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Première partie I

Image degradations



Image degradations - Noise

Noise Sources : Shot noise (discrete nature of light), readout noise,
transmission errors, etc.



Image degradations - Blur

Motion blur. Source : flicker



Image degradations - Blur

Optical blur. Wikimedia Commons



Image degradations - Missing pixels

Source : JD.



Image degradations

Original image



Image degradations

Additive Gaussian noise with σ = 20 (image range in [0, 255])



Image degradations

Poisson noise



Image degradations

Impulse noise with p = 0.3



Image degradations

Gaussian blur



Image degradations

Motion blur



Image degradations

Random missing pixels



Image degradations

Missing region



Deuxième partie II

Global methods



Degradation model

Ũ = AU + N

• A linear degradation, known

: blur (deconvolution), missing pixels
(inpainting or superresolution)

• U original image ∈ Rn×m

: an a priori on U is eventually known
(regularity, content)

• N noise

: N = h(U)ε, the function h and the distribution of ε are known.
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Direct solution

Û = arg min
U
‖Ũ − AU‖2

⇒

A∗Ũ − A∗AÛ = 0

where A∗ is the adjoint of A.

The problem is ill-posed since A∗A is not always one-to-one and its eigenvalues
may be small.



Bayesian approach

The operator D : Rn×m → Rn×m which minimizes the risk

E[‖U − DŨ‖2].

is the conditionnal expectation

DŨ = E[U/Ũ].

D is not necessarily linear, and is quite difficult to estimate in practice, even if
one knows the laws of the noise N and the image U (a priori law).



Wiener

Assume that E[N] = 0 (the noise is centered) and E[U] = 0 (if not, replace U
by U − E[U]).

The linear operator D minimizing E[‖U − DŨ‖2] is the Wiener filter

D = E[UŨT ].E[ŨŨT ]−1 = ΣU .A
T (AΣUA

T + ΣN)−1.



Wiener deconvolution

Assume that

• A is a convolution with a discrete filter a

• the noise N is independent of the signal U.

We look for a convolution filter g which minimizes

E[‖g ? Ũ − U‖2].

Then, in the Fourier domain

ĝ =
â∗

E[|N̂|2]

E[|Û|2]
+ |â|2

,

where â is the discrete fourier transform (DFT) of a. In practice, we do not

have access to E[|Û|2]...



Wiener



Wiener



Maximum a posteriori

Replace E[U/Ũ] by

arg max
U

P[U/Ũ] = arg max P[Ũ/U] P[U]

= arg min
U
− log P[Ũ/U]− log P[U]

= arg min
U

G(U, Ũ)︸ ︷︷ ︸
data fidelity term

+ F (U)︸ ︷︷ ︸
a priori on U

.

Example

N ∼ N (0, σ2Id), pU ∝ e−F (u), then

arg min
U
‖Ũ − AU‖2

2 + F (U),

with ‖‖2 the euclidean norm on Rn×m.
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Tykhonov regularization

[Tikhonov, Arsenin, 1977]

E(u) =
1

2
‖ũ − Au‖2

2 + λ

∫
|∇u|2,

where |∇u| denotes the norm of ∇u in R2

Minimization : convex, differentiable, gradient descent with

∂E

∂u
= A∗(Au − ũ)− 2λ∆u.

Or solve A∗(Au − ũ)− 2λ∆u = 0 using the discrete Fourier transform.
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Tykhonov for denoising

A = Id , N ∼ N (0, σ2) with σ = 0.2 (image range = [0, 1]).



Tykhonov for denoising

Tykhonov regularization with λ = 5.



TV-L2

E(u) =
1

2
‖ũ − Au‖2

2 + λTV (u),

with TV (u) =
∑

(i,j) |(∇u)i,j | the discrete version of the total variation.

Minimization : Convex, but not differentiable.

∂E

∂u
= 2A∗(Au − ũ)− λdiv ∇u‖∇u‖ .

