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Abstract—Nowadays, argumentation is a salient keyword in
artificial intelligence. The use of argumentation techniques is par-
ticularly convenient for thematics such that multiagent systems,
where it allows to describe dialog protocols (using persuasion,
negotiation, . . . ) or on-line discussion analysis; it also allows
to handle queries where a single agent has to reason with
conflicting information (inference in the presence of inconsistency,
inconsistency measure). This very rich framework gives numerous
reasoning tools, thanks to several acceptability semantics and
inference policies.

On the other hand, the progress of SAT solvers in the
recent years, and more generally the progress on Constraint
Programming paradigms, lead to some powerful approaches that
permit tackling theoretically hard problems.

The needs of efficient applications to solve the usual reasoning
tasks in argumentation, together with the capabilities of modern
Constraint Programming solvers, lead us to study the encoding
of usual acceptability semantics into logical settings. We propose
diverse use of Constraint Programming techniques to develop
a software library dedicated to argumentative reasoning. We
present a library which offers the advantages to be generic and
easily adaptable. We finally describe an experimental study of
our approach for a set of semantics and inference tasks, and we
describe the behaviour of our solver during the First International
Competition on Computational Models of Argumentation.

I. INTRODUCTION

An abstract argumentation framework [1] is a directed
graph where the nodes represent abstract entities called
arguments and the edges represent attacks between these
arguments. This simple and elegant setting is used as well
in processes concerning a single agent as in multiagent
scenarios. Concerning single agent cases, the agent may
have to reason from conflicting pieces of information, which
leads her to build an argumentation framework from an
inconsistent knowledge base to infer non-trivial conclusions
[2]. In multiagent settings, argumentation is used to model
dialogs between several agents [3] or to analyze on-line
discussion between social network users [4]. The meaning
of such a graph is determined by an acceptability semantics,
which indicates which properties a set of arguments must
satisfy to be considered as a ”solution” of the problem; such
a set of arguments is then called an extension.

Currently, a strong tendency in the argumentation commu-
nity is the development of software approaches to compute the
different reasoning tasks on argumentation frameworks, with

respect to the usual semantics1. Given a semantics σ and an
argumentation framework F , the most usual requests consist in
computing one (or every) σ-extension of F , and determining
if an argument belongs to at least one (or every) σ-extension
of F . It is well-known that most of the pairs composed of a
semantics and a request lead to a high complexity problem [6],
[7]; thus, these tasks require the development of practically
efficient tools to be computed in a reasonable time. To reach
this goal, we propose in this article the use of Constraint
Programming techniques, since this domain already proposes
some very efficient solutions to solve high complexity combi-
natorial problems. In this paper, we are in particular interested
in propositional logic and some formalisms derived from it.
More precisely, we propose some encodings in conjunctive
normal form (CNF) to solve problems from the first level of
the polynomial hierarchy, and some encodings in the Partial
Max-SAT formalism for higher complexity problems; these
encodings allow us to solve reasoning tasks concerning four
usual semantics and four usual requests. We take advantage
of these encodings to solve these reasoning tasks, using some
state-of-the-art approaches and software, which have proven
their practical efficiency.

We have encoded those approaches for argumentation-
based reasoning in a software library called CoQuiAAS. The
aim of CoQuiAAS is twofold. First, we provide some efficient
algorithms to tackle the main requests for the usual semantics.
Then, our framework is designed to be upgradable: one may
easily add some new parameters (request, semantics), or realize
new algorithm for the tasks which are already implemented.

In this paper, we first present the basic notions concerning
argumentation and the problems we provide reductions to: the
Satisfiability problem – also known as SAT problem, which
consist in deciding whether a propositional formula admits
a model – and the search of Maximal Satisfiable Subsets
(MSS) of constraints in a Partial Max-SAT instance. After this
presentation, we detail the encodings we employed to translate
argumentation problems into SAT and MSS problems. We
present in the section IV the design of the library we provide,
CoQuiAAS. At last, we give some experimental results of our
approaches in section V, and we compare the conception and
the request handled by our library to some existing softwares
which tackle argumentation-based reasoning problems. The
strength of CoQuiAAS is confirmed by the award received
at the ICCMA’15.

1See [5] for more details.



