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Abstract

The notion of stability in a structured argumentation setup
characterizes situations where the acceptance status associ-
ated with a given literal will not be impacted by any future
evolution of this setup. In this paper, we abstract away from
the logical structure of arguments, and we transpose this no-
tion of stability to the context of Dungean argumentation
frameworks. In particular, we show how this problem can
be translated into reasoning with Argument-Incomplete AFs.
Then we provide preliminary complexity results for stability
under four prominent semantics, in the case of both credulous
and skeptical reasoning. Finally, we illustrate to what extent
this notion can be useful with an application to argument-
based negotiation.

1 Introduction
Formal argumentation is a family of non-monotonic reason-
ing approaches with applications to (e.g.) multi-agent sys-
tems (McBurney, Parsons, and Rahwan 2012), automated
negotiation (Dimopoulos, Mailly, and Moraitis 2019) or de-
cision making (Amgoud and Vesic 2012). Roughly speak-
ing, we can group the research in this domain in two fami-
lies: abstract argumentation (Dung 1995) and structured ar-
gumentation (Besnard et al. 2014). The former is mainly
based on the seminal paper proposed by Dung, where ab-
stract argumentation frameworks (AFs) are defined as di-
rected graphs where the nodes represent arguments and the
edges represent attacks between them. In this setting, the na-
ture of arguments and attacks is not defined, only their inter-
actions are represented in order to determine the acceptabil-
ity status of arguments. On the opposite, different settings
have been proposed where the arguments are built from log-
ical formulas or rules, and the nature of attacks is based on
logical conflicts between the elements inside the arguments.
See e.g. (Baroni, Gabbay, and Giacomin 2018) for a recent
overview of abstract and structured argumentation.

In a particular structured argumentation setting, the no-
tion of stability has been defined recently (Testerink, Odek-
erken, and Bex 2019). Intuitively, it represents a situation
where a certain argument of interest will not anymore have
the possibility to change its acceptability status. Either it is
currently accepted and it will remain so, or on the contrary
it is currently rejected, and nothing could make it accepted
in the future. In the existing work on this topic, the authors

mention some application to crime investigation (more pre-
cisely, Internet trade fraud). We also have in mind some
other natural applications, like automated negotiation. For
instance, if an agent is certain her argument for supporting
her preferred offer cannot be accepted at any future step of
the debate, she can switch her offer to another one, that may
be less preferred, but at least could be accepted.

In this paper, we adapt the notion of stability to ab-
stract argumentation, and we show that checking stabil-
ity is equivalent to performing some well-known reasoning
tasks in Argument-Incomplete AFs (Baumeister, Rothe, and
Schadrack 2015; Baumeister, Neugebauer, and Rothe 2018;
Niskanen et al. 2020). While existing work on stability in
structured argumentation focuses on a particular semantics
(namely the grounded semantics), our approach is generic
with respect to the underlying extension-based semantics.
Moreover we consider both credulous and skeptical variants
of argumentative reasoning.

This paper is organized as follows. Section 2 introduces
the basic notions of abstract argumentation literature in
which our work takes place, and presents the concept of
stability for structured argumentation frameworks. We then
propose in Section 3 a counterpart of this notion of stabil-
ity adapted to abstract argumentation frameworks, and we
show how we can reduce it to well-known reasoning tasks.
We provide some lower and upper bounds for the computa-
tional complexity of checking whether an AF is stable. Sec-
tion 4 then describes an application scenario in the context
of automated negotiation. Finally, Section 5 discusses re-
lated work, and Section 6 concludes the paper by highlight-
ing some promising future works.

2 Background
2.1 Abstract Argumentation
Let us first introduce the abstract argumentation framework
defined in (Dung 1995).
Definition 1. An argumentation framework (AF) is a pair
F = 〈A,R〉whereA is the set of arguments andR ⊆ A×A
is the attack relation.

