

Possible Controllability of Control Argumentation Frameworks

Jean-Guy Mailly

LIPADE - Distributed Artificial Intelligence

8th International Conference on Computational Models of Argument (COMMA 2020)

- Control Argumentation Frameworks = dynamics of (abstract) argumentation + (qualitative) uncertainty
- In this paper, we propose a new reasoning mode for this formalism, and study computational issues
 - Complexity
 - Logical encoding

Background

Possible Controllability

Abstract Argumentation [Dung 95]

Argumentation Framework (AF)

- F = (A, R) where
 - A is a set of arguments
 - $R \subseteq A \times A$ represents attacks between arguments

Extension Semantics

 $S \subseteq A$ is

- conflict-free (cf) if there is no $a, b \in S$ s.t. $(a, b) \in R$
- admissible (ad) if $S \in cf(F)$ and S defends all its elements
- stable (st) if $S \in cf(F)$ and S attacks each argument in $A \setminus S$
- complete (co) if $S \in ad(F)$ and S doesn't defend any argument in $A \setminus S$
- preferred (pr) if S is \subseteq -maximal in ad(F)
- grounded (gr) if S is \subseteq -minimal in co(F)

- $gr(F) = \{\{a_1\}\}$
- $st(F) = \{\{a_1, a_4, a_6\}\}$
- $pr(F) = \{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$
- $\mathbf{co}(F) = \{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$

Intuition

• Argumentation is an inherently dynamic process (e.g. debate)

- Argumentation is an inherently dynamic process (e.g. debate)
- Argumentation is subject to uncertainty (e.g. opponent modelling)

- Argumentation is an inherently dynamic process (e.g. debate)
- Argumentation is subject to uncertainty (e.g. opponent modelling)
- Dynamics and uncertainty can be threats against the agent's goal

- Argumentation is an inherently dynamic process (e.g. debate)
- Argumentation is subject to uncertainty (e.g. opponent modelling)
- Dynamics and uncertainty can be threats against the agent's goal
 - \rightarrow some (set of) argument(s) must be credulously or skeptically accepted

- Argumentation is an inherently dynamic process (e.g. debate)
- Argumentation is subject to uncertainty (e.g. opponent modelling)
- Dynamics and uncertainty can be threats against the agent's goal
 - \rightarrow some (set of) argument(s) must be credulously or skeptically accepted
- Can the agent deal with the effects of these threats?

Intuition

- Argumentation is an inherently dynamic process (e.g. debate)
- Argumentation is subject to uncertainty (e.g. opponent modelling)
- Dynamics and uncertainty can be threats against the agent's goal
 - \rightarrow some (set of) argument(s) must be credulously or skeptically accepted
- Can the agent deal with the effects of these threats?

Control AF (CAF)

Generalization of Dung's framework with 3 parts:

- fixed part: certain knowledge
- uncertain part: uncertain knowledge about the environment/other agents
- control part: possible action for the agent

Université A Picture is Worth a Thousand Words

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

Université A Picture is Worth a Thousand Words

• certain knowledge: always exist

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

Université A Picture is Worth a Thousand Words de Paris

• the argument could exist, or not

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

Université A Picture is Worth a Thousand Words de Paris

• the attack could exist, or not

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

Université A Picture is Worth a Thousand Words

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

• the attack exists (if both arguments exist), but we are not sure of the direction

Université A Picture is Worth a Thousand Words de Paris

- Fixed part: circle arguments + plain arrows
- Uncertain part:
 - dashed arguments
 - dotted arrows
 - two-heads dashed arrows
- Control part: square arguments + bold arrows

· exist only if the agent chooses to use the arguments

A completion is a classical AF which is "compatible" with the CAF

• Given a target $T \subseteq A_F$, can the agent choose a configuration $A_{conf} \subseteq A_C$ s.t. T is accepted in each completion when CAF is configured by A_{conf} ?

Ex.: In CAF configured by $A_{conf} = \{a_8\}, T = \{a_1\}$ is accepted w.r.t. each completion

• Question: Given a CAF C, a target T and a semantics σ , is C credulously/skeptically controllable w.r.t. T and σ ?

Semantics	Credulous	Skeptical
ad	Σ ₃ ^P -c	trivial
со	Σ ₃ ^P -c	NP-c
pr	Σ_3^P -c	Σ_3^P -c
st	Σ ^{<i>P</i>} ₃ -c	Σ_2^P -c
gr	Σ_2^P -c	NP-c

Université Incomplete AFs [Baumeister, Neugebauer, Rothe 2018]

· AF with uncertainty about the existence of some arguments/attacks

• a_1 is not necessarily accepted (e.g. it is not accepted in completions where (a_5, a_1) exists)

Université Incomplete AFs [Baumeister, Neugebauer, Rothe 2018]

· AF with uncertainty about the existence of some arguments/attacks

- a_1 is not necessarily accepted (*e.g.* it is not accepted in completions where (a_5, a_1) exists)
- but a_1 is possibly accepted (in the completion where neither (a_5, a_1) nor a_6 exists)

Université Incomplete AFs [Baumeister, Neugebauer, Rothe 2018]

• AF with uncertainty about the existence of some arguments/attacks

- a_1 is not necessarily accepted (*e.g.* it is not accepted in completions where (a_5, a_1) exists)
- but a_1 is possibly accepted (in the completion where neither (a_5, a_1) nor a_6 exists)
- Question: Does it make sense to apply the notion of possible/necessary reasoning to CAFs?

