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Premiére partie |

Image degradations



Image degradations - Noise

Noise Sources : Shot noise (discrete nature of light), readout noise,
transmission errors, etc.



Image degradations - Blur

Motion blur. Source : flicker



Image degradations - Blur

Optical blur. Wikimedia Commons



Image degradations - Missing pixels

Source : JD.



Image degradations

Original image




Image degradations

Additive Gaussian noise with o = 20 (image range in [0, 255])




Image degradations

Poisson noise




Image degradations

Impulse noise with p = 0.3




Image degradations

Gaussian blur




Image degradations

Motion blur




Image degradations

Random missing pixels




Image degradations

Missing region




Deuxieme partie Il

Global methods



Degradation model

U=AU+ N

® A linear degradation, known
® U original image € R"™*"

® /\/ noise
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Degradation model

U=AU+ N

® A linear degradation, known : blur (deconvolution), missing pixels
(inpainting or superresolution)

® U original image € R"™™ : an a priori on U is eventually known
(regularity, content)

® \/ noise : N = h(U)g, the function h and the distribution of £ are known.



Direct solution

U= argmUin |U— AU|
=
AU —-AAU =0

where A* is the adjoint of A.

The problem is ill-posed since A*A is not always one-to-one and its eigenvalues
may be small.



Bayesian approach

The operator D : R™*™ — R"™™ which minimizes the risk
E[||U - DU|].

is the conditionnal expectation

DU = E[U/U].

D is not necessarily linear, and is quite difficult to estimate in practice, even if
one knows the laws of the noise N and the image U (a priori law).



Wiener

Assume that E[N] = 0 (the noise is centered) and E[U] = 0 (if not, replace U
by U — E[U]).
The linear operator D minimizing E[||U — DU||?] is the Wiener filter

D=E[UUT|E[UUT] ' =5y AT(ASuA” +58) 7L



Wiener deconvolution

Assume that
® A s a convolution with a discrete filter a
® the noise N is independent of the signal U.

We look for a convolution filter g which minimizes

E[llg+ U~ U|’].
Then, in the Fourier domain
z— EN
T OEINP) 2’
E[|U[2] +al

where § is the discrete fourier transform (DFT) of a. In practice, we do not
have access to E[|U[?]...



Wiener




Wiener




Maximum a posteriori

Replace E[U/ U] by
arg mgxIP’[U/U] = argmax P[U/U] P[U]
= arg mUin —log P[U/ U] — log P[U]

= argmin G(U,U) + F(U) .
NN ——

data fidelity term a priori on U



Maximum a posteriori

Replace E[U/ U] by

argmax P[U/ U] P[U]

arg mgxIP’[U/U]
= arg mUin —log P[U/ U] — log P[U]

= argmin G(U,U) + F(U) .
NN ——

data fidelity term a priori on U
N ~ N(0,0°Id), py oc e F*), then
arg mJn |U — AU|j3 + F(U),

with ||||2 the euclidean norm on R"*".
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Tykhonov regularization

[Tikhonov, Arsenin, 1977]

1
E(u) = EHEfAuH%JrA/\VuF,

where |Vu| denotes the norm of Vu in R?

Minimization : convex, differentiable, gradient descent with

OE « -
By = A*(Au — i) — 2)\Au.

Or solve A*(Au — i) — 2AAu = 0 using the discrete Fourier transform.



Tykhonov for denoising

A=Id, N~ N(0,0°) with ¢ = 0.2 (image range = [0,1]).




Tykhonov for denoising

Tykhonov regularization with A = 5.




TV-L2

1
E(u) = 3 lld — Aulls + ATV (u),

with TV/(u) = 32 ;) [(Vu)i | the discrete version of the total variation.

Minimization : Convex, but not differentiable.
OE " Vu
— =2A"(Au — Adiv——-
pu =2 A= B Mg

Approximation of TV(u) by [/||Vul]> + &2, with a small £ and gradient
descent.



TV-L2 for denoising

[Ruding-Osher-Fatemi, 1992] : denoising case, A = Id.

1
E(u) = 1|6 — ullz + ATV (u).



TV-L2 for denoising

[Ruding-Osher-Fatemi, 1992] : denoising case, A = Id.

1
E(u) = 51 — ull3 + ATV (u).

Projection method using duality : [Chambolle 2004].

O=argminE(u) & 0€d—0d+NOTV(d)

& ... duality arguments
a—a i
<~ = nﬁ /)
A (/\)

with
5 = {divp | max|p(x)| < 1}.