In this framework, we are not concerned by the precise
nature of arguments (e.g. their internal structure or their ori-
gin) and attacks (e.g. the presence of contradictions between
elements on which arguments are built). Only the relations



between arguments (i.e. the attacks) are taken into account
to evaluate the acceptability of arguments.

We focus on finite AFs, i.e. AFs with a finite set of argu-
ments. For a, b ∈ A, we say that a attacks b if (a, b) ∈ R.
Moreover, if b attacks some c ∈ A, then a defends c against
b. These notions are extended to sets of arguments: S ⊆ A
attacks (respectively defends) b ∈ A if there is some a ∈ S
that attacks (respectively defends) b. The acceptability of ar-
guments is evaluated through a notion of extension, i.e. a set
of arguments that are jointly acceptable. To be considered
as an extension, a set has to satisfy some minimal require-
ments:

• S ⊆ A is conflict-free (denoted S ∈ cf(F)) iff ∀a, b ∈ S,
(a, b) 6∈ R;

• S ∈ cf(F) is admissible (denoted S ∈ ad(F)) iff S de-
fends all its elements against all their attackers.

Then, Dung defines several semantics:

Definition 2. Given F = 〈A,R〉 an AF, a set S ⊆ A is:

• a complete extension (S ∈ co(F)) iff S ∈ ad(F) and S
contains all the arguments that it defends;

• a preferred extension (S ∈ pr(F)) iff S is a ⊆-maximal
complete extension;

• the unique grounded extension (S ∈ gr(F)) iff S is the
⊆-minimal complete extension;

• a stable extension (S ∈ st(F)) iff S ∈ cf(F) and S at-
tacks each a ∈ A \ S,

where ⊆-maximal and ⊆-minimal denote respectively the
maximal and the minimal elements for classical set inclu-
sion.

Example 1. LetF = 〈A,R〉 be the AF depicted in Figure 1.
Nodes in the graph represent the arguments A, while the
edges correspond to the attacks R. Its extensions for σ ∈
{gr, st, pr, co} are given in Table 1.

a1a2

a3 a4 a5

a6

a7

Figure 1: An Example of AF F

Semantics σ σ-extensions
grounded {{a1}}
stable {{a1, a4, a6}}
preferred {{a1, a4, a6}, {a1, a3}}
complete {{a1, a4, a6}, {a1, a3}, {a1}}

Table 1: σ-Extensions of F

We refer the interested reader to (Baroni, Caminada, and
Giacomin 2018) for more details about these semantics, as
well as other ones defined after Dung’s initial work. From
the set of extensions σ(F) (for σ ∈ {co, pr, gr, st}), we de-
fine two reasoning modes:
• an argument a ∈ A is credulously accepted with respect

to σ iff a ∈ S for some S ∈ σ(F);
• an argument a ∈ A is skeptically accepted with respect to
σ iff a ∈ S for each S ∈ σ(F).
Then, a possible enrichment of Dung’s framework con-

sists in taking into account some uncertainty in the AF.
This yields the notion of Incomplete AFs, studied e.g.
in (Baumeister, Rothe, and Schadrack 2015; Baumeister,
Neugebauer, and Rothe 2018; Niskanen et al. 2020). Here,
we focus on a particular type, namely Argument-Incomplete
AFs, but for a matter of simplicity we just refer to them as
Incomplete AFs.
Definition 3. An incomplete argumentation framework
(IAF) is a tuple I = 〈A,A?R〉 where

• A is the set of certain arguments;
• A? is the set of uncertain arguments;
• R ⊆ (A ∪A?)× (A ∪A?) is the attack relation;

and A,A? are disjoint sets of arguments.