Background

Possible Controllability

Conclusion

Necessary controllability may be too strong in some cases

- Not necessary skeptically controllable w.r.t. $T = \{a_1\}$
- But with $A_{conf} = a_7$, T is skeptically accepted in at least one completion

Necessary controllability may be too strong in some cases

- Not necessary skeptically controllable w.r.t. T = {a₁}
- But with $A_{conf} = a_7$, T is skeptically accepted in at least one completion
- In some cases, it may be enough \rightarrow "credulous reasoning" over completions

Université Definition of Possible Controllability

- Input: a CAF C, a target $T \subseteq A_F$ and a semantics σ
- Question: is there a configuration A_{conf} ⊆ A_C s.t. T is credulously (resp. skeptically) accepted in at least one completion of C configured by A_{conf}

 Question: Given a CAF C, a target T and a semantics σ, is C possibly credulously/skeptically controllable w.r.t. T and σ?

Semantics	Credulous	Skeptical
со	NP-c	NP-c
pr	NP-c	Σ_3^P -c
st	NP-c	Σ_2^P -c
gr	NP-c	NP-c

Université QBF Encoding for Stable Semantics

• Inspired by [Besnard and Doutre 04]: for $F = \langle A, R \rangle$

$$\phi_{\mathsf{st}}(F) = \bigwedge_{a \in A} [a \Leftrightarrow (\bigwedge_{(b,a) \in R} \neg b)]$$

Université QBF Encoding for Stable Semantics

• Inspired by [Besnard and Doutre 04]: for $F = \langle A, R \rangle$

$$\phi_{\mathsf{st}}(F) = \bigwedge_{a \in A} [a \Leftrightarrow (\bigwedge_{(b,a) \in R} \neg b)]$$

- We take into account the existence (or not) of uncertain attacks and arguments
 - att_{a,b} is true iff (a, b) exists
 - on_a is true iff a exists

Université QBF Encoding for Stable Semantics de Paris

• Inspired by [Besnard and Doutre 04]: for $F = \langle A, R \rangle$

$$\phi_{\mathsf{st}}(F) = \bigwedge_{a \in A} [a \Leftrightarrow (\bigwedge_{(b,a) \in R} \neg b)]$$

- We take into account the existence (or not) of uncertain attacks and arguments
 - att_{a,b} is true iff (a, b) exists
 - on_a is true iff a exists
- for a CAF C

$$\begin{split} \Phi_{\mathsf{st}}(C) &= \bigwedge_{a \in A_F} [a \Leftrightarrow \bigwedge_{b \in \mathcal{A}} (att_{b,a} \Rightarrow \neg b)] \land \\ & \bigwedge_{a \in A_C \cup A_U} [a \Leftrightarrow (on_a \land \bigwedge_{b \in \mathcal{A}} (att_{b,a} \Rightarrow \neg b))] \land \\ & (\bigwedge_{(a,b) \in \rightarrow \cup \Rightarrow} att_{a,b}) \land (\bigwedge_{(a,b) \in \rightleftarrows} att_{a,b} \lor att_{b,a}) \land (\bigwedge_{(a,b) \notin \mathcal{R}} \neg att_{a,b}) \end{split}$$

Université QBF Encoding for Stable Semantics de Paris

• Inspired by [Besnard and Doutre 04]: for $F = \langle A, R \rangle$

$$\phi_{\mathsf{st}}(F) = \bigwedge_{a \in A} [a \Leftrightarrow (\bigwedge_{(b,a) \in R} \neg b)]$$

- We take into account the existence (or not) of uncertain attacks and arguments
 - att_{a,b} is true iff (a, b) exists
 - on_a is true iff a exists
- for a CAF C

$$\Phi_{\mathsf{st}}(C) = \bigwedge_{a \in A_{F}} [a \Leftrightarrow \bigwedge_{b \in \mathcal{A}} (att_{b,a} \Rightarrow \neg b)] \land \\ \bigwedge_{a \in A_{C} \cup A_{U}} [a \Leftrightarrow (on_{a} \land \bigwedge_{b \in \mathcal{A}} (att_{b,a} \Rightarrow \neg b))] \land \\ (\bigwedge_{(a,b) \in \rightarrow \cup \Rightarrow} att_{a,b}) \land (\bigwedge_{(a,b) \in \rightleftharpoons} att_{a,b} \lor att_{b,a}) \land (\bigwedge_{(a,b) \notin \mathcal{R}} \neg att_{a,b})$$