TV L2 for denoising

A=Id, N~ N(0,0°) with ¢ = 0.2 (image range = [0,1]).




TV L2 for denoising

ROF, small .




TV L2 for denoising

ROF, large A.




TV-L1

1
E(u) = Slld — Aulls + ATV (u).

® Contrast invariant

® Much more robust to outliers than TV-L2 (impulse noise, salt&pepper
noise) .

Minimization ?



TV-L1

Let X = R"™ ™, it happens that

TV(u) = max. < Vu,p>x —ux(p),

where

() 0 ifper
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TV-L1

Let X = R"™ ™, it happens that

TV(u) = max. < Vu,p>x —ux(p),

() 0 ifper
Lie =
P +oo if pé k.

where

Thus,
arg min 1||L77AUH +ATV(u) =
guEX 2 ! o

. 1
argmin max EHU*A”H1+/\< Vu,p>x —x(p).
S — M v

pe <Ku,p> F*(p)



Chambolle-Pock

[Chambolle-Pock, 2012] Primal-dual algorithm for (smooth or non smooth)
convex problems of the form :

rxnel)rg max < Kx,y > +G(x) — F*(y) (1)
with
® X and Y finite-dimensional vector spaces
®* K : X— Y linear

e G: X —=R"and F*: X = R" convex, proper, lower-semicontinuous.



Chambolle-Pock primal-dual algorithm

Algorithm

© Initialization : choose 7, 0 > 0, (x°,y°) e X x Y
@ lterations for n > 0 :

1
" = proxgp. (v" +oKx")
—_—— ———
backward step  forward step
1 1
X" = prox, ¢(x" — 7K y"™™).

where prox; is the proximity operator of a convex, I.s.c function f, defined as
. 1 2
prox(x) = argmin f(z) + EHX —z|°.
z

Makes sense if prox,, and prox, . are easy to compute (closed-forms).



Chambolle-Pock algorithm for denoising with TV-L1

* G(u) = 3lld — ul:

* F7(p) = tx(p)-
® < Ku,p>=A<Vu,p>(i.,e. K=V and K* = —\div)

The proximal operators of G and F* are

uj—7 ifuij—gij>1

(prox,g(u));; = quij+7 ifu;—g;<7
gij if fuij —gijl <7
Pij

(prox, g+ (P))i,j = (Tr'“(p))"vf - m



Chambolle-Pock algorithm for denoising with TV-L1

* G(u)=3lld —ullx
* F*(p) = tx(p)-
® < Ku,p>=A<Vu,p>(i.,e. K=V and K* = —\div)

The proximal operators of G and F* are

uj—7 ifuij—gij>1

(prox,g(u));; = quij+7 ifu;—g;<7
giJ if luij—gij| <7
(Prox, e (p));y = (ma(p));y = —— P
4 i M max(1, | pil)
° If G(u) = 1||d — ull2, then (prox,g(u));; = %:ﬁ” so the same algorithm

can be applied to minimize TV-L2.

° If G(u) = %H[] — Aul|? with A a convolution matrix, prox, ¢(u) can also be
computed explicitely.



TV-L1 and TV-L2 for impulse noise

Impulse noise with p = 0.3




TV-L1 and TV-L2 for impulse noise

TV-L2




TV-L1 and TV-L2 for impulse noise

TV-L1




TV-L2 for deconvolution

[Chambolle-Pock,2012] with A motion blur.

(a) Original image (b) Degraded image

(c) Wiener filter (d) TV-deconvolution



TV for inpainting

min  TV(u)

U mask=U| mask



TV for inpainting

min  TV/(u)

U mask=U| mask

=min TV (u) + tc(u) with C = {u; Ujmask = Gjmask }



TV for inpainting

min TV(u)

U mask=U| mask

=min TV (u) + tc(u) with C = {u; Ujmask = jmask }

50% random missing pixels



TV for inpainting

min  TV(u)

Ul mask =U| mask

= min TV(U) + LC(U) with C = {U; Ulmask = ﬁ|mask}

TV inpainting



TV for inpainting

min  TV(u)

U mask=U| mask

=min TV (u) + tc(u) with C = {u; Ujmask = jmask }

70% random missing pixels



TV for inpainting

min  TV(u)

Ul mask =U| mask

= min TV(U) + LC(U) with C = {U; Ulmask = ﬁ|mask}

TV inpainting



TV for inpainting

min  TV(u)

Ul mask =U| mask

= min TV(U) + LC(U) with C = {U; Ulmask = ﬁ|mask}

Original image



Troisieme partie |l

Multi-image restoration



A word on multi-image restoration

Using several shots to increase image quality has become a common
challenge in digital photography, movie post-production and remote
sensing imaging.



