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Abstract
Computational argumentation has taken a predominant place in the modeling of negotiation
dialogues over the last years. A competent agent participating in a negotiation process is
expected to decide its next move taking into account an, often incomplete, model of its
opponent. This work provides a complete computational account of argumentation-based
negotiation under incomplete opponent profiles. After the agent identifies its best option,
in any state of a negotiation, it looks for suitable arguments that support this option in the
theory of its opponent. As the knowledge on the opponent is uncertain, the challenge is to
find arguments that, ideally, support the selected option despite the uncertainty. We present a
negotiation framework based on these ideas, alongwith experimental evidence that highlights
the advantages of our approach.

Keywords Argumentation · Automated negotiation · Multi-agent systems

1 Introduction

During the last years computational argumentation has taken a predominant place in the
modeling of negotiation dialogues (for a survey see Dimopoulos and Moraitis [18], Rahwan
et al. [42]). The goal of a negotiation dialogue is to allow interacting agents to resolve conflicts
and reach a mutually accepted agreement, which in this work is a mutually accepted offer
(e.g. the price of a product, the mode of payment). In an argumentation-based negotiation
(ABN), agents choose offers that are likely to be accepted by the opponent and exchange
arguments that support these offers, either based on their own theories (see e.g.Amgoud et al.
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[4], Amgoud and Kaci [3], Kakas and Moraitis [31], Dung et al. [22], Parsons et al. [40],
Hadidi et al. [27]), or based on the opponent’s profile (see e.g. Hadidi et al. [28], Pilotti et al.
[41], Bonzon et al. [15]).

The modeling of the opponent profile is an important issue in negotiation dialogues (and
more generally other types of dialogue such as persuasion). As explained in Baarslag et al.
[7], although there are important differences between opponent models, there are strong rea-
sons justifying their use, such as the minimization of negotiation cost, the adaptation to the
opponent and the capacity to reach win-win agreements, especially in cooperative environ-
ments. Learning the opponent profile means learning its acceptance and bidding strategies,
the deadlines and its preference profile [7]. In most of the proposed works, the (online) oppo-
nent modeling is based on learning techniques (see e.g.Baarslag et al. [6] for a survey). Apart
from the fact that learning the opponent profile with traditional learning techniques is not an
easy task, as pointed out by Zafari andMofakham [49], those techniques seem better suited to
game-theoretic (or utility-based) negotiations, rather than argumentation-based negotiations.
Other works (although they concern persuasion dialogues and legal disputes), have proposed
a probabilistic approach for dealing with the uncertainty about the opponent profile. In these
works (e.g. Hadjinikolis et al. [29], Riveret et al. [45], Hunter [30]), probabilities are used in
different ways for finding the arguments that are most likely to be accepted by the opponent.
Finally, some works (e.g. Rienstra et al. [44], Oren and Norman [39], Black and Atkinson
[14]) investigate other approaches to modeling the opponent profile in argumentation-based
dialogues.

In this work we completely adopt the aforementioned reasons justifying the importance
to use an opponent model in automated negotiations. However, we propose an alternative
approach to the traditional learning-based approaches (suitable essentially to game-theoretic
negotiations) for opponent modelling, which is particularly suited to argumentation-based
negotiations. Our work proposes an original approach to deal with uncertainty in knowledge
representation that allows to represent and assume from the beginning of the dialogue, dif-
ferent possible profiles of the opponent. Then our approach allows the proponent agent to
choose its best offer (with respect to its own arguments) and to look for supporting arguments
that increase the chance of agreement about this offer, despite possible counter-arguments
the opponent may have. This is a major difference from other approaches and more partic-
ularly those based on learning methods where a certain number of rounds is necessary in
order to start learning the profile of the opponent. The advantage provided by our approach
may be particularly useful in negotiations with time limits (or number of rounds) constraints.
Moreover, our approach allows for a proponent agent to progressively refine (as the dia-
logue evolves) the initially considered profiles for identifying (learning) the profile that is
closer to the real one, without the necessity to use a learning method. This is done based on
the arguments and attacks that the opponent agent uses as justification to rejecting an offer.
That allows for a proponent agent to progressively adapt its bidding strategy as the dialogue
evolves. This aspect of our approach is also a novelty with respect to the other approaches
in the literature. More importantly, as we have experimentally shown, these features of our
approach have a positive impact on the number of reached agreements.

Thus this work advances the state of the art in argumentation-based negotiation bymaking
original contributions to the opponent modeling, and the associated acceptance strategy (i.e.
what offers are most likely to be accepted) as well as bidding strategy (i.e. the strategy
that an agent applies for choosing the next offer). For opponent modeling, it builds on the
work of Dimopoulos et al. [19] on Control Argumentation Frameworks (CAFs), a formalism
for modeling the uncertainty about the opponent profile. More specifically, it borrows the
concepts of “on/off” arguments (i.e. arguments we don’t knowwhether they are present or not
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in a theory), and the three different categories of attacks (i.e. attacks we know their existence
and direction, attacks we know the existence but not the direction, attacks we don’t know
the existence but we know the direction). This allows generating different profiles modeled
as completions of the known part of the opponent’s theory, and seeking offers that satisfy all
possible profiles (or as many as possible). Regarding the bidding and acceptance strategies,
the originality of this work lies in the assumption that in argumentation-based negotiation,
a central challenge for an agent is to lead, by means of appropriate arguments, its counter
party to change its theory, and eventually accept the offer it proposes, hence influencing
its acceptance strategy. Thus, in our approach, we propose a bidding strategy that relies
on the previous assumption. More precisely, the idea is that a proponent agent uses first its
own theory for choosing the best offer to propose, but next, it uses the incomplete theory
of its opponent to find the arguments to support it. Then, it seeks and puts forward a set
of arguments called control configuration, that could reinstate the supporting arguments,
if these are rejected in the current state of the argumentative negotiation theories of all (or
most) of the generated opponent profiles. Once the arguments of the control configuration are
inserted in the opponent theory, they would, ideally, allow it to reach an agreement with the
proponent, thus they alter its acceptance decision. The integration of control configurations
in the opponents theories could be considered as a persuasion dialogue embedded within the
negotiation dialogue (see e.g. van Laar and Krabbe [47]).

This paper is based on a previous publication [20]. The current version has been extended
in several ways:

– we provide a deeper discussion of the contribution of this work, and its novelty with
respect to existing works;

– we have added a proper background section, introducing formally propositional logic
and QBFs, abstract argumentation, and CAFs;

– we have added a new section that presents interesting theoretical results about our nego-
tiation framework, in particular concerning the optimality of the provided solutions and
the completeness of the negotiation dialogue;

– we describe in depth a new set of experiments, that highlight the interest of our approach
in handling uncertainty in argument-based negotiations.

The paper is organized as follows. Section 2 presents the background knowledge on
propositional logic, Quantified Boolean Formulas (QBFs) and abstract argumentation. Then
Sect. 3 presents in details the components of the original negotiation frameworkwe propose in
this work for argumentation-based negotiation. Section 4 presents some important theoretical
results that characterize our framework while Sect. 5 presents an experimental evaluation of
our framework by using different parameters that put in evidence the added value of our
approach. Finally, Sect. 6 describes the related work, while Sect. 7 concludes the paper and
presents some interesting tracks for future research.

2 Background

2.1 Propositional logic and quantified boolean formulas

We first introduce background notions and notations regarding propositional logic and Quan-
tified Boolean Formulas (QBFs).
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We consider a set of Boolean variables V , i.e. each of these variables can receive a value
in B = {0, 1}, where 0 stands for false and 1 for true. A well-formed propositional formula
is:

– an atomic formula x , where x ∈ V ;
– a negation ¬φ, where φ is a well-formed formula;
– a conjunction φ1 ∧ φ2, where φ1 and φ2 are well-formed formulas;
– a disjunction φ1 ∨ φ2, where φ1 and φ2 are well-formed formulas.

An interpretation ω : V → B is a valuation of the Boolean variables, that can be extended
to formulas as follows:

– ω(¬φ) = 1 − ω(φ);
– ω(φ1 ∧ φ2) = min(ω(φ1), ω(φ2));
– ω(φ1 ∨ φ2) = max(ω(φ1), ω(φ2)).

We can define additional connectives, e.g. the implication (ω(φ1 ⇒ φ2) = ω(¬φ1 ∨ φ2))
and the equivalence (ω(φ1 ⇔ φ2) = ω((φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1))).

When ω(φ) = 1, we say that φ is satisfied by ω, or alternatively that ω is a model of φ,
written ω |� φ.

Quantified Boolean Formulas (QBFs) are an extension of propositional formulas with the
universal and existential quantifiers.

Formally, a well-formed QBF is:

– φ, where φ is a well-formed propositional formula;
– ∃x, Φ, where x ∈ V and Φ is a well-formed QBF;
– ∀x, Φ, where x ∈ V and Φ is a well-formed QBF.

If X = {x1, . . . , xn} is a set of variables, wewrite ∃X , Φ as a shortcut for ∃x1, . . . , ∃xn, Φ;
similarly ∀X , Φ means ∀x1, . . . ,∀xn, Φ.

Any QBF can be transformed into a prenex normal form QBF Q1X1 Q2X2 . . .Qn Xnφ

where

– φ is a propositional formula called the matrix,
– Q1X1 . . .Qn Xn is called the prefix,
– ∀i ∈ {1, . . . , n},Qi ∈ {∃,∀},
– ∀i ∈ {1, . . . , n − 1},Qi �= Qi+1,
– and X1, X2, . . . , Xn are disjoint sets of propositional variables such that X1 ∪ X2 ∪ . . .∪

Xn = V .1

For instance, the formula ∃x∀y(x ∨ ¬y) ∧ (¬x ∨ y) is satisfied if there is a value for x such
that for all values of y the proposition (x ∨ ¬y) ∧ (¬x ∨ y) is true.

For more details about propositional logic and QBFs, we refer the reader to, e.g., Biere
et al. [13], Kleine Büning and Bubeck [32].

2.2 Abstract argumentation

We introduce the basic notions of abstract argumentation, defined by Dung [21].

Definition 1 (Argumentation Framework) An abstract argumentation framework (AF) is a
pair AF = 〈A, R〉, where A is a set of arguments, and R ⊆ A × A is an attack relation.

1 If some variable x ∈ V does not explicitly belong to any Xi , i.e. X1 ∪ · · · ∪ Xn ⊂ V , then it implicitly
means that x can be existentially quantified at the rightmost level.
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Fig. 1 Example of abstract AF
a1 a2

a3 a4 a5

The intuitive meaning of a attacking b, denoted by (a, b) ∈ R, is that a is a counter-
argument for b. We say that a set of arguments S attacks an argument b if ∃a ∈ S such that
(a, b) ∈ R.

Different acceptability semantics were also introduced in Dung [21]. While our approach
is generic, we focus on the stable semantics in this paper for exemplifying our negotiation
approach.

Definition 2 (Stable semantics) Given anAF = 〈A, R〉, a set of arguments S ⊆ A is a stable
extension if

– S is conflict-free: ∀a, b ∈ S, (a, b) /∈ R;
– S attacks every argument not contained in S: ∀b ∈ A \ S, ∃a ∈ S such that (a, b) ∈ R.

The set of stable extensions of AF is denoted by st(AF).

The full catalogue of extension-based semantics is out of the scope of this paper. We refer
the interested reader to Dung [21], Baroni et al. [8] for an overview.

Based on the acceptability semantics, we can define the status of any argument, namely
skeptically accepted, credulously accepted and rejected arguments.

Definition 3 (Argument Acceptance) Given anAF = 〈A, R〉 and an extension-based seman-
tics σ , an argument a ∈ A is:

– skeptically accepted (with respect to σ ) if ∀E ∈ σ(AF), a ∈ E ;
– credulously accepted (with respect to σ ) if ∃E ∈ σ(AF) such that a ∈ E ;
– rejected (with respect to σ ) otherwise.

