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Abstract
Understanding the behavior of belief change opera-
tors for fragments of classical logic has received in-
creasing interest over the last years. Results in this
direction are mainly concerned with adapting rep-
resentation theorems. However, fragment-driven
belief change also leads to novel research ques-
tions. In this paper we propose the concept of belief
distribution, which can be understood as the reverse
task of merging. More specifically, we are inter-
ested in the following question: given an arbitrary
knowledge base K and some merging operator ∆,
can we find a profile E and a constraint µ, both
from a given fragment of classical logic, such that
∆µ(E) yields a result equivalent to K? In other
words, we are interested in seeing if K can be dis-
tributed into knowledge bases of simpler structure,
such that the task of merging allows for a recon-
struction of the original knowledge. Our initial re-
sults show that merging based on drastic distance
allows for an easy distribution of knowledge, while
the power of distribution for operators based on
Hamming distance relies heavily on the fragment
of choice.

1 Introduction
Belief change and belief merging have been topics of interest
in Artificial Intelligence for three decades [Alchourrón et al.,
1985; Katsuno and Mendelzon, 1991; Konieczny and Pino
Pérez, 2002]. However, the restriction of such operators to
specific fragments of propositional logic has received increas-
ing attention only in the last years [Delgrande et al., 2013;
Creignou et al., 2014a; 2014b; Zhuang and Pagnucco, 2012;
Zhuang et al., 2013; Zhuang and Pagnucco, 2014; Delgrande
and Peppas, 2015; Haret et al., 2015]. Mostly, the question
tackled in these works is “How should rationality postulates
and change operators be adapted to ensure that the result of
belief change belongs to a given fragment?”. Surprisingly,
the question concerning the extent to which the result of a
belief change operation can deviate from the fragment under
consideration has been neglected so far. In order to tackle this
question, we focus here on a certain form of reverse merging.
The question is, given an arbitrary knowledge base K and

some IC-merging (i.e. merging with integrity constraint, see
[Konieczny and Pino Pérez, 2002]) operator ∆, can we find
a profile E, i.e. a tuple of knowledge bases, and a constraint
µ, both from a given fragment of classical logic, such that
∆µ(E) yields a result equivalent to K? In other words, we
are interested in seeing if K can be distributed into knowl-
edge bases of simpler structure, such that the task of merging
allows for a reconstruction of the original knowledge. We call
this operation knowledge distribution.

Studying the concept of knowledge distribution can be
motivated from different points of view. First, consider a
scenario where the storage devices have limited expressibil-
ity, for instance, databases or logic programs. Our analysis
will show which merging operators are required to recon-
struct arbitrary knowledge stored in such a set of limited de-
vices. Second, distribution can also be understood as a tool
to hide information; only users who know the used merging
operator (which thus acts as an encryption key) are able to
faithfully retrieve the distributed knowledge. Given the high
complexity of belief change (even for revision in “simple”
fragments like Horn and 2CNF [Eiter and Gottlob, 1992;
Liberatore and Schaerf, 2001; Creignou et al., 2013]), brute-
force attack to guess the merging operator is unthinkable. Fi-
nally, from the theoretical perspective our results shed light
on the power of different merging operators when applied
to profiles from certain fragments. In particular, our re-
sults show that merging 1CNF formulas via the Hamming-
distance based operator ∆H,Σ does not need additional care,
since the result is guaranteed to stay in the fragment.

Related Work. Previous work on merging in fragments of
propositional logic proposed an adaptation of existing belief
merging operators to ensure that the result of merging belongs
to a given fragment [Creignou et al., 2014b], or modified the
rationality postulates in order to function in the Horn frag-
ment [Haret et al., 2015]. Our approach is different, since we
do not require that the result of merging stays in a given frag-
ment. On the contrary, we want to decompose arbitrary bases
into a fragment-profile. Recent work by Liberatore has also
addressed a form of meta-reasoning over belief change oper-
ators. In [Liberatore, 2015a], the input is a profile of knowl-
edge bases with the expected result of merging R, and the
aim is to determine the reliability of the bases (for instance,
represented by weights) which allow the obtaining of R. In



another paper, Liberatore [2015b] identifies, given a sequence
of belief revisions and their results, the initial pre-order which
characterizes the revision operator. Finally, even if our ap-
proach may seem related to Knowledge Compilation (KC)
[Darwiche and Marquis, 2002; Fargier and Marquis, 2014;
Marquis, 2015], both methods are in fact conceptually differ-
ent. KC aims at modifying a knowledge baseK into a knowl-
edge baseK ′ such that the most important queries for a given
application (consistency checking, clausal entailment, model
counting, . . . ) are simpler to solve with K ′. Here, we are in-
terested in the extent to which it is possible to equivalently
represent an arbitrary knowledge base by simpler fragments
when using merging as a recovery operation.