Université QBF Encoding for Stable Semantics

• Inspired by [Besnard and Doutre 04]: for $F = \langle A, R \rangle$

$$\phi_{\mathsf{st}}(F) = \bigwedge_{a \in A} [a \Leftrightarrow (\bigwedge_{(b,a) \in R} \neg b)]$$

- We take into account the existence (or not) of uncertain attacks and arguments
 - att_{a,b} is true iff (a, b) exists
 - on_a is true iff a exists
- for a CAF C

$$\Phi_{\mathsf{st}}(C) = \bigwedge_{a \in A_F} [a \Leftrightarrow \bigwedge_{b \in \mathcal{A}} (att_{b,a} \Rightarrow \neg b)] \land \\ \bigwedge_{a \in A_C \cup A_U} [a \Leftrightarrow (on_a \land \bigwedge_{b \in \mathcal{A}} (att_{b,a} \Rightarrow \neg b))] \land \\ (\bigwedge_{(a,b) \in \rightarrow \cup \Rightarrow} att_{a,b}) \land (\bigwedge_{(a,b) \in \rightrightarrows} att_{a,b} \lor att_{b,a}) \land (\bigwedge_{(a,b) \notin \mathcal{R}} \neg att_{a,b})$$

Université QBF Encoding for Stable Semantics de Paris

• Inspired by [Besnard and Doutre 04]: for $F = \langle A, R \rangle$

$$\phi_{\mathsf{st}}(F) = \bigwedge_{a \in A} [a \Leftrightarrow (\bigwedge_{(b,a) \in R} \neg b)]$$

- We take into account the existence (or not) of uncertain attacks and arguments
 - att_{a,b} is true iff (a, b) exists
 - on_a is true iff a exists
- for a CAF C

$$\begin{split} \Phi_{\mathsf{st}}(C) &= \bigwedge_{a \in A_F} [a \Leftrightarrow \bigwedge_{b \in \mathcal{A}} (att_{b,a} \Rightarrow \neg b)] \land \\ \bigwedge_{a \in A_C \cup A_U} [a \Leftrightarrow (on_a \land \bigwedge_{b \in \mathcal{A}} (att_{b,a} \Rightarrow \neg b))] \land \\ (\bigwedge_{(a,b) \in \rightarrow \cup \Rightarrow} att_{a,b}) \land (\bigwedge_{(a,b) \in \rightleftharpoons} att_{a,b} \lor att_{b,a}) \land (\bigwedge_{(a,b) \notin \mathcal{R}} \neg att_{a,b}) \end{split}$$

Université Credulous/Skeptical Acceptance

•
$$\Phi_{\mathsf{st}}^{sk}(C,T) = (\Phi_{\mathsf{st}}(C) \Rightarrow \bigwedge_{a \in T} a)$$

$$\exists \{on_{x_i} \mid x_i \in A_C\} \exists \{on_{x_i} \mid x_i \in A_U\} \\ \exists \{att_{x_i, x_j} \mid (x_i, x_j) \in \neg \cup \rightleftharpoons \} \forall \{x_i \mid x_i \in \mathcal{A}\} \\ [\Phi_{st}^{sk}(C, T) \lor (\bigvee_{(x_i, x_j) \in \rightleftharpoons} (\neg att_{a_i, a_j} \land \neg att_{a_j, a_i}))]$$

$$(1)$$

•
$$\Phi_{\mathsf{st}}^{cr}(C,T) = (\Phi_{\mathsf{st}}(C) \land \bigwedge_{a \in T} a)$$

$$\begin{aligned} \exists \{on_{x_i} \mid x_i \in A_C\} \exists \{on_{x_i} \mid x_i \in A_U\} \\ \exists \{att_{x_i, x_j} \mid (x_i, x_j) \in \neg \rightarrow \cup \rightleftharpoons\} \exists \{x_i \mid x_i \in \mathcal{A}\} \\ [\Phi_{st}^{cr}(C, T) \lor (\bigvee_{(x_i, x_j) \in ≃} (\neg att_{a_i, a_j} \land \neg att_{a_j, a_i}))] \end{aligned}$$
(2)

Background

Possible Controllability

- Possible controllability ≃ lawyer's reasoning: he must prove that there is a
 possibility (≃ a completion) that his client is innocent
 Necessary controllability ≃ prosecutor's reasoning: he must prove that the
 defendant is guilty without doubt (≃ in each completion)
- Future work:
 - · Implementation and experimentation of the QBF encoding for stable semantics
 - Encoding other semantics
 - Other forms of controllability?
 - optimization issues?
 - rankings?
 - with probabilities?