A word on multi-image restoration

® denoising (burst denoising) in low light (avoid motion blur);
® dynamic range increasing (HDR) ;

© panoramas creation ;

© superresolution, 4k standard

@ color harmonization, style transfert




Multi-image for denoising

Take a burst of images Ui, U, ..., U, with short-exposure times and
average them after registration.



Law of large numbers

Assume an i.i.d. and centered additive noise of variance o>
Vie{l,...n}, U =U+B,.
For each pixel x € Q,

Ur(x) + ... 4 Un(x)

n n—+00

and _ ~
Oa(x) + -+~ + Un(x)
n

Var
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Law of large numbers

Assume an i.i.d. and centered additive noise of variance o>
Vie{l,...n}, U =U+B,.
For each pixel x € Q,

Ur(x) + ... 4 Un(x)

n n—-+oo (X)
and _ _
2
Var Ur(x) + -+ Un(x) | _ a
n n




Law of large numbers

Assume an i.i.d. and centered additive noise of variance o>
Vie{l,...n}, U =U +B,.
For each pixel x € Q,

Ur(x) + ... 4 Un(x)

n n—+00

and

Var

Ur(x)+ -+ Un(x):| _a

Fusing n images reduce the noise by a factor \/n.



A noisy image (Gaussian additive noise, o = 20)




Mean of 5 images




Mean of 10 images




Mean of 20 images




Mean of 40 images




Original image

\




A real-life example of burst denoising

Figure 1.1: From left to right: (a) one long-exposure image (time=0.4 s, ISO=100), one of 16
short-exposure images (time=1,/40 s, ISO=1600) and their average after registration. The long
exposure image is blurry due to camera motion. (b) The middle short-exposure image is noisy. (c)
The third image is about four times less noisy, being the result of averaging 16 short-exposure
images. From [19)].

From [Buadés et al., A note on multi-image denoising, 2009].



Multi-image for denoising : impulse noise

Noise model
Vx € Q, Ui(x) = (1— Ti(x)).U(x) + Ti(x).Wi(x),

where
® T; ~ Bernouilli of parameter p;
® W, uniform noise on [0, 255];

e T;, Wi, i€ {l...n} are independent.



Multi-image for denoising : impulse noise

Noise model
Vx € Q, Ui(x) = (1— Ti(x)).U(x) + Ti(x).Wi(x),

where
® T; ~ Bernouilli of parameter p;
® W, uniform noise on [0, 255];

e T;, Wi, i€ {l...n} are independent.

How can we estimate U(x) ?



Impulse noise, one sample, p = 0.3




Unbiased estimation from mean of 10 images




Unbiased estimation from mean of 30 images




Unbiased estimation from mean of 100 images




Estimation from median, 10 images




Estimation from median, 30 images




Estimation from median, 100 images




What happens if we increase the noise level p? Is the median still a good
estimator ?



Impulse noise, one sample, p = 0.6




Estimation from median, 10 images




Estimation from median, 30 images




Estimation from median, 100 images




Maximum-likelihood for impulse noise

The variables Ui(x), ..., Ua(x) follow the law

(1 = p)ou(x) + Plio,2s5)-
Maximum likelihood

Ux) = argrlr)(aX))(P[Ul(x),...,Un(xNU(x)]
= argmax > log P[Uk(x)| U(x)]

- 1
= 1— p)ou —
arg max kE:I log {( P)3ue) (U(x)) + P * 5o

= argmax h(U(x)),
gmax h(U(x))

with h the histogram of the values {(71(><)7 ce Un(x)}



Estimation from histogram, 10 images, p = 0.6




Estimation from histogram, 30 images, p = 0.6




Estimation from histogram, 100 images, p = 0.6




Photographing paintings by image fusion

[Haro, Buades, Morel, 2012]

Iy I I I Is Is I7 Iy
EEEE

burst denoising burst denoising burst denoising burst denoising
B, By By By
highlight removal highlight removal
-—e s - - s -

D, D,

detail pasting (not described in this article)

See www.ipol.im for an online demo.


www.ipol.im
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Photographing paintings by image fusion

[Haro, Buades, Morel, 2012]

See www.ipol.im for an online demo.


www.ipol.im

General case

® Not always possible to take several images : astronomy, medical imaging,
etc;

® Even if we can take several shots, a global registration is not always
enough : object motions, large camera motions, etc.