II. BACKGROUND NOTIONS

A. Abstract Argumentation

Several models have been used to formalize argument-
based reasoning. In this paper, we consider Dung’s framework,
which is one of the most well-known settings for argumenta-
tion related problems [1].

Definition 1. An argumentation framework is a directed graph
F = 〈A,R〉 where A is a finite set of abstract entities called
arguments and R ⊆ A × A a binary relation called attack
relation.

The intuitive meaning of the attack relation comes from
the usual proceedings of a debate. If a first argument a1 is
put forward without any contradiction, there is nothing to
prevent an agent from considering a1 as true. But, if someone
puts forwards an argument a2 (which is a priori acceptable)
which attacks a1, then a1 cannot be accepted anymore, unless
it is then defended. This intuitive notion of defense can be
formalized as follows.

Definition 2. Let F = 〈A,R〉 be an argumentation framework
and a1, a2, a3 ∈ A three arguments.

• The argument a1 is attacked by the argument a2 in F
if and only if (a2, a1) ∈ R.

• Then we says that a3 defends a1 against a2 in F if
and only if (a3, a2) ∈ R.

These notions are generalized to attack and defense by a set
of arguments E ⊆ A.

• The argument a1 is attacked by the set of arguments
E in F if and only if ∃ai ∈ E such that (ai, a1) ∈ R.

• The set of arguments E ⊆ A defends a1 against a2

in F if and only if E attacks a2.

For instance, in the argumentation framework described at
Figure 1, the argument a1 attacks the argument a2, and a2

defends himself against this attack. Intuitively, one may want at
most one of these two arguments to be accepted, as considering
one as accepted makes the second one attacked.

a1 a2 a3

a4

Fig. 1. An Example of Argumentation Framework. Each vertex is an
argument, while an edge from ai to aj denotes the fact ai attacks aj .

When reasoning with an argumentation framework, an
agent has to determine which arguments can jointly be ac-
cepted. Several properties may be defined for a set of ar-
guments to be considered as a reasonable “solution” of the
argumentation framework. Among these properties, two in
particular are required by all the usual semantics of the
literature:

• conflict-freeness: E ⊆ A is conflict-free in F if and
only if @ai, aj ∈ E such that (ai, aj) ∈ R;

• admissibility: a conflict-free set E ⊆ A is admissible
if and only if ∀ai ∈ E, E defends ai against all its
attackers.

Conflict-freeness and admissibility are required by each
acceptability semantics proposed by Dung.

Definition 3. Let F = 〈A,R〉 be an argumentation framework.

• A conflict-free set E ⊆ A is a complete extension of
F if and only if E contains each argument that is
defended by E.

• A set E ⊆ A is a preferred extension of F if and only
if E is a maximal element (with respect to ⊆) among
the complete extensions of F .

• A conflict-free set E ⊆ A is a stable extension of F if
and only if E attacks each argument which does not
belong to E.

• A set E ⊆ A is a grounded extension of F if and only
if E is a minimal element (with respect to ⊆) among
the complete extensions of F .

Given a semantics σ, Extσ(F ) denotes the σ-extensions of F .
The previous semantics are commonly denoted, respectively,
CO,PR, ST and GR.

These four acceptability semantics are illustrated in
Section III for the example presented at Figure 1.

Dung proved that for each argumentation framework F ,

• F has exactly one grounded extension;

• F has at least one preferred extension;

• each stable extension of F is a preferred extension
of F ;

• F may admit no stable extension.

Given a semantics σ, several decision problems can be
considered. First, an interesting question is to know if a given
argument a is skeptically or credulously accepted. The status
of a is given by the following definitions:

• F accepts a skeptically with respect to the semantics
σ if and only if ∀ε ∈ Extσ(F ), a ∈ ε;

• F accepts a credulously with respect to the semantics
σ if and only if ∃ε ∈ Extσ(F ) such that a ∈ ε.

Obviously, both these statuses collapse for the grounded
semantics, since an argumentation framework possesses
exactly one grounded extension. The skeptical acceptance
(respectively credulous acceptance) decision problem is
commonly denoted by DC (respectively DS).
Another interesting decision problem is Exist , which is the
problem of determining whether a non-empty extension exists
or not for the given semantics.