Example 1 Figure 1 depicts AF = 〈A, R〉, with A = {a1, a2, a3, a4, a5} and R =
{(a2, a1), (a3, a1), (a4, a2), (a4, a3), (a4, a5), (a5, a4)}. Its stable extensions are st(AF) =
{{a1, a4}, {a2, a3, a5}}. All the arguments are credulously accepted, and no arguments are
skeptically accepted or rejected.

Many efficient computational methods for abstract argumentation are based on logical
encodings of the problem (see e.g. Dvorák et al. [24], Lagniez et al. [33]). Such encodings
have been originally defined by Besnard and Doutre [11]. In the following, we use the logical
encoding of stable semantics. This encoding will be helpful for defining the computational
method for reasoning with Control Argumentation Frameworks.

Definition 4 (Besnard and Doutre [11]) Let AF = 〈A, R〉 be an AF. For each argument
xi ∈ A, we define a propositional variable accxi to represent the acceptability of the argument
xi with respect to a particular extension (i.e. its membership to the extension).2

2 Since we use the extension-based semantics defined by Dung, we consider binary acceptability statuses for
arguments: an argument that is not accepted is rejected.
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The formula φst(AF) is defined by
∧

xi∈A

(accxi ⇔ (
∧

(x j ,xi )∈R

¬accx j ))

This encoding is such that models of φst(AF) exactly correspond to stable extensions ofAF .
Moreover, to obtain a stable extension from a model ω |� φst(AF), we just need to select
the arguments {xi | ω(accxi ) = 1}. This means that an argument xi is accepted (with respect
to one of the extensions) if accxi = 1 in the model corresponding to this extension. Let us
notice that, for an AF AF with no stable extension, φst(AF) has no model.

Example 2 Continuing with AF given at Fig. 1,

φst(AF) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(acca1 ⇔ (¬acca2 ∧ ¬acca3))
∧(acca2 ⇔ ¬acca4)
∧(acca3 ⇔ ¬acca4)
∧(acca4 ⇔ ¬acca5)
∧(acca5 ⇔ ¬acca4)

This formula has exactly two models: ω1(a1) = ω1(a4) = 1 and ω1(a2) = ω1(a3) =
ω1(a5) = 0 on the one hand; and ω2(a1) = ω2(a4) = 0 and ω2(a2) = ω2(a3) = ω2(a5) = 1
on the other hand. Each of these models correspond to a stable extension of AF .

This encoding can be generalized to represent the relation between anyAF and its stable
extensions.

Definition 5 Let A be a set of arguments. For each argument xi ∈ A, we define a propositional
variable accxi . For each pair of arguments (xi , x j ) ∈ A×A, we define a propositional variable
attxi ,x j . The generalized version of φst is defined by

φatt
st (A) =

∧

xi∈A

[accxi ⇔ (
∧

x j∈A

(attx j ,xi ⇒ ¬accx j ))]

A model of this formula corresponds to the structure of an argumentation framework (given
by the attxi ,x j variables) and one extension of this argumentation framework (given by the
accxi variables). This means that this formula encodes the stable semantics for any AF built
on the set of arguments A, which explains why there is no reference to an attack relation in
it.

In order to represent the stable semantics for a particular AF = 〈A, R〉, we can use the
formula:

φatt
st (A) ∧ (

∧

(xi ,x j )∈R

attxi ,x j ) ∧ (
∧

(xi ,x j )∈(A×A)\R
¬attxi ,x j )

This formula is equivalent to φst(AF) from Definition 4: each model corresponds to an
extension of AF when only its acc-variables are considered.

Example 3 We continue the previous example, withAF = 〈A, R〉 from Fig. 1. The conjunc-
tion of literals that represents the attacks of this AF is:

attAF = atta2,a1 ∧ atta3,a1 ∧ atta4,a2 ∧ atta4,a3 ∧ atta4,a5 ∧ atta5,a4

∧
∧

(ai ,a j )∈(A×A)\R
¬attai ,a j
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When the conjunction φatt
st (A) ∧ attAF is made, all the parts of the formula that involve an

att-variable can be simplified:

– if attai ,a j appears in attAF , then attai ,a j ⇒ ¬accai can be replaced by ¬accai ;
– if ¬attai ,a j appears in attAF , then attai ,a j ⇒ ¬accai is a tautology, and can be com-

pletely removed from the formula.

These simplifications yield the formula given at Example 2.

Such a generalized encoding of stable semantics has been used e.g. for revising argu-
mentation frameworks in Coste-Marquis et al. [17]. We will need it later for defining the
computational approach for control argumentation frameworks. More precisely, the repre-
sentation of attacks by Boolean variables will allow to represent uncertain attacks, i.e. attacks
that may or may not actually exist. For instance, in Example 3, attacks that certainly exist
or certainly do not exist are encoded as unit clauses in the formula (e.g. atta2,a1 expresses
that a2 attacks a1, and ¬atta1,a2 expresses that a1 does not attack a2). So, if there is no unit
clause attxi ,x j nor ¬attxi ,x j , the formula admits models where this Boolean variable is true
(representing AFs where xi attacks x j ), as well as models where this Boolean variable is
false (corresponding to AFs where xi does not attack x j ).

A similar approach can be used to work with the complete semantics, again using the
encoding from Besnard and Doutre [11] as a starting point. Other semantics have a higher
complexity, and thus cannot be easily encoded in propositional formula (unless the polyno-
mial hierarchy collapses). However, these semantics can be encoded thanks to QBF formulas
(see e.g. Egly and Woltran [25] for the preferred semantics).

2.3 Control argumentation frameworks

This section introduces briefly the control argumentation frameworks (CAFs) proposed in
Dimopoulos et al. [19], and discusses how they capture the knowledge of an agent on its
opponents. On a high level, a CAF is an argumentation framework where arguments are
divided in three parts, fixed, uncertain and control.

The f i xed part of the theory concerns the certain knowledge that an agent holds about
its opponent. This includes arguments as well as attacks that undoubtedly belong to the
argumentation theory of the opponent. For instance, a seller agent knows that the customer
agent prefers European cars, that safety is an important issue for it and that it prefers electric
or gasoline-powered cars than diesel cars.

The uncertain part captures the uncertainty about the presence of arguments in a theory
(expressed by the “on/off” arguments as shown below), as well as the presence and the
direction of attacks between arguments in this theory. It reflects the uncertainty that arises
due to lack of complete information on the current state of the world that determines the
decisions of the opponent, but also its beliefs and preferences. For example, the seller agent
may not know the income of the customer agent, whether a car is a social status symbol for
it, the highest price that it is ready to pay, or whether it is willing to pay more if some extras
are included, and payment by installments is accepted.

Let us discuss the different types of uncertainty embedded in CAFs. First, we consider
uncertain arguments, i.e. arguments that may (or may not) actually be in the framework.
There are different reasons for justifying the nature of these arguments:

– in a context of logic-based argumentation [12], the agent might be able to build an
argument, without being sure whether the argument premises are true in the current state
of the world;
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– in a context of dialogue, it is reasonable to consider that the agent has some uncertain
information about the arguments that other agents may use or not.

Then, the existence of an attack from an argument xi to an argument x j can also be uncertain.
For instance, an agent can be uncertain about the existence of a preference of x j over xi [2]
that would “cancel” the attack. Uncertain arguments and attacks appear in Incomplete AFs
[10]. We also consider another kind of uncertainty regarding the attack relation: there may
be situations where the agent is sure that there is a conflict between two arguments xi and
x j , without being sure of the actual direction of the attack(s) (either (xi , x j ), or (x j , xi ), or
both at the same time). Unknown preferences can also explain this kind of uncertainty in the
argumentation framework.

Finally, the control part contains arguments that can be used against arguments of the
fixed or uncertain parts that attack arguments that are in favour of some offer of the proponent.
Therefore, the control part serves to ensure that arguments in the fixed part that support some
offer of the seller that is not adequate with some certain (i.e. European car) or uncertain (e.g.
max price, preferred mode of payment) preferences of the customer, can be accepted under
some circumstances. For instance, a control argument could allow a seller agent to propose
a car from abroad Europe (which is against the known preference of the customer agent
and represented in the fixed part) by proposing some interesting options (e.g. five airbags
knowing that safety is an important issue for the customer and also represented in the fixed
part) and in a price that is probably higher than the highest price the customer is intended to
pay (this is part of the uncertain knowledge) but which allows the seller to accept a payment
by installments, if this is the preferred payment mode for the customer (this is also part of
the uncertain knowledge).

Formally, a CAF is defined as follows:

Definition 6 (Dimopoulos et al. [19]) Let L be a language from which we can build
arguments, and let Args(L) be the set which contains all those arguments. A Control Argu-
mentation Framework (CAF) is a triple CAF = 〈F,C,U 〉 where F is the fixed part, U is
the uncertain part and C is the control part of CAF with:

– F = 〈AF ,→〉 where AF is a set of arguments that we know they belong to the system
and →⊆ (AF ∪ AU ) × (AF ∪ AU ) is an attack relation representing a set of attacks for
which we are aware both of their existence and their direction.

– U = 〈AU , (� ∪ ���)〉 where AU is a set of arguments for which we are not sure that
they belong to the system, �⊆ (((AU ∪ AF ) × (AU ∪ AF ))\ →) is an attack relation
representing a set of attacks for which we are aware of their existence but not of their
direction, and ���⊆ (((AU ∪ AF ) × (AU ∪ AF ))\ →) is an attack relation representing
a set of attacks for which we are not aware of their existence but we are aware of their
direction, with � ∩ ���= ∅.

– C = 〈AC ,�〉 where AC is a set of arguments, called control arguments, that the agent
can choose to use or not, and�⊆ {(ai , a j ) | ai ∈ AC , a j ∈ AF ∪ AC ∪ AU } is an attack
relation.

AF , AU and AC are disjoint subsets of Args(L).

A CAF features a set of distinct attack relations that capture different sorts of information.
Its simplest part is 〈AF ,→ ∩(AF × AF )〉, which is a classical AF that contains the indis-
putable knowledge of the agent on its opponent. The idea of CAFs essentially extends this
basic argumentation framework with additional attack relations defined on arguments from
the sets AU and AC . For instance, there is an attack (ai , a j ) ∈�, with ai , a j ∈ AF when it is
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Fig. 2 Example of a CAF
a1 a2

a3 a4a5

AF

a6 AUa7 a8

a9AC

certain that both arguments exist and are in conflict (e.g. because they make mutually exclu-
sive claims), but the direction of the attack(s) is unknown (e.g because of lack of information
on the intrinsic strength of arguments, or on the preference relation between arguments). An
attack (ai , a j ) ∈→, with ai ∈ AU and a j ∈ AF , represents a situation where it is unknown
whether ai is present in the system (e.g. some of its premises could be false at the current
time), but if ai is in the system, then ai definitely attacks a j .

Example 4 LetCAF = 〈F,C,U 〉 be theCAFgiven at Fig. 2.Weuse circle nodes to represent
the fixed arguments AF , dashed nodes for the uncertain arguments AU , and plain rectangle
nodes for the control arguments AC . Similarly, different kinds of arrows represent the different
attack relations of theCAF. Plain arrows represent the fixed attacks (e.g. (a2, a1) ∈→).Dotted
arrows represent the uncertain attacks, i.e. attacks for which we are not sure of the existence,
but if it exists then we are sure of the direction. Here, we have (a5, a1) ∈���. The two-heads
dashed arrows are used for non-directed attacks, that are situations where we are sure that
arguments are conflicting, but the actual direction of the attack is uncertain ((a4, a6) ∈�).
Finally, the bold attacks are the control attacks (e.g. (a7, a5) ∈�).

