case:
$$\mu_0 = \sum_i s_i \, \delta_{x_i}, \, \mu_1 = \sum_j t_j \, \delta_{y_j}$$
 with $\sum_i s_i = \sum_j t_j$
 μ_0
 μ_1
 $W_c(\mu_0, \mu_1) = \min_{\gamma \in \Pi(\mu_0, \mu_1)} \sum_i \sum_j c(x_i, y_j) \gamma_{ij}$

 $\Pi(\mu_0,\mu_1) = \left\{ \text{matrices } \gamma \text{ s.t. } \gamma_{i,j} \ge 0, \sum_i \gamma_{i,j} = t_j, \sum_j \gamma_{i,j} = s_i \right\}$

	A	B	С	D			
a	3km	2.7km	6km	6km	Inpu	<u>Input</u> Cost matrix	
b	7 _{km}	2.5km	7km	3.5km	n Cos		
С	5km	3km	4km	1.3km	1		
				2	2	3	1
<u>Output</u> Optimal Coupling			3	2	1	0	0
			1	0	1	0	0
			4	0	0	3	1

Monge-Kantorovich

Brenier, 1991 If $c(x, y) = ||x - y||^2$, if μ_0 has a density, Monge problem has a solution $T = \nabla \psi$ where ψ unique convex function s.t. $\nabla \psi \# \mu_0 = \mu_1$. The plan $\gamma = (Id, T) \# \mu_0$ is solution of Kantorovich pb.

Displacement interpolation: $\mu_t = ((1 - t)Id + tT)\#\mu_0, t \in [0,1]$

Wasserstein distances

If $c(x, y) = d(x, y)^p$ with $p \ge 1$ and d a distance, $W_p(\mu_0, \mu_1) = \left(\inf_{\gamma \in \Pi(\mu_0, \mu_1)} \iint c(x, y) d\gamma(x, y) \right)^{\frac{1}{p}}$

defines a distance between probability measures.

p=2 or 1 used in numerous applications

Wasserstein barycenters

Barycenter of
$$(\mu_i)_{i \in \{0,...,I-1\}}$$
, weights $\sum_i \lambda_i = 1$
 $\mu_{bary} \in \underset{\rho}{\operatorname{argmin}} \sum_i \lambda_i W_2^2(\mu_i, \rho)$

Prop. [Agueh, Carlier 2011]: existence and unicity of the barycenter for $c(x,y) = ||x - y||^2$ if the μ_i vanish on small sets.

[Solomon et al. 2015]

Optimal transport in one dimension

Optimal Transport in 1D

If c(x, y) = f(|x - y|) with f convex, then for $x_1 < x_2$ and $y_1 < y_2$, $c(x_1, y_1) + c(x_2, y_2) < c(x_1, y_2) + c(x_2, y_1)$

solution given by the monotone rearrangement of μ_0 onto μ_1

Optimal Transport in 1D

On \mathbb{R} , if c(x, y) = f(|x - y|) with f convex,

$$W_{c}(\mu_{0},\mu_{1}) = \int_{0}^{0} f(|F_{0}^{-1}(t) - F_{1}^{-1}(t)|)dt,$$

with F_0 and F_1 the distribution functions of μ_0 and μ_1 . Moreover, if μ_0 has no atoms, $T = F_1^{-1} \circ F_0$ is solution of the Monge problem.

Midway histogram

 $\left(\frac{F_0^{-1} + F_1^{-1}}{2}\right)^{-1}$

Numerical approaches

Linear programming

Input
$$\mu_0 = \sum_{i=1}^{K_0} s_i \, \delta_{x_i}, \, \mu_1 = \sum_{j=1}^{K_1} t_j \, \delta_{y_j} \text{ with } \sum_i s_i = \sum_j t_j = 1$$

(LP) argmin $\sum_{\gamma \in \Pi(\mu_0,\mu_1)} \sum_{i,j} c_{i,j}\gamma_{i,j} \text{ with}$
 $\Pi(\mu_0,\mu_1) = \left\{ \text{matrices } \gamma \text{ s.t. } \gamma_{i,j} \ge 0, \sum_i \gamma_{i,j} = t_j, \, \sum_j \gamma_{i,j} = s_i \right\}$

One solution has less than $K_0 + K_1 - 1$ values $\neq 0$

Assignment: Hungarian algo. [Kuhn 1995] O(N³), Auction [Bertsekas 1992]
LP: Network Simplex [Cunningham 1976]O(N³)
Dynamic formulation [Brenier, Benamou 2000]
Semi-discrete OT [Mérigot 11, Levy 15]
Sliced OT [Rabin et al. 11, Rabin et al.15]
Entropic OT [Cuturi 13,...]