SOLUTION?



General case

® Not always possible to take several images : astronomy, medical imaging,
etc;

® Even if we can take several shots, a global registration is not always
enough : object motions, large camera motions, etc.

SOLUTION?

Exploit the patch redundancy of natural images for restoration.



Quatrieme partie IV

Patch-based methods



Non local models for image restoration

Non local models = all models (either variational, stochastic or geometric)
which represent images by a set of local neighborhoods or patches, and make
them collaborate regardless of their spatial position in the image.

Patches are “the analogs of the phonemes of speech”.
Pattern Theory, Desolneux & Mumford [10]
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Non local models for image restoration

Non local models = all models (either variational, stochastic or geometric)
which represent images by a set of local neighborhoods or patches, and make
them collaborate regardless of their spatial position in the image.

R*’

Patches are “the analogs of the phonemes of speech”.
Pattern Theory, Desolneux & Mumford [10]



Non local models for image restoration

Non local models = all models (either variational, stochastic or geometric)
which represent images by a set of local neighborhoods or patches, and make
them collaborate regardless of their spatial position in the image.

R*
.
. .
.
. . ...’.
. o o 0%
o 0 o |® 4 %
".o 0 .
PR . o.‘ ° A
.
. . .
.
°
.
L

Patches are “the analogs of the phonemes of speech”.
Pattern Theory, Desolneux & Mumford [10]



Applications in image restoration and editing

Image editing and synthesis
® texture synthesis Efros-Leung [99]
® image retargeting or reshuffling Barnes et al. [09]

® style transfer Frigo et al. [16]

Image restoration

® denoising Buades et al. [05], Awate Whitaker [06], Dabov §
et al. [08], Lebrun et al. [12], f

® non gaussien denoising, Poisson, Speckle Deledalle et al.
[10], [12], impulse noise Delon Desolneux [13]

® inpainting Wexler et al. [04], Criminisi Perez [04],
Newson et al. [14]

® interpolation Yu et al. [12], demosaicing Buades et al. [07]
® HDR Aguerrebere et al. [17], compression
® General inverse problems Peyré [08], PLE Yu et al. [12]
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® texture synthesis Efros-Leung [99]
® image retargeting or reshuffling Barnes et al. [09]

® style transfer Frigo et al. [16]

Image restoration

® denoising Buades et al. [05], Awate Whitaker [06], Dabov
et al. [08], Lebrun et al. [12],

® non gaussien denoising, Poisson, Speckle Deledalle et al.
[10], [12], impulse noise Delon Desolneux [13]

® inpainting Wexler et al. [04], Criminisi Perez [04],
Newson et al. [14]

® interpolation Yu et al. [12], demosaicing Buades et al. [07]

® HDR Aguerrebere et al. [17], compression

® General inverse problems Peyré [08], PLE Yu et al. [12]



Texture synthesis : Efros-Leung (1999)

Efros - Leung [99]
® Markov random fields models (inspired from Shannon models for text
synthesis). We want to estimate p(u;i|x;")

® first paper with a patch-based approach : idea to exploit the patch
redundancy in natural images

® global optimization instead of sequential synthesis Kwatra et al. [03]




Texture synthesis : Efros-Leung (1999)
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Try by yourself! demo.ipol.im/demo/59/


demo.ipol.im/demo/59/

Image denoising : NLMeans (2005)

® Observation
d=u+n

with n ~ N(0,0?), we want to reconstruct u.
® Non Local Means, Buades, Coll, Morel, [05]
> jeq Wijlj

> Wi
with w;; weights measuring the similarity between patches centered at i
and J, typically

VieQ, NLui=

oI =13 /202

wij =

Région uniforme Région texturée Contour géométrique



Image denoising : NLMeans (2005) Buades, Coll, Morel, [05]

Noisy Image, o = 20 NL-means

Try by yourself! demo.ipol.im/demo/bcm_non_local_means_denoising/


demo.ipol.im/demo/bcm_non_local_means_denoising/

Patch style transfer (2016)

technicolor

Frigo et al. [16] ~ MRF models



Inverse problems

Model : observation v

= A u + n
observation vaUISItIOn operator unknown noise

Goal : estimate u from v

—
image u

blur missing data



Inverse problems

Model : for each patch y; from v

yi = A Xj + n

observation acquisition operator unknown noise

Goal : estimate all clean patches x; € RP from the observations {y;}

/

——
image u

blur missing data



Restoration strategies
Assuming a prior distribution p(x) for X, the posterior distribution is

_ I Ax—y)?