Approximation of TV (u) by
∫ √
‖∇u‖2 + ε2, with a small ε and gradient

descent.



TV-L2 for denoising

[Ruding-Osher-Fatemi, 1992] : denoising case, A = Id .

E(u) =
1

2
‖ũ − u‖2

2 + λTV (u).

Projection method using duality : [Chambolle 2004].

û = arg min
u

E(u) ⇔ 0 ∈ û − ũ + λ∂TV (û)

⇔ . . . duality arguments

⇔ ũ − û

λ
= Πκ(

ũ

λ
),

with
κ = {divp | max

x∈Ω
|p(x)| ≤ 1}.



TV-L2 for denoising

[Ruding-Osher-Fatemi, 1992] : denoising case, A = Id .

E(u) =
1

2
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û = arg min
u
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TV L2 for denoising

A = Id , N ∼ N (0, σ2) with σ = 0.2 (image range = [0, 1]).



TV L2 for denoising

ROF, small λ.



TV L2 for denoising

ROF, large λ.



TV-L1

E(u) =
1

2
‖ũ − Au‖1 + λTV (u).

• Contrast invariant

• Much more robust to outliers than TV-L2 (impulse noise, salt&pepper
noise) .

Minimization ?



TV-L1

Let X = Rn×m, it happens that

TV (u) = max
p∈X×X

< ∇u, p >X −ικ(p),

where

ικ(p) =

{
0 if p ∈ κ
+∞ if p /∈ κ.

Thus,

arg min
u∈X

1

2
‖ũ − Au‖1 + λTV (u) =

arg min
u∈X

max
p∈X×X

1

2
‖ũ − Au‖1︸ ︷︷ ︸

G(u)

+λ < ∇u, p >X︸ ︷︷ ︸
<Ku,p>

− ικ(p)︸ ︷︷ ︸
F∗(p)

.
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Chambolle-Pock

[Chambolle-Pock, 2012] Primal-dual algorithm for (smooth or non smooth)
convex problems of the form :

min
x∈X

max
y∈Y

< Kx , y > +G(x)− F ∗(y) (1)

with

• X and Y finite-dimensional vector spaces

• K : X → Y linear

• G : X → R+ and F ∗ : X → R+ convex, proper, lower-semicontinuous.



Chambolle-Pock primal-dual algorithm

Algorithm

1 Initialization : choose τ , σ > 0, (x0, y 0) ∈ X × Y

2 Iterations for n ≥ 0 :

yn+1 = proxσF∗︸ ︷︷ ︸
backward step

(yn + σKxn)︸ ︷︷ ︸
forward step

xn+1 = proxτG (xn − τK∗yn+1).

where proxf is the proximity operator of a convex, l.s.c function f , defined as

proxf (x) = arg min
z

f (z) +
1

2
‖x − z‖2.

Makes sense if proxσF and proxτG are easy to compute (closed-forms).



Chambolle-Pock algorithm for denoising with TV-L1

• G(u) = 1
2
‖ũ − u‖1

• F ∗(p) = ικ(p).

• < Ku, p >= λ < ∇u, p > (i.e. K = λ∇ and K∗ = −λdiv)

The proximal operators of G and F ∗ are

(proxτG (u))i,j =


ui,j − τ if ui,j − gi,j > τ

ui,j + τ if ui,j − gi,j < τ

gi,j if |ui,j − gi,j | ≤ τ

(proxσF∗(p))i,j = (πκ(p))i,j =
pi,j

max(1, |pi,j |)
.

• If G(u) = 1
2
‖ũ − u‖2

2, then (proxτG (u))i,j =
ui,j+τ ũi,j

1+τ
, so the same algorithm

can be applied to minimize TV-L2.

• If G(u) = 1
2
‖ũ − Au‖2

2 with A a convolution matrix, proxτG (u) can also be
computed explicitely.
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TV-L1 and TV-L2 for impulse noise

Impulse noise with p = 0.3



TV-L1 and TV-L2 for impulse noise

TV-L2



TV-L1 and TV-L2 for impulse noise

TV-L1



TV-L2 for deconvolution

[Chambolle-Pock,2012] with A motion blur.