Example 2. The IAF I = 〈A,A?,R〉 is shown on Fig-
ure 2. The dotted nodes represent the uncertain arguments
A?. Plain nodes and arrows have the same meaning as pre-
viously.
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a3 a4 a5

a6

a7

Figure 2: An Example of IAF I

Uncertain arguments are those that may not actually be-
long to the system (for instance because of some uncertainty
about the agent’s environment). There are different ways to
“solve” the uncertainty in an IAF, that correspond to differ-
ent completions:
Definition 4. Given I = 〈A,A?R〉 an IAF, a completion is
an AF F = 〈A′,R′〉 where

• A ⊆ A′ ⊆ A ∪A?;
• R′ = R∩ (A′ ×A′).

Example 3. Considering again I from the previous exam-
ple, we show all its completions at Figure 3. For each uncer-
tain argument in A? = {a4, a7}, there are two possibilities:
either the argument is present, or it is not. Thus, there are
four completions.
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(c) C3
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(d) C4

Figure 3: The Completions of I

This means that a completion is a “classical” AF made of
all the certain arguments, some of the uncertain elements,
and all the attacks that concern the selected arguments. Rea-
soning with an IAF generalizes reasoning with an AF, by
taking into account either some or each completion. For-
mally, given I an IAF and σ a semantics, the status of an
argument a ∈ A is:

• possibly credulously accepted with respect to σ iff a be-
longs to some σ-extension of some completion of I;

• possibly skeptically accepted with respect to σ iff a be-
longs to each σ-extension of some completion of I;

• necessarily credulously accepted with respect to σ iff a
belongs to some σ-extension of each completion of I;

• necessarily skeptically accepted with respect to σ iff a be-
longs to each σ-extension of each completion of I.

Example 4. Let us consider again I from the previous ex-
ample, and its completions C1, C2, C3 and C4. We observe
that a1 is necessarily skeptically accepted for any seman-
tics, since it appears unattacked in every completion (thus,
it belongs to every extension of every completion).

On the opposite, a6 is possibly credulously accepted with
respect to the preferred semantics: it belongs to some exten-
sion of C4. It is not skeptically accepted (because {a1, a3} is
a preferred extension of C4 as well), and it is not necessarily
accepted (because in C1, it is not defended against a5, thus
it cannot belong to any extension).

2.2 Stability in Structured Argumentation
Now we briefly introduce the argumentation setting from
(Testerink, Odekerken, and Bex 2019), based on ASPIC+
(Modgil and Prakken 2014).

Let us start with the notation that is used to represent the
negation of a literal, i.e. for a propositional variable p,−p =

¬p and −(¬p) = p, with ¬ the classical negation. We call p
(respectively ¬p) a positive (respectively negative) literal.
Definition 5. An argumentation setup is a tuple AS =
〈L,R,Q,K, τ〉 where:
• L is a set of literals s.t. l ∈ L implies −l ∈ L;
• R is a set of defeasible rules p1, . . . , pm ⇒ q s.t.
p1, . . . , pm, q ∈ L. Such a rule is called “a rule for q”.

• Q ⊆ L is a set of queryable literals, s.t. no q ∈ Q is a
negative literal;

• K ⊆ L is the agent’s (consistent) knowledge base;
• τ ∈ L is a particular literal called the topic.

Usual mechanisms are used to define arguments and at-
tacks. An argument for a literal q is an inference tree rooted
in a rule p1, . . . , pm ⇒ q, such that for each pi, there is a
child node that is either an argument for pi, or an element of
the knowledge base. Then, an argument A attacks an argu-
ment B if the literal supported by A is the negation of some
literal involved in the construction of B. From the sets of
arguments and attacks built in this way, the grounded exten-
sion is defined as usual (see Definition 2).

Given an argumentation setup AS, the status of the topic
τ may be:
• unsatisfiable if there is no argument for τ in AS;
• defended if there is an argument for τ in the grounded

extension of AS;
• out if there are some arguments for τ in AS, and all of

them are attacked by the grounded extension;
• blocked in the remaining case.