The complexity of these decision problems is summed up
in Table I (which gathers results from other publications [6],
[7], [8]).



TABLE I. COMPLEXITY OF INFERENCE PROBLEMS FOR THE USUAL
SEMANTICS. C−c MEANS THAT THE CONSIDERED DECISION PROBLEM IS

COMPLETE FOR THE COMPLEXITY CLASS C.

Semantics GR ST PR CO

DC P NP−c NP−c NP−c
DS P coNP−c ΠP

2 − c P−c
Exist P NP−c NP−c NP−c

Obviously, the complexity Exist is a lower bound of the
complexity of the computation of an extension, while the
complexity of DS is a lower bound of the enumeration of
the extensions.

B. Propositional Logic

The alphabet of propositional logic is the combination of
a set of Boolean variables (generally denoted PS) and a set
of three usual operators: the negation operator ¬ (unary), the
conjunction operator ∧ (binary) and the disjunction operator
∨ (binary), each of them being used to connect formulae
(the variables themselves are atomic formulae). Insofar as a
propositional formula is built in an inductive way (since the
connectives apply on formulae), it can be seen as a rooted,
directed, acyclic graph. Given an assignment of the set of
propositional variables (called interpretation), a propositional
formula is evaluated to true if and only if the root node of
the formula is evaluated to true. In order to determine the
value of this node given by an interpretation, one may compute
the value of each node in reverse topological order; indeed,
the value of the leaves is known – since the leaves are the
nodes which correspond to the variables, which truth value
is given by the interpretation – and the values of internal
nodes is determined by the semantics of the corresponding
connectives: a negation node (¬) has the value true if and
only if its child has the value false, a node ∧ (respectively ∨)
has the value true if and only if both its children (respectively
at least one of its children) have (respectively has) the value
true. When an interpretation leads a formula to be true, we
call it a model of the formula. A formula is said to be
consistent if and only if it admits at least one model. As
a convention, we represent an interpretation by the set of
variables which are true with respect to this interpretation. In
addition to the previous connectives, we define the implication
(⇒, defined by a ⇒ b ≡ ¬a ∨ b) and equivalence (⇔,
defined by a ⇔ b ≡ (a ⇒ b) ∧ (b ⇒ a)) connectives.
When a propositional formula Φ is equivalent to a conjunction
φ1 ∧ · · · ∧ φn, we can represent Φ as a set {φ1, . . . , φn}.

In our study, we deal with encodings in NNF formulae,
meaning some propositional formulae where the negation
operator is only applied on variables (that is, the leaves of
the formula). However, CoQuiAAS uses SAT solvers, which
are only able to tackle propositional formulae in conjunctive
normal form, so a translation step from NNF to CNF is
required between the encodings which exist in the literature
and the ones that we actually use in our software library. It
does not influence the generality of our approaches, since each
propositional formula can be translated in polynomial time into
an equivalent CNF formula.

The CNF formulae correspond to conjunctions of disjunc-
tions of literals (a literal is a propositional variable or its
negation), that is formulae written as ∧ni=1(∨ni

j=1li,j). These

formulae are interesting since a disjunction of literals (called
a clause) allows to represent a constraint in an simple manner;
so, a CNF formula is in fact a set of constraints, and a model
a such a formula is an assignment of a truth value to each
variable such that no constraint of the problems is violated.

Although this formalism is well suited to represent a
problem, searching a model of a CNF formula is theoretically
complex (NP-hard [9]). However, the modern SAT solvers are
able to solve these problems very efficiently, tackling gradually
more and more imposing ones [10]. There exists problems
which do not have any model, meaning that there is no
interpretation such that each constraint is satisfied. In this case,
an interesting question is to determine an interpretation which
maximizes the number of satisfied constraints: this problem is
called Max-SAT [10]. We can generalize this problem, giving
a weight to each constraint – now the question is to maximize
the sum of the weights of the satisfied constraints – this is
the problem Weighted Max-SAT. If some constraints have an
infinite weight (which means that they have to be satisfied),
then the problems are said to be ”partial”: we thus consider
the problems Partial Max-SAT and Weighted Partial Max-SAT.