TV for inpainting

min
u|mask=ũ|mask

TV (u)

= min
u

TV (u) + ιC(u) with C = {u; u|mask = ũ|mask}
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TV for inpainting
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TV (u) + ιC(u) with C = {u; u|mask = ũ|mask}

50% random missing pixels
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TV (u)

= min
u

TV (u) + ιC(u) with C = {u; u|mask = ũ|mask}
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TV for inpainting

min
u|mask=ũ|mask

TV (u)

= min
u

TV (u) + ιC(u) with C = {u; u|mask = ũ|mask}

70% random missing pixels



TV for inpainting

min
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TV (u)
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TV inpainting



TV for inpainting

min
u|mask=ũ|mask

TV (u)

= min
u

TV (u) + ιC(u) with C = {u; u|mask = ũ|mask}

Original image



Troisième partie III

Multi-image restoration



A word on multi-image restoration

Using several shots to increase image quality has become a common
challenge in digital photography, movie post-production and remote

sensing imaging.



A word on multi-image restoration

1 denoising (burst denoising) in low light (avoid motion blur) ;

2 dynamic range increasing (HDR) ;

3 panoramas creation ;

4 superresolution, 4k standard

5 color harmonization, style transfert



Multi-image for denoising

Take a burst of images U1,U2, . . . ,Un with short-exposure times and
average them after registration.



Law of large numbers

Assume an i.i.d. and centered additive noise of variance σ2

∀i ∈ {1, . . . n}, Ũi = Ui + Bi .

For each pixel x ∈ Ω,

Ũ1(x) + . . .+ Ũn(x)

n
−−−−→
n→+∞

U(x)

and

Var

[
Ũ1(x) + · · ·+ Ũn(x)

n

]
=

σ2

n
.

Fusing n images reduce the noise by a factor
√
n.
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Ũ1(x) + . . .+ Ũn(x)
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n

]
=
σ2

n
.

Fusing n images reduce the noise by a factor
√
n.



Law of large numbers

Assume an i.i.d. and centered additive noise of variance σ2

∀i ∈ {1, . . . n}, Ũi = Ui + Bi .
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A noisy image (Gaussian additive noise, σ = 20)



Mean of 5 images



Mean of 10 images



Mean of 20 images



Mean of 40 images



Original image



A real-life example of burst denoising

From [Buadès et al., A note on multi-image denoising, 2009].



Multi-image for denoising : impulse noise

Noise model

∀x ∈ Ω, Ũi (x) = (1− Ti (x)).U(x) + Ti (x).Wi (x),

where

• Ti ∼ Bernouilli of parameter p ;

• Wi uniform noise on [0, 255] ;

• Ti , Wi , i ∈ {1 . . . n} are independent.

How can we estimate U(x) ?
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Impulse noise, one sample, p = 0.3



Unbiased estimation from mean of 10 images



Unbiased estimation from mean of 30 images



Unbiased estimation from mean of 100 images



Estimation from median, 10 images



Estimation from median, 30 images



Estimation from median, 100 images



What happens if we increase the noise level p ? Is the median still a good
estimator ?



Impulse noise, one sample, p = 0.6



Estimation from median, 10 images



Estimation from median, 30 images



Estimation from median, 100 images



Maximum-likelihood for impulse noise

The variables U1(x), . . . ,Un(x) follow the law

(1− p)δU(x) + p1[0,255].

Maximum likelihood

Û(x) = arg max
U(x)

P[Ũ1(x), . . . , Ũn(x)|U(x)]

= arg max
U(x)

n∑
k=1

log P[Ũk(x)|U(x)]

= arg max
U(x)

n∑
k=1

log

[
(1− p)δU(x)(Uk(x)) + p ∗ 1

256

]
= arg max

U(x)
h(U(x)),

with h the histogram of the values {Ũ1(x), . . . , Ũn(x)}.