Then, stability can be defined, based on the following no-
tion of future setups:
Definition 6. Let AS = 〈L,R,Q,K, τ〉 be an argumen-
tation setup. The set of future setups of AS, denoted by
F (AS), is defined by F (AS) = {〈L,R,Q,K ′, τ〉 | K ⊆
K ′}. AS is called stable if for each AS′ ∈ F (AS), the
status of τ is the same as in AS.

Intuitively, a future setup is built by adding new literals
to the knowledge base (keeping the consistency property,
of course). Then, new arguments and attacks may be built
thanks to these new literals. The setup is stable if these new
arguments and attacks do not change the status of the topic.

To conclude this section, let us mention that (Testerink,
Odekerken, and Bex 2019) provides a sound algorithm that
approximates the reasoning task of checking the stability of
the setup. This algorithm is however not complete, i.e. AS
is actually stable if the algorithm outcome is a positive an-
swer, but there are stable setups that are not identified by the
algorithm. This algorithm has the interest of being polyno-
mially computable (more precisely, it stops in O(n2) steps,
where n = |L|+ |R|).

3 Stability in Abstract Argumentation
In this section, we describe how we adapt the notion of sta-
bility to abstract argumentation. Contrary to previous works,
we do not focus on a specific semantics, and thus we con-
sider both credulous and skeptical reasoning. Moreover, we



provide a translation of the stability problem into reasoning
with AFs and IAFs. Despite being theoretically intractable,
efficient algorithms exist for solving these problems in prac-
tice. So it paves the way to future implementations of an
exact algorithm for checking stability, and its applications to
concrete scenarios.

3.1 Formal Definition of Stability in AFs
From now on, we consider a finite argumentation universe
that is represented by an AF FU = 〈AU ,RU 〉. We suppose
that any “valid” AF is made of arguments and attacks in FU ,
i.e. F = 〈A,R〉 s.t. A ⊆ AU andR = RU ∩ (A×A).
Definition 7. Given an AF F = 〈A,R〉, we call the future
AFs the set of AFs F (F) = {F ′ = 〈A′,R′〉 | A ⊆ A′}.

Intuitively speaking, this means that a future AF repre-
sents a possible way to continue the argumentative process
(by adding arguments and attacks), accordingly to FU . This
corresponds to some kind of expansions ofF (Baumann and
Brewka 2010), where the authorized expansions are con-
strained by FU . This is reminiscent of the set of authorized
updates defined in (de Saint-Cyr et al. 2016). Notice that F
is a particular future AF.

Now we have all the elements to define stability.
Definition 8. Given an AF F = 〈A,R〉, a ∈ A an ar-
gument, and σ a semantics, we say that F is credulously
(respectively skeptically) σ-stable with respect to a iff
• either ∀F ′ ∈ F (F), a is credulously (respectively skepti-

cally) accepted with respect to σ;
• or ∀F ′ ∈ F (F), a is not credulously (respectively skepti-

cally) accepted with respect to σ.
Although in this paper we focus on σ ∈ {gr, st, pr, co},

the definition of stability is generic, and the concept can be
applied when any extension semantics is used (Baroni, Cam-
inada, and Giacomin 2018).
Example 5. Let us consider the argumentation universe FU

and the AF F , both depicted in Figure 4. The argument a3
is not credulously σ-stable for σ = st, since it is credulously
accepted in F , but not in the future AF where a2 is added.
On the contrary, it is skeptically σ-stable since it is not skep-
tically accepted in F , nor in any future AF.
a6 is skeptically σ-stable as well, but for another reason:

indeed we observe that in F (and in any future AF), a6 is
defended by the (unattacked) argument a7, thus it belongs to
every extension.

On this simple example, it may seem obvious to deter-
mine that a5, a6 and a7 will keep their status. However,
let us notice that determining whether an argument keeps its
status when an AF is updated has been studied, and is not a
trivial question in the general case (Baroni, Giacomin, and
Liao 2014; Alfano, Greco, and Parisi 2019).