P(xly) = p(yIx)p(x) x €™ = p(x).
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Restoration strategies
Assuming a prior distribution p(x) for X, the posterior distribution is

_ I Ax—y)?

p(xly) = p(y|x)p(x) o e 52 p(x).
Some restoration strategies
® X = E[X|Y = y] the minimum mean square error (MMSE) estimator

® X =Dy + a st. D and a minimize E[||DY + a — X||?] (linear MMSE or
Wiener estimator)

® X = arg maxxcre p(x|y) the maximum a posteriori (MAP)

For Gaussian priors, MAP = MMSE = Linear MMSE.
If X ~N(i,X) and N ~ N(0,5°l,) are independent,
% =9(y) :=argmax log p[x|y]
1 _
= argmin o (Ax — ) (Ax = y) + (x = )T (x — )

= p+ TAYAZA +0°L,) H(y — Ap)



DENOISING WITH (GAUSSIAN PRIORS

Bayesian framework with Gaussian or GMM priors on patches, EPLL [11],
NL-Bayes [12], PLE [12], S-PLE [13], DA3D [15].

grouping modeling

Gaussian model
for each group

Gaussian Mixture Model




DENOISING WITH (GAUSSIAN PRIORS

Bayesian framework with Gaussian or GMM priors on patches, EPLL [11],
NL-Bayes [12], PLE [12], S-PLE [13], DA3D [15].

grouping modeling

denoising
different estimation strategies:
MAP
MMSE
Linear MMSE

Gaussian model
for each group

Gaussian Mixture Model




WHY GAUSSIAN OR GMM PRIORS ?



WHY GAUSSIAN OR GMM PRIORS ?
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WHY GAUSSIAN OR GMM PRIORS ?



DENOISING WITH THE “RIGHT” MODEL

covariance matrices original patch  noisy patch  denoised patch

1k
= W
1EN




® How to restore the image from the set of restored patches?
@ How to estimate (u, X) from the degraded patches {y;} 7



Reconstruction of u from restored patches

Central value




Reconstruction of u from restored patches

Central value

Aggregation of estimators




Reconstruction of u from restored patches

Central value

Aggregation of estimators

Global Optimisation in u, EPLL, Zoran-Weiss [11]

LA u
arg:mn §||Au —v[3 - Z log p(xi').

J



How TO INFER GAUSSIAN OR GMM PRIORS 7

® Global or spatially local models, Deledalle et al. [11]

® Local Gaussian models : nearest neighbours, NL-Bayes denoising, Lebrun
et al. [13]

°* GMM Zk lﬂkN(uk,zk)

® estimated on a large external database, EPLL, Zoran-Weiss [11]

® estimated on the degraded image with a synthetic initialization, PLE, Yu et
al. [12];

® estimated on the degraded image, Teodoro et al. [15];

® estimated on the degraded image, based on mixture of PPCA, SURE-PLE,
Wang et Morel [13]

® estimated on the degraded image, based on HDDC, HDMI
(High-Dimensional Mixture Model for Image denoising), Houdard et al. [17]

® GGMM (generalized Gaussian mixture models) Deledalle et al. [18]



THE CURSE OF DIMENSIONALITY

Estimation of Sample Covariance Matrices Y from n
samples in high dimension is difficult : estimates tend to be
ill-conditionned or even singular...

S — but & has to be inverted to compute Wiener
estimators...



THE CURSE OF DIMENSIONALITY

Estimation of Sample Covariance Matrices Y from n
samples in high dimension is difficult : estimates tend to be
ill-conditionned or even singular...

— but & has to be inverted to compute Wiener
estimators...

Some workarounds

® use small patches + flat area trick (3 x 3 or 5 x 5 in NL-Bayes, Lebrun et
al. [13])

® use covariances of fixed lower dimensions, SURE-PLE, Wang et al. [13]
® add regularization (+]e|/,) or hyperpriors HBE, Aguerrebere et al. [17]

® infer a specific dimension for each Gaussian HDMI, Houdard et al. [17]



HDMI (BOUVEYRON, D., HOUDARD [17])

Assume that patches live in low-dimensional subspaces, specific to their latent

groups.
Z € {1...K} latent r.v.