Main Contributions. We formally introduce the concept
of knowledge distributability, as well as a restricted version
of it where the profile is limited to a single knowledge base
(simplifiability). We show that for drastic distance arbitrary
knowledge can be distributed into bases restricted to mostly
any kind of fragment, while simplifiability is limited to trivial
cases. On the other hand, for Hamming-distance based merg-
ing the picture is more opaque. We show that for 1CNF ,
distributability w.r.t. ∆H,Σ is limited to trivial cases, while
slightly more can be done with ∆H,GMin and ∆H,GMax . For
2CNF we show that arbitrary knowledge can be distributed
and even be simplified. Finally, we discuss the Horn frag-
ment for which the results for ∆H,Σ, ∆H,GMin and ∆H,GMax

are situated in between the two former fragments.

2 Background
Fragments of Propositional Logic. We consider L as the
language of propositional logic over some fixed alphabet U
of propositional atoms. We use standard connectives ∨, ∧,
¬, and constants >, ⊥. A clause is a disjunction of literals.
A clause is called Horn if at most one of its literals is pos-
itive. An interpretation is a set of atoms (those set to true).
The set of all interpretations is 2U . Models of a formula ϕ
are denoted by Mod(ϕ). A knowledge base (KB) is a fi-
nite set of formulas and we identify models of a KB K via
Mod(K) =

⋂
ϕ∈K Mod(ϕ). A profile is a finite non-empty

tuple of KBs. Two formulae ϕ1, ϕ2 (resp. KBs K1,K2) are
equivalent, denoted ϕ1 ≡ ϕ2 (resp. K1 ≡ K2), when they
have the same set of models.

We use a rather general and abstract notion of fragments.

Definition 1. A mapping Cl : 22U −→ 22U
is called closure-

operator if it satisfies the following for anyM,N ⊆ 2U :

• IfM⊆ N , then Cl(M) ⊆ Cl(N )

• If |M| = 1, then Cl(M) =M
• Cl(∅) = ∅.

Definition 2. L′ ⊆ L is called a fragment if it is closed under
conjunction (i.e., ϕ ∧ ψ ∈ L′ for any ϕ,ψ ∈ L′), and there
exists an associated closure-operator Cl such that (1) for all
ψ ∈ L′, Mod(ψ) = Cl(Mod(ψ)) and (2) for all M ⊆ 2U

there is a ψ ∈ L′ with Mod(ψ) = Cl(M). We often denote
the closure-operator Cl associated to a fragment L′ as ClL′ .

Definition 3. For a fragment L′, we call a finite set K ⊆ L′
an L′-knowledge base. An L′-profile is a profile over L′-
knowledge bases. A KB K ⊆ L is called L′-expressible if
there exists an L′-KB K ′, such that K ≡ K ′.

Many well known fragments of propositional logic are in-
deed captured by our notion. For the Horn-fragment LHorn ,
i.e. the set of all conjunctions of Horn clauses over U , take
the operator ClLHorn defined as the fixed point of the function

Cl1LHorn
(M) = {ω1 ∩ ω2 | ω1, ω2 ∈M}.

The fragment L2CNF which is restricted to formulas over
clauses of length at most 2 is linked to the operator ClL2CNF

defined as the fixed point of the function Cl1L2CNF
given by

Cl1L2CNF
(M) = {maj3(ω1, ω2, ω3) | ω1, ω2, ω3 ∈M}.

Here, we use the ternary majority function maj3(ω1, ω2, ω3)
which yields an interpretation containing those atoms which
are true in at least two out of ω1, ω2, ω3. Finally, we are also
interested in the L1CNF fragment which is just composed of
conjunctions of literals; its associated operator ClL1CNF is de-
fined as the fixed point of the function

Cl1L1CNF
(M) = {ω1 ∩ ω2, ω1 ∪ ω2 | ω1, ω2 ∈M} ∪

{ω3 | ω1 ⊆ ω3 ⊆ ω2;ω1, ω2 ∈M}.

Note that full classical logic is given via the identity closure
operator ClL(M) =M.

Merging Operators. We focus on IC-merging, where a
profile is mapped into a KB, such that the result satisfies
some integrity constraint. Postulates for IC-merging have
been stated in [Konieczny and Pino Pérez, 2002]. We recall
a specific family of IC-merging operators, based on distances
between interpretations, see also [Konieczny et al., 2004].

Definition 4. A distance between interpretations is a map-
ping d from two interpretations to a non-negative real num-
ber, such that for all ω1, ω2, ω3 ⊆ U , (1) d(ω1, ω2) = 0 iff
ω1 = ω2; (2) d(ω1, ω2) = d(ω2, ω1); and (3) d(ω1, ω2) +
d(ω2, ω3) ≥ d(ω1, ω3). We will use two specific distances:

drastic distance D(ω1, ω2) = 1 if ω1 = ω2, 0 otherwise;

Hamming distance H(ω1, ω2) = |(ω1 \ ω2) ∪ (ω2 \ ω1)|.

We overload the previous notations to define the dis-
tance between an interpretation ω and a KB K: if d
is a distance between interpretations, then d(ω,K) =
minω′∈Mod(K) d(ω, ω′). Next, an aggregation function must
be used to evaluate the distance between an interpretation and
a profile.