3.2 Computational Issues
We now provide a method for checking the stability of an
AF with respect to some argument. The method is generic
regarding the underlying extension semantics. It is based on
the observation that the set of future AFs can be encoded
into a single IAF (see Definition 3).

a1a2

a3 a4 a5
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a7

(a) FU

a3 a4 a5

a6

a7

(b) F

Figure 4: The Argumentation Universe FU and a Possible AF F

Definition 9. Given F = 〈A,R〉, the corresponding IAF is
IF = 〈A,AU \ A,RU 〉.

The corresponding IAF is built from the whole set of ar-
guments that appear in the universe. The ones that belong to
F are the certain arguments, while the other ones are uncer-
tain. Then of course, all the attacks from the universe appear
in the IAF. The set of completions of IF is actually F (F).

Example 6. Figure 5 shows the IAF corresponding to F .
The arguments that belong to the universe but not to F
(namely, a1 and a2) appear as uncertain arguments. This
means that the four completions of this IAF correspond to
F (F).

a1a2

a3 a4 a5

a6

a7

Figure 5: The IAF IF Corresponding to F

We give a characterization of stability based on the IAF
corresponding to an AF.

Proposition 1. Given an AF F = 〈A,R〉, a ∈ A an ar-
gument, and σ a semantics, F is credulously (respectively
skeptically) σ-stable with respect to a iff

• either a is necessarily credulously (respectively skepti-
cally) accepted in IF with respect to σ;

• or a is not possibly credulously (respectively skeptically)
accepted in IF with respect to σ.

This result shows that solving efficiently the stability
problem is possible, using for instance the SAT-based piece
of software taeydennae (Niskanen et al. 2020) for rea-
soning in IF .

Now, we provide preliminary complexity results. We start
with upper bounds for the computational complexity of sta-
bility.



Proposition 2. The upper bound complexity of checking
whether an AF is (credulously or skeptically) σ-stable with
respect to an argument is as presented in Table 2.

σ Credulous Skeptical
st ∈ ΠP

2 ∈ ΣP
2

co ∈ ΠP
2 ∈ coNP

gr ∈ coNP ∈ coNP
pr ∈ ΠP

3 ∈ ΣP
3

Table 2: Upper Bound Complexity of Checking Stability

Sketch of proof. Non-deterministically guess a pair of future
AFs F ′ and F ′′. Check that a is credulously (respectively
skeptically) accepted inF ′, and a is not credulously (respec-
tively skeptically) accepted inF ′′. The complexity of credu-
lous (respectively skeptical) acceptance in AFs (Dvorák and
Dunne 2018) allows to deduce an upper bound for credulous
(respectively skeptical) stability.

Now we also identify lower bounds for the computational
complexity of stability.
Proposition 3. The lower bound complexity of checking
whether an AF is (credulously or skeptically) σ-stable with
respect to an argument is as presented in Table 3.

σ Credulous Skeptical
st NP-hard coNP-hard
co NP-hard P-hard
gr P-hard P-hard
pr NP-hard ΠP

2 -hard

Table 3: Lower Bound Complexity of Checking Stability

Sketch of proof. Credulous (respectively skeptical) accep-
tance in an AF F can be reduced to credulous (respectively
skeptical) stability, such that the current AF is F , and the
argumentation universe is FU = F . Thus, F is credulously
(respectively skeptically) σ-stable with respect to some ar-
gument a iff a is credulously (respectively skeptically) ac-
cepted in F with respect to σ. The nature of the reduc-
tion (its computation is bounded with logarithmic space and
polynomial time) makes it suitable for determining both P-
hardness and C-hardness, for C ∈ {NP, coNP, ΠP

2 }. Thus,
we can conclude that stability is at least as hard as ac-
ceptance in AFs. From known complexity results for AFs
(Dvorák and Dunne 2018), we deduce the lower bounds
given in Table 3.

