

### Argument, I Choose You! Preferences and Ranking Semantics in Abstract Argumentation

Jean-Guy Mailly and Julien Rossit

LIPADE - Distributed Artificial Intelligence

17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)



• When talking about delicate topics, people sometimes stick to their opinion even when "reasonable" arguments seem to prove they're wrong



- When talking about delicate topics, people sometimes stick to their opinion even when "reasonable" arguments seem to prove they're wrong
  - politics
  - sport
  - Star Wars vs Star Trek
  - Star Wars 1,2,3 vs Star Wars 4,5,6 vs Star Wars 7,8,9
  - Marvel vs DC Comics
  - The Beatles vs The Rolling Stones
  - . . .



- When talking about delicate topics, people sometimes stick to their opinion even when "reasonable" arguments seem to prove they're wrong
  - politics
  - sport
  - Star Wars vs Star Trek
  - Star Wars 1,2,3 vs Star Wars 4,5,6 vs Star Wars 7,8,9
  - Marvel vs DC Comics
  - The Beatles vs The Rolling Stones
  - . . .
- · Their preferences are more important than rational acceptability criteria



Suppose that two candidates A and B talk about funding the education system:

- (A)  $a_1 =$  "We should reduce the number of professors: paying them is expensive."
- (B)  $a_2 =$  "We cannot reduce the number of professors, actually there should be more professors since the number of students has increased recently."
- (B)  $a_3 =$  "Moreover, a good education system is good for society and economy."
- (A)  $a_4 =$  "There were too many professors in the past, we can't pay for more."

$$(a_3) \longrightarrow (a_1) \longleftrightarrow (a_2) \longleftrightarrow (a_4)$$



Suppose that two candidates A and B talk about funding the education system:

- (A)  $a_1 =$  "We should reduce the number of professors: paying them is expensive."
- (B) a<sub>2</sub> = "We cannot reduce the number of professors, actually there should be more professors since the number of students has increased recently."
- (B)  $a_3 =$  "Moreover, a good education system is good for society and economy."
- (A)  $a_4 =$  "There were too many professors in the past, we can't pay for more."



- Classical extension semantics: a3 and a4 accepted, a1 and a2 rejected
- Ranking semantics (e.g. h-categorizer):  $h(a_1) = 0.4$ ,  $h(a_2) = 0.5$ ,  $h(a_3) = h(a_4) = 1$

# Université A Political Debate

Suppose that two candidates A and B talk about funding the education system:

- (A)  $a_1 =$  "We should reduce the number of professors: paying them is expensive."
- (B)  $a_2 =$  "We cannot reduce the number of professors, actually there should be more professors since the number of students has increased recently."
- (B)  $a_3 =$  "Moreover, a good education system is good for society and economy."
- (A)  $a_4 =$  "There were too many professors in the past, we can't pay for more."



- Classical extension semantics: a3 and a4 accepted, a1 and a2 rejected
- Ranking semantics (e.g. h-categorizer):  $h(a_1) = 0.4$ ,  $h(a_2) = 0.5$ ,  $h(a_3) = h(a_4) = 1$
- Suppose that John likes A and Yoko likes B: this does not fit their opinion



# Abstract Argumentation [Dung 95]

### Argumentation Framework (AF)

F = (A, R) with A: set of arguments and  $R \subseteq A \times A$ : attacks between arguments

#### Extension Semantics

 $S \subseteq A$  is

- conflict-free (cf) if there is no  $a, b \in S$  s.t.  $(a, b) \in R$
- stable (st) if  $S \in cf(F)$  and S attacks each argument in  $A \setminus S$
- . . .

### **Ranking Semantics**

Maps F to a pre-order  $\geq: a \geq b$  means "a is at least as acceptable as b" E.g. h-categorizer [Besnard and Hunter 2001]:  $h(a) = \frac{1}{1 + \sum_{(b,a) \in R} h(b)}$ , and  $a \geq b$  iff  $h(a) \geq h(b)$ 



 $F = (A, R, \succeq_p)$ , where  $a \succeq_p b$  means "a is preferred to b"

#### Preference Precedence

(PP) if  $a \succ_p b$ , then  $a >_{\sigma} b$ 



 $F = (A, R, \succeq_p)$ , where  $a \succeq_p b$  means "a is preferred to b"

#### Preference Precedence

(PP) if  $a \succ_p b$ , then  $a >_{\sigma} b$ 

• In simple words: "if I prefer a to b, then I accept a more than b"



 $F = (A, R, \succeq_p)$ , where  $a \succeq_p b$  means "a is preferred to b"

#### Preference Precedence

(PP) if  $a \succ_p b$ , then  $a >_{\sigma} b$ 

- In simple words: "if I prefer a to b, then I accept a more than b"
- Existing ranking semantics don't take preferences into account  $\rightarrow$  violate (PP)



 $F = (A, R, \succeq_p)$ , where  $a \succeq_p b$  means "a is preferred to b"

#### Preference Precedence

(PP) if  $a \succ_p b$ , then  $a >_{\sigma} b$ 

- In simple words: "if I prefer a to b, then I accept a more than b"
- Existing ranking semantics don't take preferences into account  $\rightarrow$  violate (PP)
- Extension semantics for PAFs  $\rightarrow$  violate (PP)



# Preference Sensitive Ranking Semantics

Input:

- $F = (A, R, \succeq_p)$
- $\geq_{\sigma}$  a "classical" acceptability ranking

New ranking  $\geq_p$ :

- if  $a \succ_p b$  then  $a >_p b$
- if  $a \simeq_p b$  then use  $\ge_\sigma$  for tie-breaks: if  $a >_\sigma b$  then  $a >_p b$



# Preference Sensitive Ranking Semantics

Input:

- $F = (A, R, \succeq_p)$
- $\geq_{\sigma}$  a "classical" acceptability ranking

New ranking  $\geq_p$ :

- if  $a \succ_p b$  then  $a >_p b$
- if  $a \simeq_p b$  then use  $\geq_{\sigma}$  for tie-breaks: if  $a >_{\sigma} b$  then  $a >_p b$



- $h(a_1) = 0.4, h(a_2) = 0.5, h(a_3) = h(a_4) = 1$
- John's preferences:  $a_1, a_4 \succ_p^j a_2, a_3$
- Yoko's preferences: a<sub>2</sub>, a<sub>3</sub> ≻<sup>y</sup><sub>p</sub> a<sub>1</sub>, a<sub>4</sub>



# Preference Sensitive Ranking Semantics

Input:

- $F = (A, R, \succeq_p)$
- $\geq_{\sigma}$  a "classical" acceptability ranking

New ranking  $\geq_p$ :

- if  $a \succ_p b$  then  $a >_p b$
- if  $a \simeq_p b$  then use  $\ge_\sigma$  for tie-breaks: if  $a >_\sigma b$  then  $a >_p b$



- $h(a_1) = 0.4, h(a_2) = 0.5, h(a_3) = h(a_4) = 1$
- John's preferences: a1, a4  $\succ_p^j$  a2, a3  $\rightarrow$  a4  $\gg_p^j$  a1  $\gg_p^j$  a3  $\gg_p^j$  a2
- Yoko's preferences:  $a_2, a_3 \succ_p^y a_1, a_4 \to a_3 >_p^y a_2 >_p^y a_4 >_p^y a_1$



- Other frameworks:
  - supports
  - weights
  - logic-based
  - ...
- Study preference arbitration: use  $\succeq_p$  for breaking ties in  $\geq$