Definition 5. An aggregation function ⊗ associates a non-
negative number to every finite tuple of non-negative num-
bers, such that (1) if x ≤ y, then ⊗(x1, . . . , x, . . . , xn) ≤
⊗(x1, . . . , y, . . . , xn); (2) ⊗(x1, . . . , xn) = 0 iff x1 =
· · · = xn = 0; (3) for every non-negative number x,
⊗(x) = x. As aggregation functions, we will consider the



sum Σ, GMax and GMin1, defined as follows. Given a
profile (K1, . . . ,Kn), let Vω = (dω1 , . . . , d

ω
n) be the vector

of distances such that dωi = d(ω,Ki). GMax (dω1 , . . . , d
ω
n)

(resp. GMin(dω1 , . . . , d
ω
n)) is defined by ordering Vω in de-

creasing (resp. increasing) order. Given two interpretations
ω1, ω2, GMax (dω1

1 , . . . , dω1
n ) ≤ GMax (dω2

1 , . . . , dω2
n ) (resp.

GMin(dω1
1 , . . . , dω1

n ) ≤ GMin(dω2
1 , . . . , dω2

n )) is defined by
comparing them w.r.t. the lexicographic ordering.

Finally, let d be a distance, ω an interpretation and
E = (K1, . . . ,Kn) a profile. Then, d⊗(ω,E) =
⊗(d(ω,K1), . . . , d(ω,Kn)). If there is no ambiguity about
the function ⊗, we write d(ω,E) for d⊗(ω,E).
Definition 6. For any distance d between interpretations, and
any aggregation function ⊗, the merging operator ∆d,⊗ is a
mapping from a profile E and a formula µ to a KB, such that
Mod(∆d,⊗

µ (E)) = min(Mod(µ),≤d,⊗E ), with ω1 ≤d,⊗E ω2

iff d⊗(ω1, E) ≤ d⊗(ω2, E).
When we consider a profile containing a single knowledge

base K, all aggregation functions are equivalent; we write
∆d
µ(K) instead of ∆d,⊗

µ ((K)) for readability. For drastic dis-
tance, GMin , GMax , and Σ are equivalent for arbitrary pro-
files. Thus, whenever we show results for ∆D,Σ, these carry
over to ∆D,GMin and ∆D,GMax .

3 Main Concepts and General Results
We now give the central definition for a knowledge base be-
ing distributable into a profile from a certain fragment with
respect to a given merging operator.
Definition 7. Let ∆ be a merging operator, K ⊆ L be an ar-
bitrary KB, andL′ be a fragment. K is calledL′-distributable
w.r.t. ∆ if there exists an L′-profile E and a formula µ ∈ L′,
such that ∆µ(E) ≡ K.
Example 1. Let U = {a, b} and consider K = {a ∨ b}
which we want to check for LHorn -distributability w.r.t. op-
erator ∆H,Σ. We have Mod(K) = {{a}, {b}, {a, b}}, thus
K is not LHorn -expressible (note that ClLHorn (Mod(K)) =
{∅, {a}, {b}, {a, b}} 6= Mod(K)), otherwise K would be
distributable in a simple way (see Proposition 1 below).

Take the LHorn -profile E = (K1,K2) with K1 = {a∧ b},
K2 = {¬a ∨ ¬b}, together with the empty constraint µ = >.
We have Mod(K1) = {{a, b}}, Mod(K2) = {{a}, {b}, ∅}.
In the following matrix, each line corresponds to the distance
between a model of µ and a KB from the profile E, or be-
tween a model of µ and the profile using the Σ-aggregation
over the distances to the single KBs.

K1 K2 Σ
{a, b} 0 1 1
{a} 1 0 1
{b} 1 0 1
∅ 2 0 2

1GMax and GMin are known as leximax and leximin respec-
tively. These functions return a vector of numbers, not a single num-
ber. However, GMax (resp. GMin) can be associated with an ag-
gregation function as defined in Def. 5 which yields the same vector
ordering than GMax (resp. GMin). We do a slight abuse by us-
ing GMax and GMin as the names of aggregation functions. See
[Konieczny et al., 2002].

We observe that Mod(∆H,Σ
µ (E)) = {{a}, {b}, {a, b}}, thus

∆H,Σ
µ (E) ≡ K as desired. It is easily checked that also other

aggregations work: ∆H,GMax
µ (E) ≡ ∆H,GMin

µ (E) ≡ K. �

Next, we recall that IC-merging of a single KB yields revi-
sion. Thus, the concept we introduce next is also of interest,
as it represents a certain form of reverse revision.
Definition 8. Let ∆ be a merging operator, K ⊆ L an ar-
bitrary KB, and L′ a fragment. K is called L′-simplifiable
w.r.t. ∆ if there exists an L′-KB K ′ and µ ∈ L′, such that
∆µ(K ′) ≡ K.