Discovering an optimal solution of a Max-SAT instance
allows to determine a set of constraints from the initial formula
which is consistent, such that adding any other constraint from
the initial problem makes this new problem inconsistent [11];
a set of constraints which has this property is called a maximal
satisfiable subset (MSS) [12]. Given the set of constraints φ of
a problem and a set of constraints ψ which is a MSS of φ, we
say that ψ = φ \ ψ is a coMSS (or MCS) of the formula [11].
We remark that the optimal solutions of the Max-SAT problem
are only a subset of all the MSS of a formula.

It is interesting to notice that the algorithms developed in
Constraint Programming to solve Max-SAT problems or to
extract a MSS of a formula generally use a classic SAT solver
based on the Minisat incremental interface as a black box [13],
[14], [15] to perform the search using several consistency tests
in a successive way. Concerning MSS extraction through such
a solver, we can for instance mention the algorithms BLS [16]
and CMP [17]. Let us conclude by noticing that there also
exists some softwares dedicated to MSS extraction which use
a Max-SAT solver as a black box [11].

III. LOGICAL ENCODINGS FOR ABSTRACT
ARGUMENTATION

The literature already contains some examples of
encodings which allow the translation of some usual requests
of argumentation into propositional logic [18]. We take
advantage of the encodings proposed by Besnard and
Doutre to propose some approaches allowing to compute
the extensions of an argumentation framework, and also
to determine if an argument is skeptically or credulously
accepted by an argumentation framework. Our encodings
are based on the language of the NNF formulae, defined
with the usual connectives on the set of Boolean variables
VA = {xai | ai ∈ A}. Concerning the set of propositional
variables, xai denotes the fact the argument ai is accepted by
the given argumentation framework. For a matter a readability,
we use in the following ai rather than xai .



Let us first recall the encoding of stable semantics defined
in [18].

Proposition 1. Let F = 〈A,R〉 be an argumentation frame-
work. E ⊆ A is a stable extension of F if and only if E is a
model of the formula below.

ΦFst =
∧
ai∈A

[ai ⇔ (
∧

aj∈A|(aj ,ai)∈R

¬aj)]

In addition to the computation of a single extension, this
encoding also allows us to answer other well-known requests
for the stable semantics, such that the enumeration of the whole
set of extension or the acceptability states of the arguments.

Proposition 2. Let F = 〈A,R〉 be an argumentation frame-
work and ai ∈ A an argument.

• Computing a stable extension of F is equivalent to the
computation of a model of ΦFst.

• Enumerating the stable extensions of F is equivalent
to the enumeration of the models of ΦFst.

• Determining if ai is credulously accepted by F with
respect to the stable semantics is equivalent to deter-
mine the consistency of ΦFst ∧ ai.

• Determining if ai is skeptically accepted by F with
respect to stable semantics is equivalent to determine
if ΦFst ∧ ¬ai is inconsistent.

Example 1. When instantiating ΦFst with the argumentation
framework given at Figure 1, we obtain the formula

(a1 ⇔ ¬a2), (a2 ⇔ ¬a1 ∧ ¬a3 ∧ ¬a4),
(a3 ⇔ ¬a4), (a4 ⇔ ¬a3)

whose the models are {a1, a3} and {a1, a4}, which correspond
to the stable extensions of F .

As we noticed previously, SAT solvers only deal with CNF
formulae. To address this issue, we translate the NNF formula
given above into the CNF formula ΦFst given below.

ΨF
st =

∧
ai∈A

(ai ∨
∨

aj∈A|(aj ,ai)∈R
aj),∧

ai∈A
[

∧
aj∈A|(aj ,ai)∈R

(¬ai ∨ ¬aj)]

Similarly to the stable semantics, Besnard and Doutre
proposed a NNF encoding for the complete semantics.

Proposition 3. Let F = 〈A,R〉 be an argumentation frame-
work. E ⊆ A is a complete extension of F if and only if E is
a model of the formula below.

ΦFco =
∧
ai∈A[ai ⇒ (

∧
aj∈A|(aj ,ai)∈R ¬aj)

∧(ai ⇔ (
∧
aj∈A|(aj ,ai)∈R

∨
ak∈A|(ak,aj)∈R ak))]

Then, as well as the stable semantics, we translate this NNF
formula into a CNF one to be able to use SAT solvers in order
to handle our requests. This time, we add additional variables
Pa defined as equivalent to the disjunction of the attackers of
the argument a. These auxiliary variables allow us to write a
CNF formula ΨF

co, such that there is a bijection between the

models of ΦFco and the models of ΨF
co, in a more elegant way

than a naive translation from NNF into CNF.