Central to controllability is the notion of completion of a CAF. Intuitively, a completion
is a classical AF which is built from the CAF, by choosing one of the possible options for
each uncertain argument or attack.

Definition 7 (Dimopoulos et al. [19]) Given a CAF 〈F,C,U 〉, a completion of this CAF is
an AF 〈A, R〉, s.t.
– A = AF ∪ AC ∪ Acomp where Acomp ⊆ AU ;
– R ⊆→ ∪ � ∪ ��� ∪ �;
– if (a, b) ∈→ and a, b ∈ A, then (a, b) ∈ R;
– if (a, b) ∈� and a, b ∈ A, then (a, b) ∈ R or (b, a) ∈ R;
– if (a, b) ∈� and a, b ∈ A, then (a, b) ∈ R.

If (a, b) ∈�, then in the completion, there is either (a, b), or (b, a), or both at the same
time. Note that the definition of a completion leaves the attacks from ��� unspecified, as
these attacks may not appear in the theory.
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a1 a2

a3 a4a5

a7 a8 a9

(a)

a1 a2

a3 a4a5

a6a7 a8 a9

(b)

Fig. 3 Some completions of the previous CAF

Example 5 We continue Example 4, and exhibit some completions of the given CAF. In the
completion given at Fig. 3a, the attack from a5 to a1 is present, while the argument a6 is
absent (thus, the attacks concerning a6 are also missing). On the opposite, in the completion
depicted at Fig. 3b, the attack (a5, a1) is missing, and a6 belongs to the completion. Since a6
is there, the control attack (a9, a6) is present in the completion, and some attack between a6
and a4 must exist (in this case, the attack (a6, a4)).

Controllability means that we can select a subset Acon f ⊆ AC (called a control configu-
ration) and the corresponding attacks {(ai , a j ) ∈�| ai ∈ AC , a j ∈ (AF ∪ AC ∪ AU )} such
that whatever the completion of CAF , a given target is always reached. We focus on two
kinds of targets: credulous acceptance of a set of arguments (this is reminiscent of extension
enforcement [9]), and skeptical acceptance of a set of arguments. However in the context of
negotiation in the current paper we use only credulous acceptance.

Definition 8 (Dimopoulos et al. [19]) A control configuration of CAF = 〈F,C,U 〉 is a
subset Acon f ⊆ AC . Given a set of arguments T ⊆ AF and a semantics σ , we say that T
is skeptically (respectively credulously) reached by the configuration Acon f under σ if T is
included in every (respectively at least one) σ -extension of every completion of CAF ′ =
〈F,C ′,U 〉, with C ′ = 〈Acon f , {(ai , a j ) ∈�| ai ∈ AC , a j ∈ (AF ∪ AC ∪ AU )}〉. We say
that CAF is skeptically (respectively credulously) controllable with respect to T and σ .

In a nutshell, CAFs are a powerful enabler of advanced negotiation techniques, that blend
together a number of desirable features such as the qualitative representation of uncertainty,
simultaneous reasoning with different profiles through completions, simultaneous consider-
ation of both certain and uncertain knowledge of the opponent, the use of control arguments
(corresponding to a persuasion phase embedded in negotiation, allowing for the reinstatement
of rejected arguments), along with a computational model based on QBFs (see Sect. 3.4 for
details about the QBF encoding).

3 The negotiation framework

This section presents a new argumentation-based negotiation framework that relies on CAFs
(Dimopoulos et al. [19]) for representing the incomplete information that agents have about
their opponents. Agents communicate through the exchange of messages (or dialoguemoves,
see e.g.Dimopoulos andMoraitis [18]).We assume that agents play the roles of the proponent
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and opponent in a turn-taking round-based protocol (e.g. similar to the alternating offers
protocol of Hadidi et al. [27]), where a proponent initiates a round and passes the token to
its opponent when it is unable to defend an offer rejected by the opponent. The opponent
may accept an offer when one of the supporting arguments is an acceptable argument for it,
or reject an offer if it cannot accept any of the different supporting arguments sent by the
proponent.We build on theworks ofAmgoud et al. [4], Hadidi et al. [27], and in the following,
L denotes a logical language, and ≡ an equivalence relation associated with it. From L, a
set O = {o1, . . . , on} of n offers is identified, such that �oi , o j ∈ O such that oi ≡ o j .
This means that the offers are different. Offers correspond to the different alternatives (e.g.
prices for a product) that can be exchanged during the negotiation dialogue. We assume that
agents share the same set of offersO but those offers can be supported by different arguments
(although not necessarily) in the theories of the negotiating agents. By argument, we mean
a reason in believing (called epistemic arguments) or doing something (called practical
arguments). The set Args(L), made of all the arguments built fromL, is then divided into two
subsets: a subset Argsp(L) of practical arguments supporting offers, and a subset Argse(L)

of epistemic arguments supporting beliefs. Thus, Args(L) = Argsp(L) ∪ Argse(L), with
Argsp(L)∩ Argse(L) = ∅. Now let us formally introduce the agent’s negotiation theory.We
start with the agent’s personal theory in Definition 9, and then the agent’s opponent modelling
in Definition 10.

Definition 9 (Agent’s personal theory) The personal theory of an agent α is T α = 〈Aα,→α〉
with

– Aα ⊆ Args(L) a set of arguments such that Aα = Aα
p ∪ Aα

e where Aα
p are practical

arguments, and Aα
e are epistemic arguments;

– →α=→α
p ∪ →α

e ∪ →α
m , where

– →α
p⊆ Aα

p × Aα
p are attacks between practical arguments,

– →α
e ⊆ Aα

e × Aα
e are attacks between epistemic arguments,

– →α
m⊆ Aα

e × Aα
p are attacks from epistemic to practical arguments i.e. (a, δ) ∈→α

m ,
if a ∈ Aα

e and δ ∈ Aα
p (see Amgoud et al. [5], Hadidi et al. [27]).

FollowingAmgoud et al. [4] andHadidi et al. [27] these personal theories are also enhanced
with three preferences relations noted as�e,�p and�m for building alongwith the respective
attack relations above, three defeat relations noted as �e, �p and �m respectively. So agents
have also a preference-based theory Tα = 〈Aα,�α〉 with �α=�e ∪ �p ∪ �m .

Let us give an example of such an agents’ personal theories.

Example 6 Agent α’s personal theory T α is pictured in Fig. 4, while T β , the personal theory
of agent β, is given in Fig. 4b. For agent α, we suppose that Aα

p = {X} and Aα
e = {B, E, K },

thus the attack relations are →α
p= ∅, →α

e = {(E, K ), (K , E)} and →α
m= {(B, X), (E, X)}.

Regarding β, we have Aβ
p = {Y } and Aβ

e = {B, E, D, F}. The attack relations are as

follows: →β
p= ∅, →β

e = {(D, B), (F, E)} and →β
m= {(B, Y ), (E, Y )}.

Definition 10 (Agent’s opponent modelling) Let α and β be two negotiating agents, with
(respectively) T α and T β their personal theories (as introduced in Definition 9). We define
the following sets of arguments for agent α:

– Aα,β
Fe

⊆ Aβ
e (respectively Aα,β

Fp
⊆ Aβ

p) are epistemic (respectively practical) arguments
such that agent α is certain about their existence in β’s personal theory;
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Fig. 4 The personal theories of
agents α and β X

B E

K

(a) T α

Y

B E

D F

(b) T β

– Aα,β
Ue

⊆ Aβ
e (respectively Aα,β

Up
⊆ Aβ

p) are epistemic (respectively practical) arguments
such that agent α is not certain about their existence in β’s personal theory;

Agent α’s opponent modelling is a control argumentation framework CAFα,β =
〈Fα,β,Uα,β,Cα,β〉 where
– Fα,β=〈Aα,β

F ,→α,β〉 with Aα,β
F =Aα,β

Fe
∪ Aα,β

Fp
, →α,β=→α,β

e ∪ →α,β
p , and 〈Aα,β

Fe
,→α,β

e 〉
defining the epistemic arguments subpart such that→α,β

e ⊆ (Aα,β
Fe

∪Aα,β
Ue

)×(Aα,β
Fe

∪Aα,β
Ue

).
The above also hold for the practical arguments subpart.

– Uα,β=〈Aα,β
U ,�α,β ∪ ���α,β)〉 with Aα,β

U =Aα,β
Ue

∪ Aα,β
Up

, �α,β=�e ∪ �p , ���α,β=���e
∪ ���p , and 〈Aα,β

Ue
,�e ∪ ���e)〉, �e⊆ ((Aα,β

Ue
∪ Aα,β

Fe
) × (Aα,β

Ue
∪ Aα,β

Fe
))\ →α,β

e ),

���e⊆ ((Aα,β
Ue

∪ Aα,β
Fe

) × (Aα,β
Ue

∪ Aα,β
Fe

))\ →α,β
e , defining the epistemic arguments

subpart. The same hold for the practical arguments subpart. �e ∩ ���e= ∅.
– Cα,β=〈Aα

c ,�α,β〉where Aα
c ⊆ Aα

e is the set of control arguments and�α,β⊆ {(ai , a j ) |
ai ∈ Aα

c and a j ∈ Aα
c ∪ Aα,β

Fe
∪ Aα,β

Ue
} \ (→α,β

e ∪ �e ∪ ���e)).

Of course, CAFβ,α can be defined analogously for the opponent modelling of agent β.
Notice that, except the control arguments that come from the agent’s personal theory, all the
other arguments (and attacks) come from the opponent’s personal theory. Indeedwemake the
assumption that there is no “mistake” in the opponent’s modelling, meaning that no argument
or attack appears in CAFα,β if it has no counterpart in T β . But there may be some ignorance
(i.e. some arguments or attacks from T β that do not appear in CAFα,β , neither in the fixed
part nor in the uncertain part).

Example 7 We continue the previous example. Based on T β , we define CAFα,β , i.e. the
(partially uncertain) knowledge of agent α about agent β. We see on Fig. 5a that Aα,β

Fe
= {E},

Aα,β
Fp

= {Y }, and Aα,β
Ue

= {B}. The attack (B, Y ) is fixed (so α is sure that this attack appears

in T β ), and on the contrary (E, Y ) is uncertain. There is no control argument in CAFα,β .
Now, CAFβ,α (Fig. 5b) represents β’s uncertain knowledge about α (as well as control

arguments that can be used to persuade α about the acceptance of some argument). The
fixed and uncertain parts are based on T α: Aβ,α

Fe
= {B, K }, Aβ,α

Fp
= {X}, and Aβ,α

Ue
=

{E}. The attack relations in CAFβ,α are →β,α= {(E, X)}, ���β,α= {(B, X)} and �β,α=
{(E, K ), (K , E)}. Finally, the control arguments and attacks are coming from β’s personal
theory: Aβ

c = {D, F} and �β,α= {(D, B), (F, E)}.
Now we can use the previous definitions to introduce a negotiating agent theory:
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Y

EB

(a) CAFα,β

X

EB

K

D F

(b) CAFβ,α

Fig. 5 The opponent modelling of agents α and β

Definition 11 (Negotiating agent theory) Let O be a set of n offers. A negotiating theory
of an agent α is a tuple T α

NT = 〈O,Tα, T α, CAFα,β,Fα〉 with Tα = 〈Aα,�α〉, T α =
〈Aα,→α〉 and CAFα,β = 〈Fα,β,Uα,β,Cα,β〉 as introduced inDefinition 9 andDefinition 10
respectively, andwhereFα is a function that returns the practical arguments supporting offers
in O. Formally:

– Fα: O → 2A
α
p such that ∀i, j with i �= j , Fα(oi ) ∩ Fα(o j ) = ∅.

Let us define Ap
α
O =

⋃n
i=1 Fα(oi ) the set of practical arguments in agent α’s personal theory

that support some offer in O.