As we will see later, the KB K from Example 1 cannot be
LHorn -simplified w.r.t. ∆H ; in other words, we need here at
least two KBs to “express” K. However, it is rather straight-
forward that any L′-expressible KB can be L′-simplified.
Proposition 1. For every fragment L′ and every KB K,
it holds that K is L′-simplifiable (and thus also L′-
distributable) w.r.t. ∆, whenever K is L′-expressible.

Proof. Let K ′ be an L′-KB equivalent to K, and let µ =
(
∧
ϕ∈K′ ϕ). Thus, µ ∈ L′ by definition of fragments and it is

easily verified that ∆µ(K ′) ≡ K.

Next, we show that in order to determine whether a KB
K is L′-distributable, it is sufficient to consider constraints µ
such that Mod(µ) = ClL′(Mod(K)).
Proposition 2. Let K ∈ L be a KB, L′ be a fragment, E an
L′-profile and µ ∈ L′. Then ∆µ(E) ≡ K implies ∆µ′(E) ≡
K for any µ′ such that Mod(µ′) = ClL′(Mod(K)).

Proof. Let ∆ = ∆d,⊗. By Definition 6, Mod(K) =

min(Mod(µ),≤d,⊗E ), hence Mod(K) ⊆ Mod(µ). Moreover,
µ is L′-closed, so ClL′(Mod(K)) = Mod(µ′) ⊆ Mod(µ).
We get Mod(K) ⊆ Mod(µ′) ⊆ Mod(µ). Thus, Mod(K) =

min(Mod(µ′),≤d,⊗E ), i.e. ∆µ′(E) ≡ K.

Next, we give two positive results for distributing knowl-
edge in any fragment. The key idea is to use KBs in the profile
which have exactly one model (our notion of fragment guar-
antees existence of such KBs). The first result is independent
of the distance notion but requires GMin as the aggregation
function. The second result is for drastic distance and thus
works for any of the aggregation functions we consider.
Theorem 3. Let d be a distance and L′ be a fragment. Then
for every KB K, such that for all distinct ω1, ω2 ∈ Mod(K),
d(ω1, ω2) = e for some e > 0, it holds that K is L′-
distributable w.r.t. ∆d,GMin .

Proof. Build the L′-profile E such that for each ω ∈
Mod(K), there is a KB with ω as its only model. Thus
all models of K get a GMin-vector (0, e, e, e, e, . . .).
All interpretations from ClL′(Mod(K)) \ Mod(K) get
a vector (f, g, . . .) with f > 0. Hence, we have
min(Mod(µ),≤d,GMin

E ) = Mod(K) using µ ∈ L′ with
Mod(µ) = ClL′(Mod(K)).

Theorem 4. For every fragment L′ and every knowledge
base K, it holds that K is L′-distributable w.r.t. ∆D,⊕, for
⊕ ∈ {Σ,GMin,GMax}.



The proof is similar to the one of Theorem 3 and thus omit-
ted. For simplifiability w.r.t. drastic distance based operators,
Proposition 1 cannot be improved, as we show next.

Theorem 5. For every fragment L′ and every KB K, K is
L′-simplifiable w.r.t. ∆D iff K is L′-expressible.

Proof. The if-direction is by Proposition 1. For the other di-
rection, suppose K is not L′-expressible. We show that for
anyL′-KBK ′, ∆D

µ (K ′) 6≡ K with µ = ClL′(K). By Propo-
sition 2 the result then follows. Now suppose there exists an
L′-KB K ′ such that ∆D

µ (K ′) ≡ K. First observe that since
K is not L′-expressible, Mod(µ) ⊃ Mod(K). Since we are
working with drastic distance, in order to promote models of
K, we also need them in K ′, hence Mod(K ′) ⊇ Mod(K)
and since K ′ is from L′ we have Mod(K ′) ⊇ ClL′(K) =
Mod(µ). Thus there exists ω ∈ ClL′(Mod(K)) \Mod(K)
having distance 0 to K ′, and thus ω ∈ ∆D

µ (K ′). Since ω /∈
Mod(K), this yields a contradiction to ∆D

µ (K ′) ≡ K.

4 Hamming Distance and Specific Fragments
We first consider the simplest fragment under consideration,
namely conjunction of literals. As it turns out, (non-trivial)
distributability for this fragment w.r.t. ∆H,Σ is not achiev-
able. We then see that more general fragments allow for non-
trivial distributions. In particular, we show that every KB is
distributable (and even simplifiable) in the 2CNF case, and
we finally give a few observations for LHorn .

4.1 The 1CNF Fragment
The following technical result is important to prove the main
result in this section.

Lemma 6. For any L1CNF -profile E = (K1, . . . ,Kn) and
interpretations ω1, ω2, it holds that:

H(ω1, E) +H(ω2, E) = H(ω1 ∩ ω2, E) +H(ω1 ∪ ω2, E).

Proof. It suffices to show that for each Ki in profile E,
H(ω1,Ki)+H(ω2,Ki) = H(ω1∩ω2,Ki)+H(ω1∪ω2,Ki).
Indeed, summing up these equalities over all Ki ∈ E, we get

ΣKi∈EH(ω1,Ki) + ΣKi∈EH(ω2,Ki) =

ΣKi∈EH(ω1 ∩ ω2,Ki) + ΣKi∈EH(ω1 ∪ ω2,Ki).