ΨF
co =

∧
ai∈A

(¬ai ∨ ¬Pai),∧
ai∈A

(ai ∨
∨

aj∈A|(aj ,ai)∈R
¬Paj ),∧

ai∈A
(
∧
aj∈A|(aj ,ai)∈R(¬ai ∨ Paj )),∧

ai∈A
(¬Pai ∨

∨
aj∈A|(aj ,ai)∈R

aj),∧
ai∈A

[
∧

aj∈A|(aj ,ai)∈R
(Pai ∨ ¬aj)]

Proposition 4. Let F = 〈A,R〉 be an argumentation frame-
work and ai ∈ A an argument.

• Computing a complete extension of F is equivalent to
the computation of a model of ΦFco.

• Enumerating the complete extensions of F is equiva-
lent to the enumeration of the models of ΦFco.

• Determining if ai is credulously accepted by F with
respect to complete semantics is equivalent to deter-
mine the consistency of ΦFco ∧ ai.

• Determining if ai is skeptically accepted by F with re-
spect to complete semantics is equivalent to determine
if ΦFco ∧ ¬ai is inconsistent.

Example 2. When instantiating ΦFco with the argumentation
framework given at Figure 1, we obtain the formula

(a1 ⇒ ¬a2) ∧ (a1 ⇔ a1 ∨ a3 ∨ a4),

(a2 ⇒ ¬a1 ∧ ¬a3 ∧ ¬a4) ∧ (a2 ⇔ a2 ∧ a4 ∧ a3),

(a3 ⇒ ¬a4) ∧ (a3 ⇔ a3),

(a4 ⇒ ¬a3) ∧ (a4 ⇔ a4)

whose the models are the models of ΦFst, together with {a1}
and ∅. Thus, the complete extensions of F are Extco(F ) =
{{a1, a3}, {a1, a4}, {a1}, ∅}.

The notions of minimality and maximality with respect
to ⊆ are not easy to express in propositional logic. So, we
simply define a grounded extension (respectively preferred) as
a minimal (respectively maximal) model with respect to ⊆
of ΦFco. We notice that we do not have to compute minimal
or maximal models to tackle the grounded. Indeed, applying
the unit propagation on ΦFco – at decision level 0, that is the
literals propagated without any assumption – proves enough
to compute the grounded extension.

Proposition 5. Let F = 〈A,R〉 be an argumentation frame-
work and ai ∈ A an argument.

• Computing the (only) grounded extension of F is
equivalent to compute the literals propagated at deci-
sion level 0 in ΦFco.

• Determining if ai is accepted (both credulously and
skeptically) by F with respect to grounded semantics
is equivalent to determine if ai is propagated at
decision level 0 in ΦFco.



Example 3. Applying the unit propagation in ΦFco defined at
Example 2 leads to the empty set: grounded semantics applied
to F gives Extgr(F ) = {∅}.

Computing the preferred extensions of F require a slightly
different encoding. We remark that a maximal model of ΦFco
is a MSS of the weighted formula ΦFpr defined below.

Proposition 6. Let F = 〈A,R〉 be an argumentation frame-
work. E ⊆ A is a preferred extension of F if and only if E is
a MSS of the weighted formula

ΦFpr = {(ΦFco,+∞), (a1, 1), · · · , (an, 1)}

It is not necessary to extract a MSS of a Partial Max-SAT
instance for each request related to the preferred semantics.
Indeed, determining if an argument is credulously accepted
is known to be NP-complete for the preferred semantics. It
is in fact exactly equivalent to determine if it is credulously
accepted for the complete semantics.

Proposition 7. Let F = 〈A,R〉 be an argumentation frame-
work and ai ∈ A an argument.

• Computing a preferred extension of F is equivalent to
the computation of a MSS of ΦFpr.

• Enumerating the preferred extensions of F is equiva-
lent to enumerate the whole set of MSSes of ΦFpr.