4 Applying Stability to Automated
Negotiation

Now, we discuss the benefit of stability in a concrete ap-
plication scenario, namely automated negotiation. Let us
consider a simple negotiation framework, where practical
arguments (i.e. those that support some offers) are mutu-
ally exclusive, and for each agent there is a preference re-
lation between the offers supported by these arguments (for

instance, these preferences can be obtained from a notion of
utility associated with each offer). So, each agent’s goal is to
make her preferred practical argument (i.e. the one that sup-
ports the preferred offer) accepted at the end of the debate.
Each agent, in turn, can add one (or more) argument(s) that
defend her preferred argument. In this first version of the
negotiation framework, agents have a total ignorance about
their opponent.

Then, an enriched version of this protocol can be defined,
where the agents use the notion of argumentation universe
to model their (uncertain) knowledge about the opponent.
Then, stability can help the agent to obtain a better outcome:
if at some point, the agent’s preferred practical argument is
rejected and stable, this means that this argument will not
be accepted at the end of the debate, whatever the actual
moves of the other agents. It is then profitable to the agent to
change her goal, defending now the argument that supports
her second preferred offer instead of the first one. This can
reduce the number of rounds in the negotiation (and thus,
any communication cost associated with these rounds), and
even improve the outcome of the negotiation for the agent.

Let us now provide a concrete example. We suppose that
the offers O = {o1, o2, o3} are supported by one practical
argument each, i.e. {p1, p2, p3} with pi supporting oi. The
practical arguments are mutually exclusive. The preferences
of the agents are opposed: agent 1 has a preference rank-
ing o3 >1 o2 >1 o1, while the preferences of agent 2 are
o1 >2 o2 >2 o3. So, at the beginning of the debate, the
goal of agent 1 (respectively agent 2) is to accept the argu-
ment p3 (respectively p1). Let us suppose that the first round
consists in agent 1 attacking the argument p1 with three ar-
guments a1, a2 and a3, thus defending p3. This situation is
depicted in Figure 6.

p1 p2 p3

a1
a2

a3

Figure 6: The Negotiation Debate F1

In F1, that represents the state of the debate after agent
1’s move, the argument p1 is clearly rejected under the sta-
ble semantics,1 since it is not defended against a1, a2 and a3.
Consider that agent 2 has one argument at her disposal, a4,
with the corresponding attacks (a4, a3) and (a4, p2). With-
out a possibility to anticipate the evolution of the debate, the
best action for agent 2 is to utter this argument, thus defend-
ing p1 against a3 and p2.

Now, let us suppose that agent 2 has an opponent mod-
elling in the form of the argumentation universe FU , de-
scribed at Figure 7.

Now, we observe that p1 does not appear in any extension
of any future framework. Indeed, it is obvious that, if one
of a4, a5 and a6 is not present at the end of the debate, then

1As well as any semantics considered in this paper.
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Figure 7: The Argumentation Universe FU

p1 is not defended against (respectively) a3, a2 or a1. Oth-
erwise, if a4, a5 and a6 appear together, the mutual attack
between a5 and a6 will be at the origin of two extensions,
one where a6 appears with a2 (then defeating p1), and the
other one containing a5 and a1 (thus defeating again p1).
This means that p1 is rejected in F1, and it is (both cred-
ulously and skeptically) σ-stable. In this situation, it is in
the interest of agent 2 to stop arguing, and proposing instead
the option supported by the argument p2. Indeed, accord-
ing to the agent’s preferences, p2 is the best option if p1 is
not available anymore. Not only using the notion of stability
in the argumentation universe allows to stop the debate ear-
lier, but it also allows the agent 2 to propose her second best
option, which would not be possible if she had uttered a4.