Since H(ω,E) = ΣKi∈EH(ω,Ki), for any interpretation ω,
our conclusion then follows immediately.

Thus, take ω′1, ω
′
2 to be two interpretations that are closest

to ω1 and ω2, respectively, among the models of Mod(Ki).
In other words, H(ω1, ω

′
1) = minω∈Mod(Ki)H(ω1, ω) and

H(ω2, ω
′
2) = minω∈Mod(Ki)H(ω2, ω). By induction on the

number of propositional atoms inL, we can show that ω′1∩ω′2
and ω′1 ∪ ω′2 are closest in Mod(Ki) to ω1 ∩ ω2 and ω1 ∪ ω2,
respectively. Thus, we have that H(ω1,Ki) = H(ω1, ω

′
1),

H(ω2,Ki) = H(ω2, ω
′
2),H(ω1∩ω2,Ki) = H(ω1∩ω2, ω

′
1∩

ω′2), H(ω1 ∪ ω2,Ki) = H(ω1 ∪ ω2, ω
′
1 ∪ ω′2), and our

problem reduces to showing that H(ω1, ω
′
1) + H(ω2, ω

′
2) =

H(ω1∩ω2, ω
′
1∩ω′2)+H(ω1∪ω2, ω

′
1∪ω′2). By using induc-

tion on the number of propositional atoms in L again, we can
show that this equality holds. The argument runs as follows:

in the base case, when the alphabet consists of just one propo-
sitional atom, the equality is shown to be true by checking all
the cases. For the inductive step we assume the claim holds
for an alphabet of size n and show that it also holds for an al-
phabet of size n+1. Concretely, we analyze the way in which
the Hamming distances between interpretations change when
we add a propositional atom to the alphabet. An analysis of
all the possible cases shows that the equality holds.

Next we observe certain patterns of interpretations that in-
dicate whether a KB is L1CNF -expressible or not.

Definition 9. If K is a knowledge base, then a pair of inter-
pretations ω1 and ω2 are called critical with respect to K if
ω1 * ω2 and ω2 * ω1, and one of the following cases holds:

1. ω1, ω2 ∈ Mod(K) and ω1 ∩ ω2, ω1 ∪ ω2 /∈ Mod(K),

2. ω1, ω2, ω1 ∩ ω2 ∈ Mod(K) and ω1 ∪ ω2 /∈ Mod(K),

3. ω1, ω2, ω1 ∪ ω2 ∈ Mod(K) and ω1 ∩ ω2 /∈ Mod(K),

4. ω1 ∩ω2, ω1 ∪ω2 ∈ Mod(K) and ω1, ω2 /∈ Mod(K), or

5. ω1, ω1 ∩ ω2, ω1 ∪ ω2 ∈ Mod(K) and ω2 /∈ Mod(K).

Lemma 7. If a KB K is not L1CNF -expressible, then there
exist ω1, ω2 ∈ ClL1CNF (K) being critical with respect to K.

Proof. The fact thatK is not L1CNF -expressible implies that
either: (i) K is not closed under intersection or union, or (ii)
there are w1, w2, w3 ∈ ClL1CNF (K) such that w1 ⊆ w3 ⊆
w2, and w1, w2 ∈ Mod(K), w3 /∈ Mod(K). Case (i) implies
that there exist w1, w2 ∈ Mod(K) such that one of Cases 1-3
from Definition 9 holds. If we are in Case (ii), then consider
the interpretation w4 = (w2\w3) ∪ w1. Clearly, w1 ⊆ w4 ⊆
w2, hence w4 ∈ ClL1CNF

(K). Also, w3 ∩ w4 = w1 and
w3 ∪ w4 = w2. There are two sub-cases to consider here.
If w4 /∈ Mod(K), then we are in Case 4 of Definition 9. If
w4 ∈ Mod(K), then we are in Case 5 of Definition 9.

We can now state the central result of this section.

Theorem 8. A KB K is L1CNF -distributable with respect to
∆H,Σ if and only if K is L1CNF -expressible.

Proof. If part is by Proposition 1. Only if part: let K be a
KB that is not L1CNF -expressible. We will show that it is not
L1CNF -distributable w.r.t. ∆H,Σ. Suppose, on the contrary,
that K is L1CNF -distributable. Then there exists an L1CNF

profile E = (K1, . . . ,Kn) such that ∆H,Σ
µ (E) ≡ K, where

Mod(µ) = ClL1CNF
(Mod(K)) (cf. Proposition 2).