Sliced optimal transport

Replace classical OT by $SW_2^2(\mu_0, \mu_1) = \int_{\mathbb{S}^{d-1}} W_2^2(p_\theta \# \mu_0, p_\theta \# \mu_1) d\theta$

Discrete measures

$$\mu_0 = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}, \ \mu_1 = \frac{1}{n} \sum_{j=1}^n \delta_{y_j}, \ p_\theta \# \mu_0 = \frac{1}{n} \sum_i \delta_{ \theta}$$

$$SW_2^2(\mu_0, \mu_1) = \int_{\mathbb{S}^{d-1}} \sum_i |\langle x_i - y_{\sigma_{\theta}(i)}, \theta \rangle|^2 d\theta$$

with σ_{θ} monotone rearrangement between $\langle \mu_0, \theta \rangle$ and $\langle \mu_1, \theta \rangle$.

[Rabin et al. 11, Rabin et al. 2015]

Assignment with Sliced OT

Entropic OT

Entropy of the matrix
$$\gamma$$
 $H(\gamma) = \sum_{i,j} \gamma_{i,j} (\log(\gamma_{i,j}) - 1)$

Entropic OT [Cuturi '13]

$$\underset{\gamma \in \Pi(\mu_0, \mu_1)}{\operatorname{argmin}} \sum_{i,j} c(x_i, y_j) \gamma_{i,j} - \varepsilon H(\gamma)$$
With $K_{i,j} = e^{-\frac{1}{\varepsilon}c(x_i, y_j)}$ the pb becomes

$$\underset{\gamma \in \Pi(\mu_0, \mu_1)}{\operatorname{argmin}} \sum_{i,j} \gamma_{i,j} \log\left(\frac{\gamma_{i,j}}{K_{i,j}}\right) = \underset{\gamma \in \Pi(\mu_0, \mu_1)}{\operatorname{argmin}} \operatorname{KL}(\gamma || K)$$

Sinkhorn algorithm = alternate projections of K on $\Pi(\mu_0, \mu_1)$

 $\varepsilon = 3 \times 10^{-4}$

 $\varepsilon = 10^{-3}$

 $\varepsilon = 10^{-2}$

 $\varepsilon = 10^{-1}$

Sinkhorn algorithm

Prop: solution γ of argmin $\operatorname{KL}(\gamma || K)$ satisfies $\gamma = \operatorname{diag}(a) K \operatorname{diag}(b)$ $\gamma \in \Pi(\mu_0, \mu_1)$

Since $\gamma \in \Pi(\mu_0, \mu_1)$, it implies that

 $a \odot Kb = \mu_0$ $b \odot K^T a = \mu_1$

Iterations:
$$a \leftarrow \frac{\mu_0}{Kb}$$
 $b \leftarrow \frac{\mu_1}{K^T a}$

- Iterative projections on the constraints.
- Simple extension to compute barycenters of more than 2 measures
- Matrix-vector multiplications
- For regular grids, products Kx can be written as convolutions.
- Numerical pb when $\varepsilon \to 0$.

Application to color transfer

Reducing artefacts introduced by color transfer

- Noise increases
- Detail loss
- Compression becomes visible

u

g(u)

Post-processing

Principle: filter the difference map g(u)-u thanks to an linear operator Y_u and reconstruct

$$T(g(u)) = u + Y_u(g(u) - u) = Y_u(g(u)) + u - Y_u(u)$$

regularization of $g(u)$ details of u

- Y_u = simple average or more involved filter (guided filter for instance)
- Guided filter regularizes conditionally to a source image

[Pitie et al., 2007], [Papadakis et al., 2011], [Rabin et al, 2011]

Color transfer