Estimation from histogram, 10 images, p = 0.6



Estimation from histogram, 30 images, p = 0.6



Estimation from histogram, 100 images, p = 0.6



Photographing paintings by image fusion

[Haro, Buadès, Morel, 2012]

See www.ipol.im for an online demo.

www.ipol.im
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General case

• Not always possible to take several images : astronomy, medical imaging,
etc ;

• Even if we can take several shots, a global registration is not always
enough : object motions, large camera motions, etc.

SOLUTION ?

Exploit the patch redundancy of natural images for restoration.
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Quatrième partie IV

Patch-based methods



Non local models for image restoration

Non local models = all models (either variational, stochastic or geometric)
which represent images by a set of local neighborhoods or patches, and make
them collaborate regardless of their spatial position in the image.

Patches are “the analogs of the phonemes of speech”.
Pattern Theory, Desolneux & Mumford [10]
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Applications in image restoration and editing

Image editing and synthesis

• texture synthesis Efros-Leung [99]

• image retargeting or reshuffling Barnes et al. [09]

• style transfer Frigo et al. [16]

Image restoration

• denoising Buades et al. [05], Awate Whitaker [06], Dabov
et al. [08], Lebrun et al. [12],

• non gaussien denoising, Poisson, Speckle Deledalle et al.
[10], [12], impulse noise Delon Desolneux [13]

• inpainting Wexler et al. [04], Criminisi Perez [04],
Newson et al. [14]

• interpolation Yu et al. [12], demosaicing Buades et al. [07]

• HDR Aguerrebere et al. [17], compression

• General inverse problems Peyré [08], PLE Yu et al. [12]
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Texture synthesis : Efros-Leung (1999)

Efros - Leung [99]

• Markov random fields models (inspired from Shannon models for text
synthesis). We want to estimate p(ui |xu

i )

• first paper with a patch-based approach : idea to exploit the patch
redundancy in natural images

• global optimization instead of sequential synthesis Kwatra et al. [03]



Texture synthesis : Efros-Leung (1999)

Try by yourself ! demo.ipol.im/demo/59/

demo.ipol.im/demo/59/


Image denoising : NLMeans (2005)

• Observation
ũ = u + n

with n ∼ N (0, σ2), we want to reconstruct u.

• Non Local Means, Buades, Coll, Morel, [05]

∀i ∈ Ω, NLui =

∑
j∈Ω wi,j ũj∑

j wi,j
.

with wi,j weights measuring the similarity between patches centered at i
and j , typically

wi,j = e−‖x
ũ
i −x ũj ‖

2
2/2h2

.



Image denoising : NLMeans (2005) Buades, Coll, Morel, [05]

Noisy Image, σ = 20 NL-means

Try by yourself ! demo.ipol.im/demo/bcm_non_local_means_denoising/

demo.ipol.im/demo/bcm_non_local_means_denoising/


Patch style transfer (2016)

Frigo et al. [16] MRF models



Inverse problems

Model : observation v

v
observation

= A
acquisition operator

u
unknown

+ n
noise

Goal : estimate u from v

image u noise blur missing data



Inverse problems

Model : for each patch yi from v

yi
observation

= Ai
acquisition operator

xi
unknown

+ ni
noise

Goal : estimate all clean patches xi ∈ Rp from the observations {yi}i

image u noise blur missing data



Restoration strategies
Assuming a prior distribution p(x) for X , the posterior distribution is

p(x |y) =∝ p(y |x)p(x) ∝ e
− ‖Ax−y‖2

2σ2 p(x).

Some restoration strategies

• x̂ = E[X |Y = y ] the minimum mean square error (MMSE) estimator

• x̂ = Dy + α s.t. D and α minimize E[‖DY + α− X‖2] (linear MMSE or
Wiener estimator)

• x̂ = arg maxx∈Rp p(x |y) the maximum a posteriori (MAP)

For Gaussian priors, MAP = MMSE = Linear MMSE.