By Lemma 7, there exist interpretations ω1, ω2 ∈ Mod(µ)
that are critical with respect to K. By Lemma 6, we have

H(ω1, E)+H(ω2, E)=H(ω1∩ω2, E)+H(ω1∪ω2, E). (1)

Let us now do a case analysis depending on the type of critical
pair we are dealing with. If we are in Case 1 of Definition 9,
then it needs to be the case that H(ω1, E) = H(ω2, E) = m,
H(ω1 ∩ ω2, E) = m + k1 and H(ω1 ∪ ω2, E) = m + k2,
for some integers m ≥ 0 and k1, k2 > 0. Plugging these
numbers into Equality (1), we get that 2m = 2m + k1 + k2

and k1 + k2 = 0. Since k1, k2 > 0, we have arrived at a
contradiction. If we are in Case 2, then it needs to be the case
that H(ω1 ∩ ω2, E) = H(ω1 ∪ ω2, E) = m, H(ω1, E) =



m+k1 andH(ω2, E) = m+k2, for some integersm ≥ 0 and
k1, k2 > 0. Plugging these numbers into Equality (1) again,
we get a contradiction along the same lines as in Case 1. If we
are in Case 3, then it needs to hold that H(ω1, E) = H(ω1 ∩
ω2, E) = H(ω1 ∪ ω2, E) = m, H(ω2, E) = m + k, for
some integers m ≥ 0 and k > 0. Plugging these numbers
into Equality (1) gives us 2m + k = 2m and hence k = 0.
Since k > 0, we have arrived at a contradiction. Cases 4
and 5 are entirely similar.

In other words, for any L1CNF -profile and µ ∈ 1CNF ,
∆H,Σ
µ is guaranteed to be L1CNF -expressible as well. As

we have already shown in Theorem 3, this is not necessarily
the case if we replace Σ by GMin . The following example
shows how to obtain a similar behavior for GMax ; we then
generalize this idea below.

Example 2. Let U = {a, b} and K = {a ∨ b,¬a ∨ ¬b}. We
have Mod(K) = {{a}, {b}}. K is not L1CNF -expressible,
since ClL1CNF (Mod(K)) = 2U . Let KS be the L1CNF -
KB with a single model S for any S ⊆ U and let us
have a look at the following distance matrix for µ with
Mod(µ) = ClL1CNF (Mod(K)), E = (K{a},K{b}), and
E′ = (K∅,K{a,b}).

K∅ K{a} K{b} K{a,b} HGMin(E) HGMax (E′)
∅ 0 1 1 2 (1, 1) (2, 0)
{a} 1 0 2 1 (0, 2) (1, 1)
{b} 1 2 0 1 (0, 2) (1, 1)
{a, b} 2 1 1 0 (1, 1) (2, 0)

The lexicographic order of the involved vectors is (0, 2) <
(1, 1) < (2, 0). We thus get that ∆H,GMin

µ (E) ≡ K (see also
Theorem 3), and on the other hand, ∆H,GMax

µ (E′) ≡ K. �

Theorem 9. Any KB K such that Mod(K) = {ω, ω′} is
L1CNF -distributable with respect to ∆H,GMax .

Proof. If K is L1CNF -expressible, then the conclusion fol-
lows from Proposition 1. If K is not L1CNF -expressible,
then consider the set ClL1CNF (Mod(K))\Mod(K) =
{ω1, . . . , ωn}. We define the profile E = (K1, . . . ,Kn),
where Mod(Ki) = {U\ωi}, for i ∈ {1, . . . , n}.
We show that ∆H,GMax

µ (E) ≡ K, where Mod(µ) =
ClL1CNF (Mod(K)). First, we have that H(ωi,U\ωi) = |U|,
which implies that HGMax (ωi, E) = GMax (|U|, . . . ), for
any i ∈ {1, . . . , n}. Furthermore, since H(ω,U\ωi) < |U|
and H(ω′,U\ωi) < |U|, for any i ∈ {1, . . . , n}, it fol-
lows that ω <H,GMax

E ωi and ω′ <H,GMax
E ωi. Next,

we show that HGMax (ω,E) = HGMax (ω′, E). Consider
the vectors V = (H(ω, ω1), . . . ,H(ω, ωn)) and V ′ =
(H(ω′, ω1), . . . ,H(ω′, ωn)). Our claim is that GMax (V ) =
GMax (V ′). To see why, notice that the elements in
ClL1CNF (Mod(K)) form a complete subset lattice with ω∪ω′
and ω ∩ ω′ as the top and bottom elements, respectively. Let
us write H(ω, ω′) = m. This lattice has 2m elements, and
the maximum distance of two elements in it is m. Thus, the
vector V is the vector of distances between ω and every other
element in this lattice, except itself and ω′. A similar consid-
eration holds for V ′. Hence V and V ′ are vectors of length

2m−2 whose elements are m− 1,m− 2, . . . , 1. We can actu-
ally count how many times each number appears in V and V ′.
The number of interpretations in the lattice that are at distance
of 1 from ω (and ω′) is

(
1
m

)
: thus,m−1 appears

(
1
m

)
times in

V (and V ′). The number of interpretations that are at distance
2 from ω (and ω′) is

(
2
m

)
, thus m − 2 appears

(
2
m

)
times in

V and V ′. We iterate this argument for every distance, up to
1. It is then easy to see that, based on these considerations,
V and V ′ are equal when sorted in descending order. Our
conclusion follows from this.