• Determining if ai is credulously accepted by F with
respect to the preferred semantics is equivalent to
determine the consistency of ΦFco ∧ ai.

• Determining if ai is skeptically accepted by F with
respect to the preferred semantics is equivalent to
determine if ai belongs to each MSS of ΦFpr.

Example 4. Coming back to the argumentation framework F
given at Figure 1, ΦFpr is the weighted formula

{(ΦFco,+∞), (a1, 1), (a2, 1), (a3, 1), (a4, 1)}

whose the MSS are {a1, a3} and {a1, a4}, which are the
preferred extensions of F .

IV. COQUIAAS : DESIGN OF THE LIBRARY

We have chosen the language C++ to implement
CoQuiAAS to take advantage of the Object Oriented
Programming (OOP) paradigm and its good computational
efficiency. First, the use of OOP allows us to give CoQuiAAS
an elegant conception, which is well suited to maintain and
upgrade the software. Moreover, C++ ensures having high
computing performances, which is not the case of some other
OOP languages. At last, it makes easier the integration of
coMSSExtractor, a C++ underlying tool we used to solve the
problems under consideration.

coMSSExtractor [17] is a software dedicated to extract
MSS/coMSS pairs from a Partial Max-SAT instance. As coMS-
SExtractor integrates the Minisat SAT solver [19] – which is
used as a black box to compute MSSes – the API provided by
coMSSExtractor allows us to use the API provided by Minisat
to handle the requests that require a simple SAT solver. This
way, CoQuiAAS does not need a second solver to compute
the whole set of requests it is attended to deal with.

Fig. 2. CoQuiAAS Logo

The core of our library is the interface Solver, which
contains the high-level methods required to solve the
problems. The method initProblem makes every required
initialization given the input datas. In the case of our
approaches, it initializes the SAT solver or the coMSS
extractor with the logical encoding corresponding to the
argumentation framework, the semantics and the reasoning
task to perform. The initialization step depends on the
concrete realization of the Solver interface returned by the
SolverFactory class, given the command-line parameters
of CoQuiAAS. The method computeProblem is used to
compute the result of the problem, and displaySolution
prints the result into the dedicated output stream using the
format expected by the First International Competition on
Computational Models of Argumentation.

The abstract class SATBasedSolver (respectively
CoMSSBasedSolver) gathers the features and initialization
common to each solver based on a SAT solver (respectively
a coMSS extractor), for instance the method hasAModel
which returns a Boolean indicating if the SAT instance
built from the argumentation problem is consistent or
not. Among the subclasses of SATBasedSolver, we built
DefaultSATBasedSolver and its subclasses, which are
dedicated to use the API of coMSSExtractor to take
advantage of its SAT solver features, inherited from Minisat,
to solve the problems. If the user wants to call any other
SAT solver rather than coMSSExtractor – as soon as the
given semantics is compatible with SAT encodings – a
command-line option leads the SolverFactory to generate
an instance of the class ExternalSATBasedSolver, which also
extends SATBasedSolver. This solver class is initialized with
a command to execute so as to call any external software
able to read a CNF formula written in the DIMACS format,
and to print a solution using the format of SAT solvers
competitions. This class allows to execute the command
provided to CoQuiAAS to perform the computation related
to the problem. This feature enables, for instance, the
comparison between the relative efficiency of several SAT
solvers on the argumentation instances. The same pattern
is present in the coMSS-based part of the library, with the
class CoMSSBasedSolver, which can be instantiated via
the default solver DefaultCoMSSBasedSolver, which uses
coMSSExtractor, or via the class ExternalCoMSSBasedSolver



to use any external software whose input and output correspond
to coMSSExtractor ones, for the pairs request/semantics
corresponding to our coMSS-based approaches.

Our design is flexible enough to make CoQuiAAS evo-
lutive. For instance, it is simple to create a solver based on
the API of another SAT solver than coMSSExtractor: creating
a new class MySolver which extends SATBasedSolver (and
also, the interface, Solver which is the root of each solver) and
implementing the required abstract methods (initProblem,
hasAModel, getModel and addBlockingClause) is
the only work needed. It is also possible to extend directly the
class Solver and to implement its methods initProblem,
computeProblem and displaySolution to create any
kind of new solver. For instance, if we want to develop a
CSP-based approach for argumentation-based reasoning, using
encodings such that those from [20], we just need to add a new
class CSPBasedSolver which implements the interface Solver,
and to reproduce the process which lead to the conception of
the SAT-based solvers, but using this time the API of a CSP
solver (or an external CSP solver).