If X ∼ N (µ,Σ) and N ∼ N (0, σ2Ip) are independent,

x̂ = ψ(y) := arg max
x

log p[x |y ]

= arg min
x

1

2σ2
(Ax − y)t(Ax − y) + (x − µ)tΣ−1(x − µ)

= µ+ ΣAt(AΣAt + σ2Ip)−1(y − Aµ)
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Denoising with Gaussian priors

Bayesian framework with Gaussian or GMM priors on patches, EPLL [11],
NL-Bayes [12], PLE [12], S-PLE [13], DA3D [15].

Gaussian model 
for each group

Gaussian Mixture Model

1

1

3

2

2

2

grouping modeling

different estimation strategies:

 MMSE

denoising

posterior distribution

 Linear MMSE

 MAP
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Why Gaussian or GMM priors ?
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Denoising with the “right” model

covariance matrices original patch noisy patch denoised patch



1 How to restore the image from the set of restored patches ?

2 How to estimate (µ,Σ) from the degraded patches {yi} ?



Reconstruction of u from restored patches

Central value

Aggregation of estimators

Global Optimisation in u, EPLL, Zoran-Weiss [11]

arg min
u

λ

2
‖Au − v‖2

2 −
∑
j

log p(xu
i ).
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How to infer Gaussian or GMM priors ?

• Global or spatially local models, Deledalle et al. [11]

• Local Gaussian models : nearest neighbours, NL-Bayes denoising, Lebrun
et al. [13]

• GMM
∑K

k=1 πkN (µk ,Σk)
• estimated on a large external database, EPLL, Zoran-Weiss [11]
• estimated on the degraded image with a synthetic initialization, PLE, Yu et

al. [12] ;
• estimated on the degraded image, Teodoro et al. [15] ;
• estimated on the degraded image, based on mixture of PPCA, SURE-PLE,

Wang et Morel [13]
• estimated on the degraded image, based on HDDC, HDMI

(High-Dimensional Mixture Model for Image denoising), Houdard et al. [17]

• GGMM (generalized Gaussian mixture models) Deledalle et al. [18]



The curse of dimensionality

Estimation of Sample Covariance Matrices Σ̂ from n
samples in high dimension is difficult : estimates tend to be
ill-conditionned or even singular...

→ but Σ̂ has to be inverted to compute Wiener
estimators...

Some workarounds

• use small patches + flat area trick (3× 3 or 5× 5 in NL-Bayes, Lebrun et
al. [13])

• use covariances of fixed lower dimensions, SURE-PLE, Wang et al. [13]

• add regularization (+|ε|Ip) or hyperpriors HBE, Aguerrebere et al. [17]

• infer a specific dimension for each Gaussian HDMI, Houdard et al. [17]



The curse of dimensionality

Estimation of Sample Covariance Matrices Σ̂ from n
samples in high dimension is difficult : estimates tend to be
ill-conditionned or even singular...

→ but Σ̂ has to be inverted to compute Wiener
estimators...

Some workarounds

• use small patches + flat area trick (3× 3 or 5× 5 in NL-Bayes, Lebrun et
al. [13])

• use covariances of fixed lower dimensions, SURE-PLE, Wang et al. [13]

• add regularization (+|ε|Ip) or hyperpriors HBE, Aguerrebere et al. [17]

• infer a specific dimension for each Gaussian HDMI, Houdard et al. [17]



HDMI (Bouveyron, D., Houdard [17])

Assume that patches live in low-dimensional subspaces, specific to their latent
groups.

= +
Z ∈ {1 . . .K} latent r.v.
indicating the group from
which X is generated

X|Z=k ∼ N
(
µk ,UkΛkU

t
k

)
,

with

• P[Z = k] = πk

• Uk p × dk orthonormal,

• Λk = diag(λk1, . . . , λkdk ),

• µk ∈ Rp

This model

• is a generalization of the full GMM if dk = p,

• has strong links with the MPPCA model, Tipping, [96].