4.2 The 2CNF Fragment
We show that every knowledge base K can be distributed in
the fragment L2CNF . Even a single L2CNF knowledge base
is enough to represent K. Before giving the general result,
we sketch the idea via an example.
Example 3. Let K be a KB with Mod(K) =
{{a, b}, {b, c, e}, {a, c, d}}. We observe that K is not
L2CNF -expressible since ClL2CNF (Mod(K)) = Mod(K) ∪
{a, b, c}. However, we can give an L2CNF -KB K ′ using
three new atoms x, y, z to penalize the undesired interpreta-
tion {a, b, c} such that ∆H

µ (K ′) ≡ K, with µ ∈ L2CNF of
the form Mod(µ) = ClL2CNF (Mod(K)). To this end, assume
K ′ with Mod(K ′) = {ω1, ω2, ω3, ω4} of the form

ω1 = {a, b, x, y}, ω2 = {b, c, e, x, z},
ω3 = {a, c, d, y, z}, ω4 = {a, b, c, x, y, z}.

One can verify that ClL2CNF
(Mod(K ′)) = Mod(K ′). Thus,

K ′ can be picked from L2CNF . We use µ such that
Mod(µ) = ClL2CNF

(Mod(K)) and get distances

ω1 ω2 ω3 ω4 min
{a, b} 2 5 5 4 2
{b, c, e} 4 2 6 4 2
{a, c, d} 4 6 2 4 2
{a, b, c} 3 4 4 3 3

Here, each line gives the distance between a model of µ
and a model of K ′ (ωi columns), or between a model of
µ and K ′ (min column). The key observation is that pairs
from x, y, z as used in ω1, ω2, ω3 give minimal distances
2 while the remaining interpretation ω4, which corresponds
to the closure of K, contains all three new atoms (since
maj3({x, y}, {x, z}, {y, z}) = {x, y, z}). �

Theorem 10. Any KB K is L2CNF -simplifiable w.r.t. ∆H
µ .

Proof. We have to show that for any KB K, there exists
an L2CNF -KB K ′ and a formula µ ∈ L2CNF such that
∆H
µ (K ′) ≡ K. If K is L2CNF -expressible, the result is

due to Proposition 1. So suppose that K is not L2CNF -
expressible and let Mod(K) = {ω1, . . . , ωn}. Consider a set
of new atomsA = {a1, . . . , an}, and for each ωi ∈ Mod(K),
let ω′i = ωi ∪ A \ {ai}. We define the L2CNF -KB K ′

and µ ∈ L2CNF such that Mod(K ′) = ClL2CNF ({ω′i |
ωi ∈ Mod(K)}) and Mod(µ) = ClL2CNF

(Mod(K)). Let
Ω′ = {ω′i | ωi ∈ Mod(K)}. We first show that for each ω ∈
Mod(K ′) \ Ω′, A ⊆ ω. Indeed, for any triple ωj , ωk, ωl ∈
Mod(K), such that ωjkl = maj3(ωj , ωk, ωl) /∈ Mod(K), we



observe that maj3(ω′j , ω
′
k, ω

′
l) = ωjkl ∪maj3(A \ {aj}, A \

{ak}, A\{al}) = ωjkl∪A. Thus, for each ω ∈ Cl1L2CNF
(Ω′)\

Ω′, A ⊆ ω. Recall that Mod(K ′) = ClL2CNF
(Ω′). It

follows quite easily that each further interpretation ω ∈
ClL2CNF

(Ω′) \ (Cl1L2CNF
(Ω′) ∪ Ω′), also satisfies A ⊆ ω.

This shows that each model of K ′ contains at least n − 1
atoms from A. Thus, for every model ωi ∈ K, H(ωi,K

′) =
H(ωi, ω

′
i) = n − 1. It remains to show that for each ω ∈

Mod(µ) \Mod(K), H(ω,K ′) ≥ n. First, let ω′ ∈ Ω′. Since
ω /∈ Mod(K), ω′ \ A 6= ω and since ω′ contains n − 1
elements from A, we have H(ω, ω′) ≥ n. As shown above
all other interpretations ω′′ ∈ Mod(K ′) \ Ω′ contain all n
atoms from A, thus H(ω, ω′′) ≥ n, too.

As an immediate consequence, we obtain that any KB K
is L2CNF -distributable w.r.t. ∆H,⊗ for any aggregation func-
tion⊗. Note that this result is in strong contrast to the L1CNF

fragment, where only L1CNF -expressible KBs are L1CNF -
distributable w.r.t. ∆H,Σ.

4.3 The Horn-Fragment
We now turn our attention to the LHorn fragment. Recall
Example 1 where we have shown how to distribute some non
LHorn -expressible KB using a profile over two LHorn -KBs.
Our first result shows that in this example case we cannot
reduce to profiles of a single KB, i.e. that there are KBs which
are LHorn -distributable but not LHorn -simplifiable.