As in Amgoud et al. [5], Hadidi et al. [27] we assume that the same practical argument
cannot be equally good for two different offers. In fact the idea is that a supporting argument
must emphasizes a unique characteristic of an offer which distinguishes it from other offers
and provides an added value with respect to the other offers and so it cannot be used for
several offers. This also allows computing a ranking on the offers based on a ranking on the
supporting arguments (see Sect. 3.2). However, this restriction can be dropped.

By adopting the preference-based argumentation (PAF) framework proposed in Amgoud
et al. [5] for representing the negotiating agents theories (that has also already been used in
Hadidi et al. [27]), wemake also some assumptions that are very well suited to the negotiation
dialogues context. More particularly based on the theoretical results proposed in Amgoud
et al. [5] we assume that in the AFp = 〈Ap,�p〉 subpart of the argumentation system of the
agents: a) there are no odd cycles (i.e. that avoids indecision among several possible offers
during the negotiation) b) the system is coherent i.e. each preferred extension is a stable one
c) the system has at least one non empty preferred/stable extension (i.e. each agent has at
least one offer to propose otherwise it is useless to enter into a negotiation dialogue with
another agent) d) there are no self-attacking arguments (in our negotiation system this also
concerns the AFe = 〈Ae,�e〉 subpart of the argumentation system). We do believe that in
a negotiation dialogue it is incoherent for an agent to use self-attacking arguments when
negotiating with another agent.

In the following sub-sections we present the different steps that the agents apply in a
negotiation dialogue when they behave as proponents or opponents and the procedures that
implement the components of agents architectures as well as the new negotiation protocol
we propose in this paper. More precisely the first step for an agent acting as proponent is the
selection of the best offer by using its own theory (see Sect. 3.2). The next step is to choose
the argument that supports its offer (probably the same as in its theory but not necessarily)
in the (incomplete) knowledge of its opponent he disposes through the use of CAFs (see
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Fig. 6 Architecture of a negotiating agent α

Sect. 3.3). Then the next step is to verify whether this is an acceptable argument in the
opponent’s (incomplete) theory and to find a defending set of control arguments in case it is
not, for allowing its reinstatement (see Sect. 3.4). These steps constitute the bidding strategy
of an agent.

Then we present the behavior of an agent acting as opponent by presenting the so called
acceptance strategy (see Sect. 3.5) and the policies of the negotiation protocol that implement
the interaction rules (see Sect. 3.6) of agents in our negotiation framework. Finally we present
an extended example for illustrating the whole negotiation process (see Sect. 3.7).

3.1 Negotiating agent architecture

Figure 6 presents the different components of a negotiating agent architecture that implement
the different steps presented below. This architecture provides a global view of an agent
internal operation acting either as proponent or opponent according to the different phases of
a negotiation dialogue. Each of the described procedures as well as the negotiation protocol
policies are presented in details in the following sub-sections. The communication module
is responsible (as in any classical agent architecture) of sending the messages (as they are
decided by the negotiation protocol policies module) to the opponent agent and of receiving
and forwarding the corresponding messages sent by the opponent agent to the negotiation
protocol policies module for further treatment. Green and red messages present the pairs of
messages exchanged between negotiating agents in the cases of termination of the dialogue
with and without agreement respectively.

3.2 Best offers selection

Algorithm 1 is the procedure invoked by the proponent agent α in order to compute, first, its
best offer, based on its own theory, and it is implemented through function comp_next_offer.
This function looks for the best offer supported by an acceptable practical argument, by
using a ranking on the supporting arguments based on a partial preorder, that allows to
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Algorithm 1: choose-best-offer(O,Tα, CAFα,β ,Fα,β(o))
o ← comp next offer(O,Tα)1
if o �= ∅ then2

Fα,β(o) ← compute sup arg(o, Aα,β
Fp

∪ Aα,β
Up

)3

call choose-support-arg(o, Fα,β(o), CAFα,β) // Algorithm 24

else5
message(α, β)=nothing6
send(message(α, β))7

choose each time during a negotiation the best current argument and consequently the best
offer to propose (supported by this argument). This preorder can be given (which is the
case in the current implementation of our system) or computed by using different methods
(e.g. a multi-criteria decision making approach [16], a ranking-based semantics approach
[1], etc.). More precisely in our framework this ranking is based on a given partial preorder
noted �p . This preference relation is used along with the attack relation →p (see definition
9) in a defeat relation noted as �p that computes the acceptability among practical argu-
ments considering that a practical argument θ defeats another practical argument θ ′ noted
θ �p θ ′ if and only if θ and θ ′ are in conflict (they attack each other as they support only
one offer at a time) i.e. {(θ, θ ′), (θ ′, θ)} ⊆→p , θ �p θ ′ and θ ′

�p θ (where θ ′
�p θ

means θ �p θ ′ and θ ′
�p θ ). The function comp_next_offer also uses a defeat relation

noted as �e (constructed in a similar way than �p) that allows to compute the accept-
ability among epistemic arguments and a defeat relation noted as �m (called mixed and
constructed as the two previous ones) that computes the acceptability of epistemic arguments
with respect to practical arguments considering that an epistemic argument can defeat a prac-
tical argument but not vice-versa. Formore details on this reasoningmechanism the reader can
see [5,27].

As each practical argument supports only one offer at a time we consider that there exists
a partial preorder noted as �of f which expresses a preference relation between offers and
induces a ranking between them in O based on�p and consequently on�p .We can therefore
have the following definition:

Definition 12 Let oij and okl , k �= i two different offers where j and l are their respective

ranks in O . If �m=∅, then oij �of f okl with j < l if and only if ∃δ ∈ F(oij ) s.t. ∀δ′ ∈ F(okl ),
then δ �p δ′.

However other approaches can be also applied here for choosing each time the best argu-
ment and therefore the best offer. Thus different methods can be used for implementing the
comp_next_offer function and the way the choice of the next offer is made does not affect
the overall functioning of the negotiation system.

Then, based on its CAFα,β , the proponent agent α computes the practical arguments that
support this offer in its opponent theory through function compute_sup_arg(o, Aα,β

Fp
∪ Aα,β

Up
)

and calls a procedure, implemented by Algorithm 2, that selects the supporting argument to
be sent. If the proponent agent has no (other) offer to propose, the opponent of the agent is
informed by a suitable message (i.e. nothing).
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3.3 Supporting argument selection

Algorithm 2 selects through function choose − arg, the argument that the proponent agent
α sends to its opponent agent to support its offer from the set of the supporting arguments
computed by the function compute_sup_arg(o, Aα,β

Fp
∪ Aα,β

Up
). This choice can be random (as

in the current implementation of our system) or by using different criteria [16] depending on
the type of the application domain or the opponent’s profile. Again, as noted previously, this
choice does not affect the overall functioning of the negotiation system. Moreover, another
procedure finds the arguments that defend this supporting argument whenever this argument
is currently rejected by the opponent. This task is carried out by the procedure implemented
by Algorithm 3. If there is no other available argument that supports the current offer, the
agent abandons this offer and passes the negotiation token to the opponent agent.

Algorithm 2: choose-support-arg(o,Fα,β(o), CAFα,β)
if Fα,β(o) �= ∅ then1

θ ← choose-arg(Fα,β(o))2

call defend-offer(o, θ, Fα,β(o), CAFα,β) // Algorithm 33

else4
O=O − {o}5
Aα

p = Aα
p − Fα(o)6

message(α, β)=give token7
send(message(α, β));8

3.4 The bidding strategy

The bidding strategy of the proponent agent is implemented by Algorithm 3. The main task
here is to defend the proposed offer by an argument that (as said before) supports the offer
in the opponent’s theory. Consider for instance a car seller agent who proposes an expensive
luxury SUV of a prestigious brand to a customer who, as the agent understands, seems
to afford it. The reason (argument) that the seller agent has chosen this particular car is
probably the high sales commission that it brings. However, this is not an argument it can
use to convince its customer. The pool of appropriate arguments could include the smooth
ride, fast acceleration, high top speed, off-road capabilities, safety features, or even the high
social status associated with the brand. In fact, the discovery of those arguments takes place
inside Algorithms 1 and 2. The role of the bidding strategy algorithm is to determine whether
such a supporting argument is already acceptable in the opponent’s theory, or to search for
a control configuration that can defend the selected supporting argument under all possible
opponent profiles.

More precisely, acceptance in the context of incomplete theories is based on the notion of
completion which represents a possible profile (see Definition 7). The computation in line 1
of the algorithm relies on reasoning with Quantified Boolean Formulas (QBFs), as described
in Dimopoulos et al. [19], that is carried out by the quantom solver [43]. The credulous
controllability with respect to the theory Aα,β

F ∪ Aα,β
U (i.e. arguments in Aα

c are not considered
in this case) is computed by using the following Formula 1:

∀{onxi | xi ∈ Aα,β
U }∀{attxi ,x j | (xi , x j ) ∈���α,β ∪ �α,β}

∃{accxi | xi ∈ A}[φcr
st (CAF, θ)

∨(
∨

(xi ,x j )∈���α,β
(¬attai ,a j ∧ ¬atta j ,ai ))]
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Algorithm 3: defend-offer(o, θ,Fα,β(o), CAFα,β)

if θ is credulously accepted in all completions of the theory Aα,β
F ∪ Aα,β

U1
then2

offer(α, β) = 〈o, θ, 〈∅, ∅〉〉3

Fα,β(o) = Fα,β(o) − {θ}4
message(α, β)=offer(α, β)5
send(message(α, β))6

else7
S ← comp contr conf (CAFα,β , θ)8
if S �= ∅ then9

R = {(ai, aj)|ai ∈ S, aj ∈ Aα,β
F ∪ Aα,β

U }10
offer(α, β) = 〈o, θ, 〈S, R〉〉11
message(α, β)=offer(α, β)12
send(message(α, β))13

else14
Fα,β(o) = Fα,β(o) − {θ}15

call choose-support-arg(o, Fα,β(o), CAFα,β) // Algorithm 216

where A = Aα,β
F ∪ Acomp with Acomp ⊆ Aα,β

U .
The onxi variable means that the argument xi currently belongs to the system; it is used

for making the differentiation between the completions where xi is included and those where
it is not. Similarly, attxi ,x j is true when there is an attack from xi to x j . This variable has
to be true if (xi , x j ) is a fixed attack of CAF . Otherwise, the truth value of this variable
allows to distinguish between the completions where (xi , x j ) is included and those where
it is not. Finally accxi is a propositional variable representing the acceptance status of the
argument xi . The propositional part φcr

st (CAF, θ) of the formula is satisfiable when θ belongs
to at least one extension of a completion of CAF (more details about this part are given
later). Straightforwardly, the prefix of the formula corresponds to an enumeration of every
completion (by the ∀ quantifiers); for every such completion, we have to search for at least
one extension (represented by the existentially quantified part) such that θ belongs to it.

Now, in case this computation succeeds, θ is acceptable in all possible opponent profiles
(completions), and agent α sends to agent β the offer o, along with θ .

In case θ is not acceptable with respect to the above theory, agent α reacts as depicted
in lines 7-13 of Algorithm 3. First, it uses its CAF to seek a control configuration S, that
defends θ . This is again a problem on QBFs that is solved by a call to quantom solver
(line 7 of the algorithm). However, this time, arguments in Aα

c are considered and credulous
controllability is computed by using the following Formula 2:

∃{onxi | xi ∈ Aα
c }∀{onxi | xi ∈ Aα,β

U }∀{attxi ,x j |
(xi , x j ) ∈���α,β ∪ �α,β}∃{accxi | xi ∈ A}[φcr

st (CAF, θ)

∨(
∨

(xi ,x j )∈���α,β
(¬attai ,a j ∧ ¬atta j ,ai ))]

where A = Aα,β
F ∪ Aα

c ∪ Acomp with Acomp ⊆ Aα,β
U .