5 Related Work

Dynamics of abstract argumentation frameworks (Doutre
and Mailly 2018) has received much attention in the last
decade. We can summarize this field in two kinds of ap-
proaches: the goal either is to modify an AF to enforce
some (set of) arguments as accepted, or to determine to what
extent the acceptability of arguments is impacted by some
changes in the AF. In the first family, we can mention ex-
tension enforcement (Baumann and Brewka 2010), that is
somehow dual to stability. Enforcement is exactly the oper-
ation that consists in finding whether it is possible to modify
an AF to ensure that a set of arguments becomes (included
in) an extension, while stability is the property of an argu-
ment that will keep its acceptance status, whatever the future
evolution of the AF. Control Argumentation Frameworks
(Dimopoulos, Mailly, and Moraitis 2018) are also somehow
related to stability, since they are a generalization of Dung’s
AFs that permit to realize extension enforcement under un-
certainty.

The second family of works in the field of argu-
mentation dynamics are those that propose efficient ap-
proaches to recompute the extensions or the set of (credu-
lously/skeptically) accepted arguments when the AF is mod-
ified (Baroni, Giacomin, and Liao 2014; Alfano, Greco, and
Parisi 2019). Although related to stability, these approaches
do not provide an algorithmic solution to the problem stud-
ied in our work, since they focus on one update of the AF at
once, instead of the set of all the future AFs.

6 Conclusion
In this paper, we have addressed a first study which investi-
gates to what extent the notion of stability can be adapted to
abstract argumentation frameworks. In particular, we have
shown how it relates with Incomplete AFs, that are a model
that integrates uncertainty in abstract argumentation. Our
preliminary complexity results, as well as the translation of
stability into reasoning with IAFs pave the way to the devel-
opment of efficient computational approaches for stability,
taking benefit from SAT-based techniques. Finally, we have
shown that, besides the existing application of stability to In-
ternet fraud inquiry (Testerink, Odekerken, and Bex 2019),
this concept has other potential applications, like automated
negotiation.

This paper opens the way for several promising research
tracks. First of all, we plan to study more in depth complex-
ity issues in order to determine tight results for the seman-
tics that were studied here. Other direct future works include
the investigation of other semantics, and the implementation
of our stability solving technique in order to experimentally
evaluate its impact in a context of automated negotiation.

We have focused on stability in extension semantics,
which means that an argument will either remain accepted,
or remain unaccepted. However, in some cases, it is impor-
tant to deal more finely with unaccepted arguments. It is
possible with 3-valued labellings (Caminada 2006). Study-
ing the notion of stability when such labellings are used to
evaluate the acceptability of arguments is a natural extension
of our work.

In some contexts, the assumption of a completely known
argumentation universe is too strong. For such cases, it
seems that using arbitrary IAFs (with also uncertainty on the
attack relation) is a potential solution. Uncertainty on the
existence (or direction) of attacks makes sense, for instance,
when preferences are at play. Indeed, dealing with prefer-
ences in abstract argumentation usually involves a notion
of defeat relation, that is a combination of the attacks and
preferences. This defeat relation may somehow ”cancel”
or ”reverse” the initial attack (Amgoud and Cayrol 2002;
Amgoud and Vesic 2014; Kaci, van der Torre, and Villata
2018), thus some uncertainty or ignorance about the other
agents’ preferences can be represented as uncertainty in the
attack relation of the argumentation universe.

We are also interested in stability for other abstract ar-
gumentation frameworks. Besides preference-based argu-
mentation that we have already mentioned, Dung’s AFs has
been generalized by adding a support relation (Amgoud et
al. 2008), or associating quantitative weights with attacks
(Dunne et al. 2011) or arguments (Rossit et al. 2020), or as-
sociating values with arguments (Bench-Capon 2002). But
adapting the notion of stability to these frameworks may
require different techniques than the one used in this pa-
per. Also, the recent claim-based argumentation (Dvorák
and Woltran 2020) provides an interesting bridge between
structured argumentation and purely abstract frameworks.
It makes sense to study stability in this setting, as a step
that would make our results for different semantics and rea-
soning modes available for structured argumentation frame-
works.
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