Proposition 11. A KB K with Mod(K) = {ω1, ω2, ω3},
where ω3 = ω1 ∪ ω2, H(ω1, ω2) = 2 and ω1, ω2 are in-
comparable, is not LHorn -simplifiable w.r.t. ∆H .

Proof. The situation described in the proposition corresponds
to a KB K = {ω ∪ {a}, ω ∪ {b}, ω ∪ {a, b}} with ω
some interpretation which does not contain a or b. We need
Mod(µ) = {ω, ω ∪ {a}, ω ∪ {b}, ω ∪ {a, b}}, as required by
Proposition 2. We want to identify a LHorn -KB K ′ such that
∆H
µ (K ′) ≡ K. This means that ω is the single model of µ

which is not minimal w.r.t. the Hamming distance. Let ω′1
be the model in K ′ closest to ω1 = ω ∪ {a} and ω′2 the one
closest to ω2 = ω ∪ {b}. We need a ∈ ω′1 and b ∈ ω′2; oth-
erwise H(ω, ω′1) < H(ω1, ω

′
1) or H(ω, ω′2) < H(ω2, ω

′
2);

further we need b /∈ ω′1 and a /∈ ω′2; otherwise H(ω3, ω
′
1) <

H(ω1, ω
′
1) or H(ω3, ω

′
2) < H(ω2, ω

′
2). Hence ω′1 and ω′2 are

incomparable thus also ω′1 ∩ ω′2 ∈ Mod(K ′), since K ′ is a
Horn KB. But then H(ω, ω′1 ∩ ω′2) ≤ H(ω1, ω

′
1).

Our last result shows that ∆H nonetheless increases the
range of LHorn -simplifiable KBs compared to ∆D.

Proposition 12. Any knowledge base K with Mod(K) =
{ω1, ω2} is LHorn -simplifiable w.r.t. ∆H .

Proof. If ω1, ω2 are comparable, we can apply Proposition 1.
Thus, assume ω1, ω2 are incomparable and let d1 = |ω1 \ω2|
and d2 = |ω2 \ ω1|. W.l.o.g. assume d1 ≤ d2. Also note
that d1 > 0. We use K ′ with Mod(K ′) = {ω+

1 , ω1 ∪ ω2}
where ω+

1 adds d1 elements from ω2 \ ω1 to ω1. Thus, ω+
1 ⊆

ω1∪ω2 and we can chooseK ′ fromLHorn . Moreover, let µ ∈

1CNF 2CNF Horn
simplifiable w.r.t. ∆D × × ×
simplifiable w.r.t. ∆H × X ◦

distributable w.r.t. ∆D,Σ X X X
distributable w.r.t. ∆H,Σ × X −

distributable w.r.t. ∆H,GMax − X −
distributable w.r.t. ∆H,GMin − X −

Table 1: Summary of Results

LHorn such that Mod(µ) = {ω1, ω2, ω1 ∩ ω2}. We have the
following distances (note that d(ω2, ω

+
1 ) = d1 + (d2 − d1)).

ω+
1 ω1 ∪ ω2 K′

ω1 d1 d2 d1
ω2 d2 d1 d1
ω1 ∩ ω2 2d1 d1 + d2 > d1

Hence, ∆H
µ (K ′) ≡ K as desired.

5 Conclusion
In this paper we have proposed the notion of distributability
and we have studied the properties of several merging opera-
tors with respect to different fragments of propositional logic.
Our results are summarized in Table 1.

Symbol × means that only “trivial” KBs (belonging to the
considered fragment) can be distributed with the correspond-
ing operator. Alternately, X means that any KB can be dis-
tributed. Symbol − means we know that some non-trivial
KBs can be distributed, and finally ◦ means that some, but
not all, non-trivial KBs can be simplified. Interestingly, the
picture emerging from Table 1 is that merging operators be-
have quite differently depending on the distance and aggre-
gation function employed, in a way that does not lend itself
to simple categorization. For instance, our results on simpli-
fiability imply that using Dalal revision to L1CNF KBs never
takes us outside the 1CNF fragment; applying the same revi-
sion operator to L2CNF KBs can produce any KB in L; and
applying it to LHorn KBs can produce some, though not all
possible KBs.

Several questions are still open for future work. We plan to
study the exact characterization of what can (and cannot) be
distributed, in order to replace the symbols− and ◦ in the Ta-
ble 1. Other merging operators can also be integrated to our
study. Some of our results on distributability require the ad-
dition of new atoms to the interpretations. We want to deter-
mine whether similar results can be obtained without modify-
ing the set of propositional variables. We are also interested
in the number of KBs needed to distribute knowledge: given
an integer n, a KB K and a merging operator ∆, is it possible
to distributeK w.r.t. ∆ such that the resulting profile contains
at most n KBs? This paper was a first step to understand the
limits of distributability; the actual construction of the profile
and complexity of this process are important questions that
will be tackled in future research. Finally, we also consider
applying the concept of distributability to non-classical for-
malisms, in particular in connection with merging operators
proposed for logic programs [Delgrande et al., 2013].
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