Once the solver written, we just need to give an
option to the command-line which executes CoQuiAAS,
and to update the method getSolverInstance in the
SolverFactory, which knows the set of the command-line pa-
rameters (stored in the map opt). For instance, the parameter
-solver MySolver can be linked to the use of the class
MySolver dedicated to the new solver. The code given below
is sufficient to do that.

i f ( ! o p t [ ”−s o l v e r ” ] . compare ( ” MySolver ” ) )
re turn new MySolver ( . . . ) ;

In the way we conceived the interface Solver, it is sup-
posed that a solver is dedicated to a single problem and a
single semantics. Thus, it is possible to implement a class
which executes a unique algorithm, suited to a single pair
(problem,semantics). For instance, [21] describes a procedure
which determines if a given argument belongs to the grounded
extension of an argumentation framework. We can consider the
possibility to implement a class GroundedDiscussion which
realizes the interface Solver to solve the skeptical decision
problem under the grounded semantics using this dedicated
algorithm-.

This default behaviour of CoQuiAAS does not prevent the
implementation of classes able to deal with several request
for a given semantics, as soon as the SolverFactory returns
an instance of the right solver for the considered semantics.
Thus, since to the possibility to tackle each problem for a given
semantics through a SAT instance (or a MSS problem), we
have simplified the design of our solvers using a single class
for each semantics, taking advantage of the template design
pattern. For instance, the method computeProblem in the
class CompleteSemanticSolver is implemented as described
at Algorithm 1.

V. EXPERIMENTAL RESULTS

We have lead some experiments on the benchmarks pro-
vided by the organizers of the First International Competition
on Computational Models of Argumentation to test the solvers

Algorithm 1: computeProblem
Data: An argumentation framework F , a problem P , an

argument ai
switch P do

case Give some extension
computeOneExtension(F )

case Enumerate the extensions
computeAllExtensions(F )

case Credulous decision
checkCredulousAcceptance(F ,ai)

case Skeptical decision
checkSkepticalAcceptance(F ,ai)

before the competition. The first set of test cases contains
a family of 20 instances said real, whose the number of
arguments vary between 5000 and 100 000, and 79 random
instances whose the number of arguments vary between 20 and
1000. The second set of test cases contains random instance
whose the number of arguments vary between 200 and 400.
CoQuiAAS has been executed on computers equipped with
3.0 GHz Intel Xeon processors, with 2.0 GB RAM, and the
GNU/Linux distribution CentOS 6.0 (64 bits). The timeout for
each instance was set to 900 seconds.

We have given some priority to the study of practical
efficiency of our approach for enumeration problems, since
the time to enumerate the extensions of an argumentation
framework is an upper bound for the time required by the
other problems. The results are given at Table II. We have
agregated the times by family of instances, and we present here
the average times. The symbol ”−” indicates that the whole
family has reached the timeout ; the other families have been
completely solved. These results correspond to the average
runtime to initialize the problem (read the AF instance and
translate it into a CNF formula) and to solve it.

TABLE II. AVERAGE TIME BY FAMILY TO ENUMERATE THE
EXTENSIONS FOR EACH SEMANTICS. TIME ARE GIVEN ROUNDED TO 10−2

SECONDS. ”−” MEANS COQUIAAS REACHED THE TIMEOUT FOR ALL
INSTANCES IN THE FAMILY.

