Comparison Criteria for Argumentation Semantics

Sylvie Doutre¹ Jean-Guy Mailly²

¹IRIT, Université Toulouse 1 Capitole, France

²LIPADE, Université Paris Descartes, France

EUMAS 2017 14-15 December 2017

Argumentation System

Argumentation system

Example:

 $c \longrightarrow b \longrightarrow a$ + Stable \implies {{c, a}} semantics

Given a Dung's argumentation framework $F = \langle A, R \rangle$, $S \subseteq A$ is

- conflict-free w.r.t. *F* if $\nexists a_i, a_j \in S$ s.t. $(a_i, a_j) \in R$
- admissible w.r.t. *F* if *S* is conflict-free and *S* defends each of its arguments against all of their attackers
- a naive extension of *F* if *S* is a maximal conflict-free set (w.r.t. ⊆)
- a stable extension of *F* if *S* is conflict-free and *S* attacks each argument in *A**S*

Examples:

- $c \longrightarrow b \longrightarrow a +$ Stable \implies {{c, a}} semantics
- $c \longrightarrow b \longrightarrow a +$ Naive $\implies \{\{c, a\}, \{b\}\}$ semantics
- $c \longrightarrow b \longrightarrow a +$ Admissible $\implies \{\{c, a\}, \{c\}, \emptyset\}$ semantics

Argumentation System Motivation for Comparison Criteria

Argumentation system

In the context of the dynamics of argumentation systems, σ may have to be changed to a σ'

Possibly, σ' should be not too different from σ

Argumentation system and acceptability requirement:

Enforcement:

 $d \longrightarrow c \longrightarrow b \longrightarrow a + \begin{array}{c} (2) & (3') \\ \text{Stable} \\ \text{semantics} \end{array} \longrightarrow \left\{ \{d, b\} \}\right\}$

Argumentation system and acceptability requirement:

acceptable set

Enforcement:

$$(1) \qquad (2') \qquad (3')$$

$$c \longrightarrow b \longrightarrow a + \qquad \text{Naive} \qquad \implies \qquad \{\{a, c\}, \{b\}\}$$
semantics

Towards Semantic Change

Question

How to measure how different two semantics σ and σ' are?

Four types of comparison criteria:

- ⇒ Property-based
- \implies Relation-based
- ⇒ Acceptance-based
- \implies Complexity-based

Property-based Difference Measures

- Rely on the principles the semantics are defined on. E.g.:
 - admissible semantics: relies on conflict-freeness and admissibility
 - naive semantics: relies on inclusion-maximality for conflict-freeness
- A weight can be assigned to each principle.
- Measure the difference between the principles the semantics are based on, and their possible weights.

Relation-based Difference Measures

- A certain relation between semantics is considered. E.g.:
 - the inclusion relation between extensions under the semantics
- This relation is represented as a graph. E.g.:

$$adm \rightarrow cf \leftarrow na$$

$$\uparrow \qquad \uparrow$$

$$co \leftarrow gr \qquad stg$$

$$\uparrow \qquad \uparrow$$

$$pr \leftarrow sem \leftarrow st$$

 The length of the shortest path between σ and σ' in this graph is measured.

Acceptance-based Difference Measures

- Unlike the two previous types of measures, these ones are relative to a given argumentation framework *F*.
- The sets of extensions $\sigma(F)$ and $\sigma'(F)$ are considered.
- The difference between these two sets (e.g. using the Hamming distance) is measured.

Complexity-based Difference Measures

- Depends on a (set of) reasoning task(s) (skeptical acceptance, credulous acceptance,...)
- Build a graph representing inclusion of the complexity classes for these tasks and semantics
- The distance is the length of the path

Example:

Applying our Distances Semantic Change in Extension Enforcement [Doutre and Mailly, SUM'17]

- $\sigma = st, st(F) = \{\{a_1, a_4, a_6\}\}, E = \{a_1, a_3\}$
- $E \in \sigma'(F)$ for $\sigma' \in \{pr, co, adm, cf\}$
- No change of the graph at all
- $\delta_{Inc,\Sigma}(st, pr) = 2 < \delta_{Inc,\Sigma}(st, co) = \delta_{Inc,\Sigma}(st, cf) = 3 < \delta_{Inc,\Sigma}(st, ad) = 4$
- The new semantics must be pr

Conclusion and future work

• Toward semantic change:

- 4 kinds of difference measures for semantics
- These measures can be combined
- A semantics σ may be "closer" to a σ' than a σ'' according to one measure, but not according to another measure
- Application of our measures: extension enforcement [Doutre and Mailly, SUM'17]
- Future work:
 - Application of these measures in the context of the revision of argumentation systems
 - In this context, study of the combination of these measures with measures for changes on argumentation frameworks
 - Difference between ranking-based semantics