Note that this formula is very similar to the previous one. This time, the existential
quantifier over the onxi variables, for xi ∈ Aα

c , corresponds to the search for one control
configuration. So the whole formula corresponds to the definition of credulous controllabil-
ity: the formula is true if there is a control configuration such that, for every completion, θ
belongs to at least one extension.
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In both above cases we use the formula φcr
st (CAF, θ) = φst (CAF)∧accθ , which is based

on

φst (CAF) = ∧
xi∈Aα,β

F
[accxi ⇔

∧
x j∈A(attx j ,xi ⇒ ¬accx j )] ∧ ∧

xi∈Aα,β
C ∪Aα,β

U
[accxi ⇔ (onxi ∧∧

x j∈A(attx j ,xi ⇒ ¬accx j ))] ∧ ∧
(xi ,x j )∈→α,β∪�α,β

attxi ,x j∧
(xi ,x j )∈�α,β

attxi ,x j ∨ attx j ,xi
∧

(xi ,x j )/∈R ¬attxi ,x j

where R =→α,β ∪ �α,β ∪ ���α,β ∪ �α,β .
Moreover, in the first case, where the control arguments are not used (in Formula 1),∧
xi∈Aα,β

C ∪Aα,β
U

becomes
∧

xi∈Aα,β
U

.

This formula is a generalization of the encoding of stable semantics defined in Besnard
and Doutre [11], in the same line than the encoding given in Definition 5. When every att-
variable and every on-variable is assigned a truth value, this assignment corresponds to a
completion. Then, the consistent truth assignments of the acc-variables correspond to the set
of stable extensions of the completion. This means that if φst (CAF) ∧ accθ is satisfiable,
then θ belongs to at least one stable extension of the completion which is represented by the
att and on-variables.

Now if in this second case the call succeeds, agentα sends offer o to agentβ, alongwith the
supporting argument θ , the set of arguments S, and the associated attacks R. Otherwise, the
agent abandons this argument and picks another fromFα,β(o) in order to continue defending
o. This is done by function choose-support-arg. Recall that our approach looks for control
configurations that work for all possible profiles of agentβ (i.e. all possible completions of the
CAF). However, if there is no such solution, the QBF optimization techniques of quantom
[43] can find configurations that work for as many configuration as possible. This means that
even if agent α cannot be sure that his argument will be accepted by β, he can still maximize
its chances of success. Further study of this issue is out of the scope of this paper, and is kept
for future work.

In the following, we define an operator ⊕ that is used in Algorithms 4 and 5.

Definition 13 Let A1, A2, A3 be sets. We define (A1, A2) ⊕ A3 as the pair (A′
1, A

′
2) such

that A′
1 = A1 \ (A1 ∩ A3) and A′

2 = A2 ∪ (A1 ∩ A3).

At the beginning of the negotiation each agent has in its theory (i.e. Aα and Aβ respectively)
only a part of the possible epistemic arguments (with respect to a specific application). That
means that some arguments are in Aα and not in Aβ (and vice-versa). However, when an
agent will use arguments (and the associated attacks) that do not belong to the opponent’s
theory, the opponent agent will add them (as well as the associated attacks) in its own theory,
and it will be able to use them from that point onward in the negotiation. This situation may
take place in the Algorithms 4 and 5.

3.5 The acceptance strategy

This section discusses Algorithm 4, that implements the acceptance strategy of an agent.
Upon receiving an offer and its supporting arguments (and the associated attacks) sent by
a proponent agent, the algorithm updates the theory as well as the CAF of the receiving
agent by integrating the supporting arguments, the defending arguments (i.e. the control
configuration), and the associated attacks into both theories (i.e. the receiving agent own
theory and its CAF). Then, the receiver agent either accepts the offer (i.e. if the supporting
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arguments are acceptable) and informs the proponent accordingly, or sends to the proponent
the reasons for rejecting its offer.

Algorithm 4: decide-upon-offer(T α,Tα, CAFα,β , offer(β, α))
〈o, θ, 〈S, R〉〉=offer(β, α)1
if S �= ∅ then2

T α=(Aα ∪ S, →α ∪ R)3

(Aα,β
U , Aα,β

F ) = (Aα,β
U , Aα,β

F ) ⊕ S4
(���α,β , →α,β) = (���α,β , →α,β) ⊕ R5
(�α,β , →α,β) = (�α,β , →α,β) ⊕ R6

if θ is a credulous conclusion of theory Tα then7
message(α, β)=Accept(o)8
send(message(α, β))9

else10
Compute Q ⊆ E where E is an extension of Tα and Q is the set of arguments11
from which θ is reachable in the attack graph
Reasons={(p, θ)|(p, θ) ∈→α and p ∈ Q }12
message(α, β)=Reject(o, θ, 〈Q, Reasons〉)13
send(message(α, β));14

3.6 The negotiation protocol

TheAlgorithm 5 described below implements the core procedure that drives the overall nego-
tiation between the two negotiating agents through the necessary updates of their negotiation
theories and calls to appropriate functions. This algorithm differentiates the behavior of the
agents according to the role (i.e. proponent or opponent) they are playing during a negotiation
round. The first part of algorithm (lines 1–2) implements the behavior of an agent when it
is the proposer of the first offer, whereas the second part (lines 3–24) is concerned with its
reaction when it receives an answer from another agent (i.e. the opponent). While the first
part is straightforward as it concerns the selection of the best offer to propose, the second
part is more involved and breaks down to several subcases. Those cases concern different sit-
uations that may arise during a negotiation, such as the rejection of an offer by the opponent,
the acceptance of an offer (that terminates the negotiation with an agreement), the situation
where the opponent informs that it has no other offer to propose, the situation where the
opponent responds that it has no offer to propose too in a received similar message by the
(proponent) agent (this ends the negotiation without agreement), the situation where an agent
informs that it gives the token, and the situation where an offer is received and the receiver
agent has to decide upon its acceptance or rejection. The example below explains how the
protocol works.

3.7 A negotiation example

In the following we run an example of negotiation for illustrating our framework. We con-
sider again the agents personal theories described in Example 6, as well as the associated
opponent modelling (Example 7). Figure 7 recalls the agents α and β theories before the
negotiation and their associated CAF respectively. Thus in the current example we have
Aα
p = {X} and Aα

e = {B, E, K } for agent α and Aβ
p = {Y } and Aβ

e = {B, E, D, F} for
agent β. The arguments {D, F} are ignored by agent α. We have also the common set of
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offers Oα = Oβ = {o}. Fα(o) = {X} and Fβ(o) = {Y } represent the practical argu-
ments supporting offer o in the agents α and β theories respectively. For their CAF we have
F(o)α,β = {Y } and F(o)β,α = {X} respectively. Regarding the uncertainty, for CAFα,β

we have Aα,β
Ue

={B}, ���α,β={(E, Y )} and for CAFβ,α we have Aβ,α
Ue

={E}, ���β,α={(B, X)},
�β,α={(K , E), (E, K )}, �β,α={(F, E), (D, B)} and control arguments Aβ

c = {D, F}.

Algorithm 5: Procedure negotiate(〈O, T α,Tα, CAFα,β ,Fα〉)
if agent α proposes first then1

call choose-best-offer(O,Tα, CAFα,β , Fα,β(o)) // Algorithm 12

while true do3
get message(β, α)4
switch message(β, α) do5

case Reject(o, θ, 〈Q, Reasons〉)6

(Aα,β
U , Aα,β

F ) = (Aα,β
U , Aα,β

F ) ⊕ Q7
(���α,β , →α,β) = (���α,β , →α,β) ⊕ Reasons8
(�α,β , →α,β) = (�α,β , →α,β) ⊕ Reasons9

call defend-offer(o, θ, Fα,β(o), CAFα,β) // Algorithm 310

case Accept(o)11
End of negotiation with agreement on offer o12

case nothing13
if O �= ∅ then14

call choose-best-offer(O,Tα, CAFα,β , Fα,β(o)) // Algorithm 115

else16
answer(α, β)=nothing too17
send(answer(α, β))18

case nothing too19
End of negotiation without agreement20

case give token21
call choose-best-offer(O,Tα, CAFα,β , Fα,β(o)) // Algorithm 122

case offer(β, α)=〈o, θ, 〈S, R〉〉23
call decide-upon-offer(T α,Tα, CAFα,β , offer(β, α)) // Algorithm 424

25

The negotiation starts with agent α as proponent (see Fig. 7) by invoking Algorithm 5.
Following line 2 there is a call of Algorithm 1. This algorithm computes the next (best) offer
(line 1) to propose that is supported by an acceptable argument. In our example there is offer
o but the supporting argument X is rejected as it is attacked by arguments B and E that
belong into the two stable extensions namely {B, K } and {B, E}. Agent α has no offer to

X

B E

K

(a) T α

Y

EB

(b) CAFα,β

Y

B E

D F

(c) T β

X

EB

K

D F

(d) CAFβ,α

Fig. 7 The theories of agents α and β before the negotiation
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propose to agent β and following line 6 it prepares a message(α, β) = nothing and sends
it to agent β.

Agent β acts now as proponent (see Fig. 7). By using Algorithm 5 (line 13) it checks
whetherOβ �= ∅ (line 14) which is the case and calls Algorithm 1. This algorithm computes
(as previously) the next (best) offer (line 1) that is supported by an acceptable argument. In the
current situation we have the offer owhich is now supported by the acceptable argument Y as
it belongs to the (only) stable extension {Y , D, F}. Then (line 3), it computes the supporting
practical arguments in the uncertain theory of agent α namely F(o)β,α = {X} by using
its CAF. Then (line 4), there is a call to Algorithm 2. This algorithm selects a supporting
argument (line 2). In our case there is only one, the argument X . Then there is a call (line
3) of Algorithm 3. This algorithm allows to check firstly (line 1) whether X is credulously
accepted in the uncertain theory of agent α without the use of a control configuration (see
Formula 1).

Argument X is attacked by the uncertain argument E (i.e. see attack (E, X)). That means
that there is a completion (or profile) where this argument is present in the theory. Moreover
the type of uncertain attack between arguments K and E informs us that an attack is indeed
present but the direction is unknown. That means that there are two completions (profiles)
(among the three possible ones) where we have {(K , E), (E, K )} and {(E, K )} as possible
attacks. In one of these completions argument E defends itself against the attack from K and
in the other it attacks K . Therefore, in both cases E will be an acceptable argument and X
will be rejected (as there is no defence against this attack).

Argument X is also attacked by argument B through the uncertain attack (B, X). That
means that there is a completion (profile) where this attack is present in the theory and in
that case X will also be rejected as B is an acceptable argument and there is no defence for
X against the attack (B, X). Therefore, X cannot be accepted without the use of a control
configuration.

By looking at the real theory of agent α, we may observe that the profile with the attacks
{(K , E), (E, K )} is the right one but agent β ignores this information. Then the algorithm
tries to check whether it can find (see Formula 2) a control configuration S (line 7). As we
may observe such a set exists (see line 9) that can defend X nomatter the real profile (i.e. for all
the completions) of agent α. More precisely we have S = {D, F} and R={(F, E), (D, B)}
and an offer(β, α)=〈o, X , 〈{D, F}, {(F, E), (D, B)}〉〉 is built. Then, following line 10, a
message(β, α)=offer(β, α) is prepared and sent to agent α. Agent α acts as receiver now. By
using Algorithm 5 (see line 23) it calls Algorithm 4 (see line 24). By using Algorithm 4 agent
α updates its theory and CAF (see lines 3–6), by using S = {D, F} andR={(F, E), (D, B)}
(see Fig. 8). Then it checks whether it can accept X (see line 7). As shown in Fig. 8, the
integration of agent’s β control arguments {D, F} (and the associated attacks) in agent’s α

theory, allows this agent to accept argument X as {X , D, F, K } is a stable extension and
therefore to accept offer o. Thus, following lines 8–9 it prepares a message(α, β)=accept(o)
and sends it to agent β. Agent β acts as receiver by using Algorithm 5 (see line 11) and the
negotiation ends successfully (line 12) with an agreement on offer o.