Family #Inst. Gr St Pr Co
rdm20 25 < 0.01 0.01 < 0.01 < 0.01
rdm50 24 < 0.01 < 0.01 < 0.01 < 0.01
rdm200 24 < 0.01 0.5 5.32 1.57
rdm1000 6 0.25 − − −
real 20 7.25 7.51 8.55 6.88

XXX200 4 < 0.01 0.08 0.04 0.03
XXX300 64 0.02 12.53 34.8 21.36
XXX400 22 0.01 0.12 0.13 0.08

Our experiments show the efficiency of our approach on
the competition instances, except for the instances rdm1000
which have reached the timeout without being solved, for
the stable, complete and preferred semantics. The average
time to solve XXX300 instances with these three semantics
is particularly high compared to the average time required
by the XXX400 instances for the same semantics. However,
this global comparison hides the fact the difference between
these two families are explained by the presence of some
particularly hard instances in the family XXX300. Some of
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them require several dozen of seconds, and even 280 seconds
for the complete semantics and 653 seconds for the preferred
semantics; however, the large majority of the instances are
solved within a few seconds – 41 instances are solved in
strictly less than one second for the complete semantics, and
37 instances for the preferred semantics.

VI. RELATED WORKS

The first experimental results, described in the previous
section, show that CoQuiAAS is able to deal with large
instances. The second interesting question about CoQuiAAS’
efficiency is ”how does it behave compared to the other
existing softwares”.

Indeed, several similar approaches have been developped
in the recent years. ASPARTIX [22], first, proposes an
implementation based on ASP techniques to compute
the extensions of an argumentation framework, for many
semantics. It does not provide directly a possibility to tackle
skeptical and credulous decision. CEGARTIX [23], based on
SAT techniques, focuses on the request whose complexity is
at the second level of the polynomial hierarchy. Though it is
efficient, the current version of this software is far less general
than our library, which allows to tackle every usual request
for every usual semantics, and which can be easily exteded to
work with other semantics. At last, ArgSemSAT [24] is also
a SAT-based software, which allows the enumeration of the
extension for the usual semantics. As far as we know, none of
these softwares has been conceived with an easy integration
of other kind of constraint solvers in mind.
These three pieces of software were the most efficient ones to

tackle argumentation issues before the competition ICCMA
2015.

Recently, the argumentation community has been interested
in developping numerous approaches to solve argumentation
problems. This has been motivated by the organisation of
the ICCMA 2015: eighteen different solvers participated to
the competition (including CoQuiAAS), tackling more or less
tracks among the sixteen pairs (semantics,problem). Some
of them were updated versions of the existing pieces of
software, while many new solvers have been developped for
the competition.
Among these solvers, eight are able to tackle the whole
range of problems (semantics,tasks). After the aggregation
of these eight solvers performances, CoQuiAAS received the
award ”First Place”, thanks to its computational efficiency and
its capacity to deal with each semantics and each inference
problem of the competition. Roughly speaking, CoQuiAAS is
the most efficient software among those which can deal with
any argumentation problem. More details can be found on the
website of the competition [5].
An interesting remark about the results of the competi-
tion is that the three awarded pieces of software are based
on SAT technology (CoQuiAAS, ArgSemSAT and LabSAT-
Solver [25]). This confirms that studying logical encodings
of argumentation semantics is a promising approach to solve
argumentation problems.

VII. CONCLUSION

In this paper, we present our approaches based on SAT
and MSS extraction to solve the most usual inference problems



from an abstract argumentation framework. We put forward the
elegant design of our software library CoQuiAAS, which has
been developed to be easily maintainable and upgradeable. A
first version of our software is available on-line2. We also pre-
sented some preliminary experimentation results showing that
our library seems to be very efficient to solve the benchmarks
proposed by the argumentation community.

Several research tracks are planned as future work. First,
concerning the inference from an abstract argumentation
framework, there exists some semantics which have been pro-
posed after the four ”classical” ones of Dung. Developing some
approaches for these semantics is an interesting challenge, in
particular for the semi-stable [26] and the stage [27] semantics,
for which even the credulous acceptance is at the second level
of the polynomial hierarchy.
We also plan to extend our work to different extensions of
Dung’s framework, such as Weighted Argumentation Frame-
works [28], Preference-based Argumentation Frameworks [29]
or Value-based Argumentation Frameworks [30]. Adding the
possibility to work with labellings [31] rather than extensions
is also a natural future work.
At last, we want to improve the user’s experience. It would be
interesting to have a vizualisation tool to work with argumenta-
tion frameworks, and to see the result of the requests performed
on these frameworks. We plan to develop a Graphical User
Interface, based on CoQuiAAS computing engine, to improve
the quality of the interactions between the user and the system.
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