The HDMI model

The distribution of Y is also a mixture of Gaussians :

p(y) =
K∑

k=1

πkN (y ;µk ,Σk) with

Σk = UkΛkU
t
k + σ2Ip.

Let Qk = [Uk ,Rk ] be a p × p matrix made of Uk and an orthonormal
complementary, then

∆k = Qt
kΣkQk =



ak1 0
. . .

0 akdk

0

0

σ2 0
. . .

0 σ2



 dk

 (p − dk)

with akj = λkj + σ2 and akj > σ2 , for j = 1, ..., dk and k = 1, . . . ,K .



Denoising with the HDMI model

To denoise the patch yi , we compute

x̂i = E[X|Y = yi ].

Proposition. Under the assumptions of the HDMI model, the conditional
expectation E[X|Y = yi ] can be written

E[X|Y = yi ] =
K∑

k=1

P(Z = k|Y = yi )ψk(yi ),

where

ψk(y) = µk + (Σk − σ2Ip)Σ−1
k (y − µk)

= µk + Q̃k

(
Ip − σ2∆−1

k

)
Q̃t

k(y − µk),

with Q̃k = [Uk , 0p,p−dk ].



Inference

Before denoising the patches {y1, ..., yn}, the HDMI model has to be inferred
from the data :

• estimate model parameters θ = {πk , µk , akj , σ
2,Qk},

• determine hyper-parameters K and dk .



Model inference

EM algorithm : maximize w.r.t. θ the conditional expectation of the complete
log-likelihood :

Ψ(θ, θ∗)
def
=

K∑
k=1

n∑
i=1

tik log (πkp (yi ; θk)) ,

where tik = E [Z = k|yi , θ∗] and θ∗ a given set of parameters.

• E-step estimation of tik knowing the current parameters

• M-step compute maximum likelihood estimators (MLE)

π̂k =
nk
n
, µ̂k =

1

nk

∑
i

tikyi , Ŝk =
1

nk

∑
i

tik(yi − µk)(yi − µk)T ,

with nk =
∑

i tik . Then Q̂k is formed by the dk first eigenvectors of Ŝk and

âkj is the jth eigenvalue of Ŝk .



Hyper-parameters

The hyper-parameters K and d1, . . . , dK cannot be determined by maximizing
the log-likelihood since they control the model complexity.

We propose to set K at a given value (for instance K = 90) and to choose the
intrinsic dimensions dk :

• using an heuristic that links dk with the noise variance σ when it is known
(supervised case) ;

• using a model selection tool in order to select the best σ when unknown
(unsupervised case).



Estimation of intrinsic dimensions
when σ is known

Heuristic. Given a value of σ2 and for k = 1, ...,K , we estimate the dimension
dk by

d̂k = argmind

∣∣∣∣∣∣ 1

p − d

p∑
j=d+1

âkj − σ2

∣∣∣∣∣∣ .



Estimation of intrinsic dimensions
when σ is unknown

Each value of σ yields a different model, we propose to select the one with the
better BIC (Bayesian Information Criterion)

BIC(M) = `(θ̂)− ξ(M)

2
log(n),

where ξ(M) is the complexity of the model.



Role of the intrinsic dimensions dk

Figure – Map of intrinsic dimensions dk .



Effect of the dimension reduction inside EM



Numerical experiments
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Numerical experiments

Denoised with BM3D, Foi et al. 2007, psnr = 27.17dB



Numerical experiments

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.58dB



Numerical experiments

Denoised with HDMIsup K = 90, psnr = 27.28dB
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Numerical experiments

Denoised with BM3D, Foi et al. 2007, psnr = 26.55.dB



Numerical experiments

Denoised with FFDNet, Zhang et al. 2018, psnr = 27.45dB



Numerical experiments

Denoised with HDMIsup K = 90, psnr = 27.05dB



Numerical experiments

PSNR HDMI vs FFDNet



Numerical experiments

Best of both worlds, psnr = 27.86dB
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