‘ = . + . indicating the group from

which X is generated
Xizek ~ N (b, UAie U
with
° P[Z = k] = Tk
® Uy p X dk orthonormal,
o A= diag()\kl, ey )\kdk)'
® Lk €ERP

This model
® is a generalization of the full GMM if dx = p,
® has strong links with the MPPCA model, Tipping, [96].



Tue HDMI MODEL

The distribution of Y is also a mixture of Gaussians :

K
ply) = Zm/\/(y;uk,zk) with

Y = U Ui + 0°1,.

Let Qx = [Uk, Rk] be a p x p matrix made of Ui and an orthonormal

complementary, then

Ap = QX Qu =

ak1

Akd,,

(p — dk)

with aij = Ay + 0 and ay; > 02, forj=1,...,dcand k=1,..., K.



DENOISING wITH THE HDMI MODEL

To denoise the patch y;, we compute
X = E[X[Y = yi].

Proposition. Under the assumptions of the HDMI model, the conditional
expectation E[X|Y = y;] can be written

EX[Y = yi] = > P(Z = kY = yi)tx(vi),

k=1

where

Ui(y) = ik + (T — 0 Tp) T, (y — )
=k + Qx (Ip - 02A;1) Qily — 1),

with @k = [Uk, 0P7P—dk]'



INFERENCE

Before denoising the patches {y1, ..., y»}, the HDMI model has to be inferred
from the data :

® estimate model parameters 0 = {mx, ik, axj, o2, Qk},

® determine hyper-parameters K and dx.



MODEL INFERENCE

EM algorithm : maximize w.r.t. 6 the conditional expectation of the complete
log-likelihood :

K

w(9,0%) & Z Z tix log (mp (vi; 0k))

k=1 i=1
where ty = E[Z = k|y;,0*] and 6" a given set of parameters.

® E-step estimation of tj knowing the current parameters

® M-step compute maximum likelihood estimators (MLE)
~ Ny ~ 1 =~ 1 T
M= k= HZﬁk}’h Sk = sztik(YI_Nk)(Yi_Mk) ;

with ne =3~ ti. Then Qx is formed by the dj first eigenvectors of Sk and
aij is the jth eigenvalue of Sy.



HYPER-PARAMETERS

The hyper-parameters K and di, ..., dk cannot be determined by maximizing
the log-likelihood since they control the model complexity.

We propose to set K at a given value (for instance K = 90) and to choose the
intrinsic dimensions dy :

® using an heuristic that links dx with the noise variance o when it is known
(supervised case) ;

® using a model selection tool in order to select the best & when unknown
(unsupervised case).



ESTIMATION OF INTRINSIC DIMENSIONS

when o is known

Heuristic. Given a value of o2 and for k = 1,..., K, we estimate the dimension
dk by

1 P
di = argmin, | —— E a— o
p—d .
Jj=d+1

2



ESTIMATION OF INTRINSIC DIMENSIONS

when o is unknown

Each value of ¢ yields a different model, we propose to select the one with the
better BIC (Bayesian Information Criterion)

BIC(M) = £(0) — f(M) log(n),

where £(M) is the complexity of the model.



ROLE OF THE INTRINSIC DIMENSIONS dj

dimensions map

clean noisy clustering

£ %

Simpson

Lena

FIGURE — Map of intrinsic dimensions dj.



EFFECT OF THE DIMENSION REDUCTION INSIDE EM




NUMERICAL EXPERIMENTS

Original Image




NUMERICAL EXPERIMENTS

Noisy image o = 50
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NUMERICAL EXPERIMENTS

Denoised with FFDNet, Zhang et al. 2018, psnr = 2_7.58dB
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NUMERICAL EXPERIMENTS

Denoised with HDMlg,, K = 90, psnr = 27.28dB
"\ ) i “," ‘ i %




NUMERICAL EXPERIMENTS

Original Image
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NUMERICAL EXPERIMENTS

Noisy image o = 50




NUMERICAL EXPERIMENTS

Denoised with BM3D, Foi et al. 2007, psnr = 26.55.dB




NUMERICAL EXPERIMENTS

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.45dB
‘-“.‘i.




NUMERICAL EXPERIMENTS

Denoised with HDMl,,, K = 90, psnr = 27.05dB




NUMERICAL EXPERIMENTS

PSNR HDMI vs FFDNet




NUMERICAL EXPERIMENTS

Best of both worlds, psnr = 27.86dB




NUMERICAL EXPERIMENTS

Original Image
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