4 Theoretical results

In this section we present some interesting theoretical properties of our negotiation frame-
work. We start with the definition of several notions.
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(b) CAFα,β

Y

B E

D F

(c) T β
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(d) CAFβ,α

Fig. 8 The theories of agents α and β after the negotiation

Intuitively, an offer is acceptable if it is supported by a practical argument that is acceptable
at some point during the negotiation dialogue. Formally:

Definition 14 Let a negotiation dialogueN between two agents α and β and an offer o ∈ O
the common set of offers. Then o is called an acceptable offer for agent α (respectively
β) if ∃δ ∈ Fα(o) (respectively Fβ(o)) s.t. δ is a skeptical or credulous conclusion of Tα

(respectively Tβ ) at some stage of N .

An important concept in a context of negotiation dialogue is the agreement, i.e. the fact
that the negotiating agents have found a solution that is acceptable to both of them.

Definition 15 Let a negotiation dialogue N between two agents α and β. We consider that
agents α and β have reached an agreement on offer o if there is a message(α, β)=offer(α, β)
sent from α to β with offer(α, β) = 〈o, θ, 〈S, R〉〉 where o is an acceptable offer for agent
α and a message(β, α)=Accept(o) sent from β to α meaning that o is an acceptable offer for
agent β too.

Finally, we introduce the notion of optimal solution, that corresponds to a situation where
a specific offer is acceptable to both agents, and no better offer for one of them could have
been accepted by the other, given their theories and preferences.

Definition 16 Let Oα (respectively Oβ with Oα = Oβ ) be a partially ordered set of n offers
shared between two agents α and β and oij ∈ Oα (respectively oij ′ ∈ Oβ ) a specific offer

where j (resp j ′) represents its current rank in Oα (respectively Oβ ). Offer oij (respectively

oij ′ ) is an optimal solution for agent α (respectively β) in a negotiation dialogue N , if α

(respectively β) has reached an agreement with β (respectively α) on oi and there is no
acceptable offer okl ∈ Oα (respectively okl ′ ∈ Oβ ), k �= i s.t. l < j (respectively l ′ < j ′) in
the current state of its theory T α

NT (respectively T β
NT ).

In the following we prove that our approach can guarantee the property of optimality,
meaning that if the agents reach an agreement, then they have agreed on the optimal solution.

Proposition 1 Let a negotiation dialogue N between two agents α and β. If α and β have
reached an agreement on offer o then o is the optimal solution for both agents in the current
state of their negotiating theories T α

NT and T β
NT respectively.

Proof Let’s consider a dialogue N between two agents α and β where agent α is the propo-
nent and β the opponent and an agreement reached on an offer oi . Following Definition 15
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and Algorithm 3 that means that agent α did send to agent β a message(α, β)=offer(α, β)
with offer(α, β) = 〈oi , θ, 〈∅,∅〉〉 (line 5) or offer(α, β) = 〈oi , θ, 〈S, R〉〉 (line 10) where
〈S,R〉 is a control configuration that defends argument θ in agent’s β theory Tβ (if neces-
sary). Following Algorithm 1 and more particularly function comp_next_offer (line 1) and
Definition 12, we know that oi is an acceptable offer for which it exists a supporting practical
argument say δ that defeats through�α

p all the other practical arguments supporting the other
available offers in Oα and that are not defeated by epistemic arguments through �α

m in the
current state of the theory Tα . We also know that the defeat relation �α

p is updated each
time an offer o is rejected by agent β in a round of negotiation, as following Algorithm 2
(line 5) α removes this offer from the set Oα and along with all the supporting arguments
Fα(o) from its set of practical arguments Aα

p before giving the token to agent β (line 6). That
means that the acceptable practical arguments that were supporting the offers proposed by α

in previous rounds (and rejected by agent β till the current round) and that were defeating in
a previous state of theory Tα the supporting practical argument δ of currently chosen offer
oij , don’t belong anymore in Aα

p . As δ is an acceptable argument in Tα we also know that

it does not exist an epistemic argument γ ∈ Aα
e s.t. (γ, δ) ∈�α

m . Therefore if offer oij is
the acceptable offer that is chosen by agent α at the current round of the dialogue and j
its rank in Oα , we know by Definition 12, that there is no acceptable offer okl ∈ Oα s.t.
l < j because otherwise this should signify that okl is supported by an acceptable practical
argument say δ′ s.t. (δ′, δ) ∈�α

p as δ is not defeated by an epistemic argument. However,

we know that this is not possible because if it was the case, okl would have been chosen
by α (through function comp_next_offer of Algorithm 1) as the offer to be proposed in the
current round. Thus offer oij is an optimal solution for agent α. Let us now examine what

is happening with agent β. Argument θ is a practical argument that supports oij in CAFα,β

and is credulously accepted in all completions of the theory Aα,β
F ∪ Aα,β

U as follows from
Algorithm 3, either defended by a control configuration (line 1) or not (lines 7-10). As oi is
an agreement between agents α and β we know according Definition 15, that agent β did
send to agent α a message(β, α)=Accept(oi ) as it follows from Algorithm 4 (line 8) and that
means that argument θ is a credulous conclusion of its theory Tβ (lines 7-9). Therefore θ is
an acceptable argument for agent β. As agent β disposes a reasoning mechanism similar to
the one of the proponent agent α, that means that argument θ defeats through�β

p all the other
practical arguments supporting other offers and that are not defeated by epistemic arguments
through �β

m in the current state of the theory Tβ . Argument θ is also not defeated by an
epistemic argument. So oij ′ is an acceptable offer for agent β and if j ′ is its rank in Oβ at this

round of the negotiation dialogue, this means that there is no acceptable offer okl ′ ∈ Oβ s.t.
l ′ < j ′. Otherwise, as said previously, this should mean that there is an acceptable practical
argument say θ ′ supporting okl ′ s.t. (θ

′, θ) ∈�β
p , which we know that cannot hold. Offer oil is

therefore an optimal solution for agent β. Thus oi is the optimal solution for both agents and
this concludes the proof. ��

In the following we prove that our negotiation method is complete, i.e. the agents will
certainly reach an agreement if this is possible.

Proposition 2 A negotiation dialogue N between two agents α and β is complete.

Proof A complete negotiation dialogue between two agents α and β means that if there
is a possible agreement on an offer o ∈ O , the negotiation framework guarantees that
the agents will find this offer. According to Definition 15, that means that it will oblig-
atory exist a round during the negotiation where agents α and β will exchange the
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messages offer(α, β) = 〈o, θ, 〈S, R〉〉 (following Algorithm 1, line 5 or line 10) and
message(β, α)=Accept(o) (following Algorithm 4, line 8) assuming that α is the propo-
nent and β the opponent (or the other way around). Let us therefore consider a negotiation
dialogue N between agents α and β, an offer o that can be an agreement between the two
agents and assume that this agreement was not reached. That means that either agent α did
not send a message offer(α, β) = 〈oi , θ, 〈S, R〉〉 or opponent agent β didn’t reply with a
message(β, α) =Accept(o). We will examine the two situations. Let us start by considering
the first situation namely the assumption that agent α did not sent such a message to agent
β. Different possible reasons could validate this assumption. Following Algorithm 1 a first
possible reason is that there is no practical argument say δ supporting o which is skeptically
or credulously accepted in theory Tα (i.e. o it is not an acceptable offer for α). Following
Algorithm 3 a second possible reason is that there is no practical argument say θ (or δ itself)
supporting o in CAFα,β that is credulously accepted (with or without the defence of a con-
trol configuration) in Aα,β

F ∪ Aα,β
U . However as we know that o is a possible agreement we

know from Proposition 1 that o is an optimal solution for both agents and therefore we know
that there exists an acceptable practical argument (possibly not the same) in Tα ∪ Tβ that
supports o. Therefore these two reasons cannot hold. A third possible reason is that agent
α could not find the supporting argument θ (among possibly several ones in Fα,β(o)) that
supports o in CAFα,β and is acceptable in Aα,β

F ∪ Aα,β
U . However following Algorithm 2 we

know that agent α is testing (lines 1-3) the acceptability of all practical arguments that are in
Fα,β(o) before abandoning this offer and giving the token to agent β (line 6). Thus if such an
argument exists it cannot be ignored. Finally a fourth possible reason is that the offer o was
ignored. However following Algorithm 1 this cannot happen as agent α is testing (lines 2-4)
the acceptability of all the possible offers in O before sending the message(α, β)=nothing
(line 6). Therefore the first situation we have considered cannot occur and we are sure that
agent α did send a message offer(α, β) = 〈o, θ, 〈S, R〉〉 to agent β. Let us now consider the
second situation namely the assumption that opponent agent β didn’t send the message(β, α)
=Accept(o). In this situation, following Algorithm 4 (lines 1-9), that means that none of the
practical arguments supporting offer o (including θ ) could be accepted by agent β. However
this cannot happen because o is an optimal solution for β (i.e. as we know it is a possible
agreement) and consequently an acceptable offer for it. Therefore this situation cannot occur
either and therefore we are sure that agent β did send a message(β, α)=Accept(o). The con-
clusions of the analysis of the two above situations lead to a contradiction with our initial
assumption that the agreement on offer owas not reached as either agent α didn’t send a mes-
sage offer(α, β) = 〈o, θ, 〈S, R〉〉 or agent β didn’t reply with a message(β, α)=Accept(o)
and this concludes the proof. ��

An important property of a negotiation dialogue is termination. Our approach can guar-
antee termination under the assumption that there exists at least one acceptable offer in its
personal theory when it plays the role of proponent.

Proposition 3 A negotiation dialogue N between two agents α and β always terminates
either with an agreement on some offer o or without agreement provided that there exists at
least one acceptable offer to propose for each agent during the dialogue.

Proof Weassume that in real world negotiations the agents are endorsed by the designerswith
negotiation theories where there exists at least one acceptable offer for each agent according
to the current state of the negotiation theories. That means that the theories Tα and Tβ of two
negotiating agents α and β respectively, have at least one σ -extension E �= ∅ (where σ is
the acceptability semantics used) during the dialogue, when they are playing the role of the
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proponent. Let us therefore consider a negotiation dialogue N between two agents α and β.
From Proposition 2 we know that a negotiation dialogue N is complete. So if there exists
an offer o that can be an agreement between the two agents, this offer will be found and the
dialogue will be ending following Algorithm 5 with an agreement on offer o (lines 11-12).
Let’s now consider that such an offer does not exist. FollowingAlgorithms 1, 2 and 3we know
that a proponent agent α is sending to the opponent agent β (each time it has the token) any
acceptable offer o ∈ Oα that is supported by an acceptable practical argument in Aα,β

F ∪ Aα,β
U

with the goal that one of these offers is also an acceptable offer for agent β. However the set
Oα (respectively Oβ ) is finite and the set of practical arguments Fα(o) supporting the offer
o as well. So when there is not anymore an available offer to propose, following Algorithm 1,
a proponent agent α is sending a message(α,β)=nothing (line 6). When agent β is found
as well at the same position when acting as proponent (i.e. the set of available offers Oβ is
empty), it responds following Algorithm 5 with a message(β, α)=nothing_too (lines 14-18).
Thus following Algorithm 5 the dialogue terminates without agreement (lines 19-20). This
concludes the proof that a dialogue N always terminates either with an agreement on some
offer o or without agreement. ��

Finally, we observe that, if an agreement is reached, then the solution of the negotiation
dialogue is supported by an acceptable argument in both agents theories.

Proposition 4 Let a negotiation dialogue N between two agents α and β, an agreement on
offer o and θ ∈ F(o) a supporting practical argument for o. Then θ is a skeptical or credulous
conclusion of the theory Tα or Tβ .

Proof This proof follows directly from Algorithms 1, 4 and Definition 14. ��

To conclude this section, let us briefly discuss the computational issues related to our
negotiation protocol. As can be seen in the algorithms, the number of steps (negotiation
rounds, message exchanges,. . . ) is bounded by the number of arguments that appear in the
agents theories. Thus, the hard part of the protocol are the verification whether an argument is
accepted in an AF (because the agent’s offer must be supported by an acceptable argument),
and the search for a control configuration. The complexity of the reasoning depends on the
chosen extension semantics, and is already well-known (see e.g. Dvorák and Dunne [23] for
the complexity of reasoning with AFs, and Dimopoulos et al. [19], Niskanen et al. [37] for
the complexity of CAFs). Although the complexity can be high (it ranges from polynomial
time to completeness for the third level of the polynomial hierarchy), efficient computational
techniques have been proposed (see for instance the results of the ICCMAcompetition [26,46]
for the classical reasoning tasks with AFs, and the experiments by Niskanen et al. [37] for
reasoning with CAFs).

5 Experimental evaluation

The proposed framework has been implemented in the JADE platform, and evaluated on
negotiations with random argumentation theories. We first describe the generation of those
theories, and then report on the experimental evaluation of negotiating with these theories.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.



   18 Page 26 of 40 Autonomous Agents and Multi-Agent Systems            (2021) 35:18 

5.1 Random theory generation

The experimental evaluation of the proposed framework is based on a system, implemented in
Java, that generates pairs of random negotiation theories and associated CAFs, with different
user specified characteristics.

Each negotiation experiment involves a pair of random theories T α = 〈Aα,→α〉
and T β = 〈Aβ,→β〉 that share a (non-empty) common part, i.e. there exists Nα,β =
〈ANα,β ,→Nα,β 〉, such that ANα,β = Aα ∩ Aβ and
(a, b) ∈→Nα,β if and only if (a, b) ∈→α ∩ →β . Moreover, control arguments are only
attacked by other control arguments, i.e. ((Aα \ Aα

c ) × Aα
c )∩ →α= ∅.

The structure of the generated theories depends on a number of user supplied parameter
values that are explained briefly below.

The user needs to define the number of epistemic, practical and control arguments of
theories T α and T β , as well as their density, defined as the ratio of attacks present in the
theory to the number of all possible attacks between the arguments of the theory. Moreover,
the instance generation system receives as input the number of epistemic, practical and control
arguments of the shared part Nα,β .

From theory T β , CAFα,β = 〈〈Aα,β
F ,→α,β〉, 〈Aα,β

U ,�α,β ∪ ���α,β〉, 〈Aα
c ,�〉〉 is built

(similarly for T α and CAFβ,α), which is the theory that agent α holds about agent β. CAFα,β

satisfies the following conditions:

1. Aα,β
F ∪ Aα,β

U = Aβ ∪ Aα
p ,

2. Aα
p ⊆ Aα,β

F .

The attack relation →α,β ∪ �α,β ∪ ���α,β of CAFα,β , is generated so that it satisfies
the following conditions:

1. →α,β⊆→β ,

2. →β ∩(Aα,β
F × Aα,β

F ) ⊆→α,β ,
3. (�α,β ∪ ���α,β) ⊆ (→β \ →α,β),
4. �α,β ∩ ���α,β= ∅.
The main consequence of the above requirements is that the attack relation of CAFα,β is a
subset of the attack relation ofT β . The rationale for this restriction, in this initial experimental
evaluation, is to focus on negotiation experiments where agents possess an “accurate” model
of their opponent. One way to formalize the model accuracy is via the above relation between
individual theories and CAFs.Moreover, it is interesting to study how the framework behaves
when this restriction is removed. Indeed, the next section provides initial evidence that the
method of this paper can cope with the relaxation of this restriction.

As with the individual agent theories T α and T β , the random instance generation software
accepts as input a number of parameter values that determine various features of the CAFs
of the agents. Most of them concern the uncertainty of an agent profile on its opponent, as
captured by the corresponding CAF. The first is parameter rateUncertArgs that defines
the ratio of uncertain arguments to all (fixed and uncertain) arguments of the theory. That is,

rateUncertArgs = |Aα,β
U |

|Aα,β
F ∪ Aα,β

U |
for agent α, and similarly for agent β.

Other parameters of the system include rateUncertAtt, that defines the ratio of uncer-
tain attacks over all attacks, as well as rateUndirAtt that defines the ratio of uncertain
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Table 1 Combinations of
parameter values

Parameter comb1 comb2 comb3 comb4

rateUncertArgs 0 0.10 0.25 0.50

rateUndirAtt 0 0.05 0.125 0.25

rateUncertAtt 0 0.05 0.125 0.25

attacks to all attacks. That is,

rateUncertAtt = | ���α,β |
| →α,β ∪ �α,β ∪ ���α,β | ,

and

rateUndirAtt = | �α,β |
| →α,β ∪ �α,β ∪ ���α,β | .

Moreover, parameter densContrAtt defines the ratio of attacks from the control argu-
ments of the agent to the arguments of its opponent that are included in its CAF to all possible
such attacks fromcontrol arguments. For instance,densContrAtt=0.1 forCAFα,β ,means
that 10%of all possible attacks fromarguments of Aα

c to arguments in Aα,β
F ∪Aα,β

U are included
in the particular CAFα,β .

Finally, the instance generation system receives as input the number of offers, i.e. |Oα|
and |Oβ |, as well as the number of practical arguments that support each offer.

5.2 Experimental results

This section reports on selected results of the experimental evaluation of the framework.
As the negotiation theory generation system accepts several parameter values, it is outside
the scope of this work to provide exhaustive experimental results for all possible value
combinations. Instead, we present results for selected runs that reveal important factors that
influence the working of the negotiation algorithm, and highlight its merits and limitations. In
all experiments we fix |Aα| = |Aβ | = 40, |Aα

p| = |Aβ
p| = 6, and Aα

c ∩ANα,β = Aβ
c ∩ANα,β =

∅.
The experimental evaluation is centered around 12 sets of agent theories, and associated

CAFs, that differ in the uncertainty of these CAFs and the size of the shared part of agent
theories. More specifically, four combinations of parameter values concerning the CAFs are
considered, same for both agents. These combinations are listed in Table 1.

The combination comb1 corresponds to the case where both agents have complete knowl-
edge of their opponent. Then, uncertainty increases, with comb4 the case where the agents
have the highest uncertainty about their opponents among all the experiments.

Each of the above set of values for the three CAF parameters is combined with one of
the three possible values {0.25, 0.50, 0.75} for the ratio |ANα,β |/|Aα| that capture different
degrees of similarity between agent theories.

The experimental results of this section focus on investigating the influence of control
arguments on theagreement rateof the negotiations, i.e. the ratio of the number of negotiations
terminated with agreement over their total number. Each experiment is composed of 600
negotiations consisting of 50 randomly generated experiments for each of the 12 parameter
values combinations described above. Therefore, each experiment is an amalgamation of
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Fig. 9 Agreement rate (rounded
to 10−2) for negotiations with
theories without control
arguments, for |Oα | ∈ {2, 4, 6},
and density is 0.10 (red), 0.15
(blue) or 0.20 (green)
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negotiation theories of various types as far as the values of the 12 value parameters are
concerned.
Negotiation without control arguments The first set of experiments serves as a “baseline” and
concerns negotiations where agents possess no control arguments. The results are reported
in Fig. 9 for various values for the number of offers (with |Oα| = |Oβ |) and the density of
the theories.

In all these experiments the number of practical arguments remains constant (the actual
value is |Aα

p| = |Aβ
p| = 6), therefore increasing the number of offers (while keeping their

support uniform) decreases the number of supporting arguments per offer. More specifically,
in the case of two offers, each offer is supported by two arguments, in the case of four offers,
two of them are supported by two arguments and the other two by one argument, whereas in
the case of six offers each of them is supported by one practical argument. The decrease in the
number of supporting arguments for each offer that comes with the increase in the number of
offers, leads to a decrease in the agreement rate. Moreover, the number of agreements seems
to decrease as the density of the theory increases, a trend that is also present in negotiations
with theories with control arguments.
Impact of the density of control attacks Figure 10 presents the first results concerning nego-
tiations between agents with theories that contain control arguments, with various values for
the ratio of attacks from these arguments, captured by parameter densContrAtt, as well
the number of offers |Oα| = |Oβ |. In all experiments the density of the theories is 0.15.
It seems that the presence of control arguments (and attacks) has an important influence on
the number of successful negotiations: while the agreement rate was at most 0.40 without
control arguments (Fig. 9), it is now between 0.55 and 0.82.

It also seems that the agreement rate diminishes if the number of supporting argument for
offers is decreased, and increases with the attacks from the control arguments.
Impact of the theories density For all the experiments that follow, we fix the numbers of
offers |Oα| = |Oβ | = 4. The results of Fig. 11 highlight the way the number of control
arguments (numContrArg), and the ratio of control attacks (densContrAtt), affect the
agreement rate. The left (respectively right) side of the Figure refer to the agreement rates
achieved when the density of the individual theories of the agents participating in the
negotiations is fixed to 0.15 (respectively 0.2). Clearly, the density of the theories plays a
role in the agreement rate.
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Fig. 10 Agreement rate (rounded
to 10−2) for |Oα | ∈ {2, 4, 6}, and
densContrAtt is 0.03 (red),
0.05 (blue), 0.10 (green) or 0.20
(gray), for theories with
density = 0.15
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Fig. 11 Agreement rate (rounded to 10−2) for negotiations with theories with density 0.15 (left) or 0.20
(right), numContrArg is 0 (gray), 3 (red) or 6 (blue), and densContrAtt is D ∈ {0.03, 0.05, 0.1, 0.2}

Observe that the data plotted in gray correspond to the case where the agents have no
control arguments and corresponds to the results described in Fig. 9. Again, the important
conclusion that can be readily drawn from Fig. 11 is that the presence of control arguments
increases significantly the number of negotiations that terminate with agreement. Indeed, as
also noted above, for theories with density= 0.15, the agreement rate almost doubles from
0.23 to 0.49 for cases where there are relatively few control arguments (numContrArg= 3)
and attacks (densContrAtt= 0.03) from those arguments, and triples to 0.78 in the
experiments with the highest number of control arguments and attacks. Similar are the results
when the density of individual theories of the participating agents is set to 0.2 (density=0.2
on the right side of the Figure).
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Fig. 12 Agreement rate (rounded to 10−2) for the different combinations of parameters, for density= 0.15,
6 offers, and densContrAtt = 0.05, the size of the shared part of theories is 0.25 (red), 0.50 (blue), or
0.75 (green), and the aggregation of the three different sizes (gray)

Impact of the uncertainty and shared part of theories Figure 12 shows the agreement rate for
specific value combinations for the parameters that refer to the CAF uncertainty (comb1 to
comb4) and the relative size of the shared part of the individual theories. The data plotted
in gray refers to the aggregate agreement rates over the different shared theory sizes for a
given combination of parameters (i.e. a degree of uncertainty in the CAFs). The last set of
data (total) corresponds to the aggregate agreement rates of the different combinations.

The highest agreement rate, that reaches 96%, is achieved for negotiations with complete
knowledge of the opponent theory (comb1) and individual theories with 75% similarity.

Moreover, the agreement rate, as presented by the data plotted in gray, decreases mono-
tonically with the increase of the uncertainty on the opponent theory, starting with 88% for
the combination of values comb1, and ending with 29% for comb4.

Figure 12 also highlights the effect of the size of the shared theories on the outcome of the
negotiations, and reveals the positive effects of the high similarity between agent theories on
the outcome of their negotiation. Indeed, in the set of data, labeled total, the agreement
rate increases from 0.50 to 0.85 when the shared part goes from 25% to 75% of the theory
size.

In order to understand better the effects of uncertainty on the outcome of negotiations,
a series of experiments was run, with various values for the parameters that relate to the
uncertainty of the theories. The results are reported in Fig. 13, that depicts agreement rates
for sets of 100 negotiations.

We provide information about the degree of uncertainty of the random theories, as well
as where this uncertainty is present the theory. More specifically, unc is the uncertainty rate,
whereas Arg (plotted in red), Att (in blue), and Both (in green) indicate the part of the
theorywhere this uncertainty appears.DatawithArg correspond to negotiationswith theories
where the uncertainty concerns the arguments (there is no uncertainty related to the attack
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relation), whereas data with Att refers to theories where the uncertainty concerns entirely
the attack relation. Finally, data labelled with Both, concern theories where the uncertainty
is equally divided between arguments and attacks. For instance, unc=0.20,Both refers to
experimentswith theorieswith 10%uncertainty related to the arguments, and10%uncertainty
related to the attack relation, equally distributed between relations � and ���. That is, 5%
of the attacks belong to the set � and another 5% to ���. The size of the shared part of the
theories is 25% (Fig. 13a), 50% (Fig. 13b), or 75% (Fig. 13c), and the aggregate is described
at Fig. 13d.

The experimental results show that the uncertainty decreases the chances of an agreement
in a negotiation. However, this effect is less severe for agents with theories that share a large
common part, and theories where the uncertainty is in the arguments rather than the attack
relation.
Impact of the unknown Recall that the negotiation experiments described so far are generated
so that Aα,β

F ∪ Aα,β
U = Aβ ∪ Aα

p i.e. agent α CAF about β contains all the arguments of
its opponents. In the last set of experiments, whose results are described at Fig. 14, this
assumption is removed by allowing agent β to possess arguments that are not part of the
CAF of agent α. The number of these arguments is determined by the value of parameter
unknown defined as

unknown = |(Aβ − (Aα,β
F ∪ Aα,β

U )|)
|(Aα,β

F ∪ Aα,β
U )|

The experiments of Fig. 14 highlight the (little) effect of unknown arguments on the num-
ber of agreements achieved. Clearly, increasing the number of unknown arguments leads to a
general reduction of the agreement rate. However, this decrease is less significant for theories
with more control attacks, and globally even theories with a high number of such unknown
arguments (unknown= 0.50, Fig. 14e) exhibit a satisfying agreement rate, between 0.42
and 0.78 (depending on the values of numContrArg and densContrAtt.
General conclusion of the experiments The experimental evaluation leads to a number of
general conclusions. The first is that, not surprisingly, the effectiveness of the approach with
respect to the rate of agreements depends on a number of parameters including the density
of the individual theories, the number of attacks from control arguments, etc. Moreover,
it seems that, in all cases, for “reasonably good” opponent profiles, the method leads to a
significant increase in the number of negotiations that terminatewith agreement. In a nutshell,
the results clearly demonstrate that effective negotiation requires providing the “right offer”
to the opponent, which in turn implies good knowledge of the opponent.

6 Related work

In this paper we presented an original argumentation-based negotiation framework that
exploits a recent work proposed in Dimopoulos et al. [19] on control argumentation frame-
works for modeling the uncertainty about the opponent profile and also the acceptance and
bidding strategies of the negotiating agents. Compared to previous works proposed in the
literature on argumentation-based negotiation, this new framework introduces and com-
bines together a number of original ideas, with most notable a qualitative representation
of uncertainty that enables simultaneous consideration of several different profiles, the bid-
ding strategy that allows an agent to use arguments that do not belong to its theory, along
with the notion of control arguments that facilitates persuasion and utilizes arguments that
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Fig. 13 Agreement rate (rounded to 10−2) of negotiations for theories with density = 0.15,
densContrAtt = 0.05, and 4 offers, unc∈ {0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70} with parameters Arg
in red, Att in blue and Both in green, and the aggregate in gray
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Fig. 13 continued

defend against all the possible attacks at once, hence minimizing the number of exchanged
messages.

More specifically, the main difference with works such as Amgoud et al. [4], Amgoud and
Kaci [3], Kakas and Moraitis [31], Dung et al. [22], Parsons et al. [40], Hadidi et al. [27],
Marey et al. [35], Mancini [34] is that in these works the negotiation theories of the agents do
not contain any kind of information on the opponents profiles. Therefore the bidding strategies
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Fig. 14 Agreement rate (rounded to 10−2) for negotiations with theories with density 0.15, parameter
unknown is 0 (Fig. 14a), 0.15 (Fig. 14b), 0.25 (Fig. 14c), 0.35 (Fig. 14d) or 0.50 (Fig. 14e), numContrArg
is 3 (red) or 6 (blue), and densContrAtt is D ∈ {0.03, 0.05, 0.1, 0.2}
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Fig. 14 continued

(by using different policies) are based on the proponents agents own theories incrementally
enhanced with the arguments sent by the opponents during the negotiation.

However, there are some works that integrate some information (in one way or another)
on the opponent agent in the proponent’s theory such as Monteserin and Amandi [36]. More
specifically, in this work there are two types of information concerning the opponent namely
the trust that denotes the level of trust (which takes three values i.e. low, medium and high)
between sender and receiver, and the authority (which also takes three values i.e. subordinated,
peer and superior) that indicates the relation of authority between sender and receiver. Both
parameters are taken into consideration (amongst others) by the argument selection policy
that looks for the most appropriate argument to utter during the negotiation. This policy
is based on a reinforcement learning approach. Our work has many differences with this
work. One important difference concerns for example the bidding strategy. In their case, the
bidding strategy is based on the theory of the proponent but it tries to improve the argument
selection effectiveness by updating the selection policy based on machine learning in order
to adapt it to the different negotiation contexts as the agent gains experience. In our case the
bidding strategy based on the CAFs first uses the proponent theory for finding the best offer
to propose, and then it uses the uncertain opponent profile (represented as a CAF) either for
finding whether there exists an acceptable argument supporting this offer, or for finding a
control configuration that could reinstate a supporting argument which is rejected. Moreover,
in our case the information on the opponent is evolving as the negotiation is progressing and
concerns the whole profile of the opponent, and not only particular features such as trust and
authority (in our case no assumption about the relationship between the negotiating agents
is made).
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Ourwork is also different from thework proposed in Pilotti et al. [41]where the negotiating
agents have also incomplete information on the opponent. More specifically, in this work an
agent has a belief sets about which resources are available for the opponent and which goals it
believes that his opponent has. This knowledge evolves based on the information contained
in the exchanged offers during the negotiation through classical belief revision. This is a
main difference with our work where the beliefs (epistemic arguments) an agent has on his
opponent may concern any kind of knowledge the opponent has on the world (e.g. it prefers
European cars than Japanese cars, safety is an important issue, etc. when considering a car
seller’s beliefs on some customer) and not only its resources and goals. Moreover in our
work an agent disposes also an incomplete set of practical arguments of an opponent’s theory
which gives some information on the goals (or options) of the opponent agent but also on
the arguments that support those goals. This allows the proponent to find (and choose) the
argument that supports its best offer in the opponent’s theory and if it is rejected to send
the appropriate arguments (through a control configuration) for enhancing the opponent’s
theory and defending this argument. This issue as we already explained is on the basis of our
bidding strategy which also differs from the one in Pilotti et al. [41] where the next offer to
propose is based on a function that takes into consideration the history of the negotiation and
an utility function that evaluates the proposal to be sent. The two functions can be combined
in different ways (e.g., using a weighted sum) for representing different agent behaviors.

Finally, otherworks that consider information on the opponents profiles are those proposed
in Bonzon et al. [15] and Hadidi et al. [28]. We consider that our work generalizes these
previous works. More particularly in Bonzon et al. [15] the bidding strategy is similar to the
one of the current paper. However, the opponent modeling approach based on CAF used in
the current paper is more efficient than in the above paper as far as the way this (partial)
knowledge is used for building efficient negotiation strategies. This is due to the fact that the
CAF based representation takes into consideration the uncertainty on the opponents profiles
in a way (i.e. by using different kind of attacks and arguments (on/off)) that allows to generate
simultaneously several possible profiles through the completions and also gives the possibility
to search for an offer that could satisfy all those profiles through the QBF based reasoning
mechanism.

The bidding strategy proposed in Hadidi et al. [28] is different as it focuses on profile,
behavior and time constraints based tactics that can be combined together to implement
complex strategies similar to those studied in game-theoretic negotiation. The two works
(i.e. the current and the above) are using the same formalism proposed in Hadidi et al. [27])
for representing the agents behaviors (both proponents and opponents). More particularly in
Hadidi et al. [28] the profile associates each opponent with a defeat relation, that provides
information about the negotiation behavior of this agent. This informationmay be incomplete
and given before the start of the negotiation, or acquired during the negotiation as it is also
done in our paper through the exchange of arguments and counter-arguments. However, this
opponent profile modeling, corresponds only in the certain part representation of a CAF and
thus it misses all the information that can be assumed on the opponent, through the uncertain
part representation of a CAF and the possible different profiles that can be generated via the
completions. We do believe that the incorporation of the CAF based representation and the
associated reasoning mechanism in Hadidi et al. [28] could improve the performances of the
proposed tactics and concessions strategies.
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7 Conclusion

In this paper, we have presented an original framework for argumentation-based negotiation
using an incomplete representation of the opponent profiles. The originality of our work lies
on several aspects such as the representation method we have adopted for the opponents
modeling based on the control argumentation frameworks (CAFs) that allows us to generate
several possible profiles through the notion of completion, and the associated QBF based
reasoning mechanism that allows us to search for solutions satisfying all those profiles, the
bidding and the acceptance strategies based on the advantages that the representation method
and the reasoning mechanism provide us.

We have presented some interesting theoretical results that show that our approach can
guarantee some very good properties such as optimality of the reached solutions and com-
pleteness and termination of the negotiation dialogue. We have also run a very important
number of experiments (more than 25,000 negotiations) which have proved the added value
of our approach. More particularly, our experimental results have shown that the outcome of
an argumentation-based negotiation dialogue depends on different parameters of the argu-
mentation theories of the agents, but in all cases the use of control arguments seems to have
a positive impact on the number of agreements.

Our future work concerns different issues. First, while the general negotiation approach
proposed in this paper is generic with respect to the underlying extension-based semantics,
our computational method relies on the stable semantics. We plan to study the computation
of control configurations for other semantics. SAT-based counter-example guided abstraction
refinement (CEGAR) seems to be a promising line of research to do that, since it has already
proven to be efficient for extension enforcement [48] or for reasoning with Incomplete AFs
[38], two problems that are closely related to CAFs. CEGAR, as well as QBF encodings,
have been successfully used for reasoning with CAFs [37], thus it is a promising approach
to adapt our negotiation protocol to other semantics.

Another issue is the automated generation of negotiation theories from “controlled” nat-
ural language. This will allow users to build in a easy and rapid way negotiation theories. A
second issue is the experimentation of different approaches for implementing the function
“supporting argument selection” and investigating whether there is a real influence on the
efficiency of the overall process and the negotiation outcome (i.e. number of agreements),
while a third issue will be the use of reinforcement learning techniques for improving the
process of the “real” opponent profile recognition through the exchange of arguments and
control configurations. We also plan to apply our negotiation platform to real world applica-
tions in different domains (e.g. trading, risk management, etc.). Finally we do believe that our
approach for opponent modeling based onCAFs can also be used in other types of dialogues
such as persuasion and deliberation and this also constitutes part of our future work.
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