Merging of Abstract Argumentation Frameworks

Jérôme Delobelle¹, Adrian Haret², Sébastien Konieczny¹ Jean-Guy Mailly², Julien Rossit³, Stefan Woltran²

1: CRIL – CNRS, France
2: Institute of Information Systems – TU Wien, Austria
3: LIPADE – Université Paris Descartes, France

15th International Conference on Principles of Knowledge Representation and Reasoning 25 – 29 April 2016

Outline¹

Background Notions

Dung's AFs Revising Dung's AFs

Merging Operators for AFs

Extension-based Merging From Extensions to AFs Resolute Merging

Comparison with the Literature

Fusion Operators vs Merging Postulates Merging Operators vs Aggregation Axioms Discussion: Attack-based vs Extension-based Merging

Conclusion

Outline

Background Notions

Dung's AFs Revising Dung's AFs

Merging Operators for AFs

Extension-based Merging From Extensions to AFs Resolute Merging

Comparison with the Literature

Fusion Operators vs Merging Postulates
Merging Operators vs Aggregation Axioms
Discussion: Attack-based vs Extension-based Merging

Conclusion

- An AF is a digraph $F = \langle A, R \rangle$, A is the set of arguments and $R \subseteq A \times A$ is the attack relation
- Evaluation of arguments: Many semantics to compute extensions
 - grounded, stable, preferred, complete,...

- An AF is a digraph $F = \langle A, R \rangle$, A is the set of arguments and $R \subseteq A \times A$ is the attack relation
- Evaluation of arguments: Many semantics to compute extensions
 - grounded, stable, preferred, complete,...

$$Ext_{gr}(F) = \{\{a_1\}\}$$

- An AF is a digraph $F = \langle A, R \rangle$, A is the set of arguments and $R \subseteq A \times A$ is the attack relation
- Evaluation of arguments: Many semantics to compute extensions
 - grounded, stable, preferred, complete,...

$$Ext_{st}(F) = \{\{a_1, a_4, a_6\}\}\$$

- An AF is a digraph $F = \langle A, R \rangle$, A is the set of arguments and $R \subseteq A \times A$ is the attack relation
- Evaluation of arguments: Many semantics to compute extensions
 - grounded, stable, preferred, complete,...

$$Ext_{pr}(F) = \{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$$

- An AF is a digraph $F = \langle A, R \rangle$, A is the set of arguments and $R \subseteq A \times A$ is the attack relation
- Evaluation of arguments: Many semantics to compute extensions
 - grounded, stable, preferred, complete,...

$$Ext_{pr}(F) = \{\{a_1, a_4, a_6\}, \{a_1, a_3\}\}$$

- An AF is a digraph $F = \langle A, R \rangle$, A is the set of arguments and $R \subseteq A \times A$ is the attack relation
- Evaluation of arguments: Many semantics to compute extensions
 - grounded, stable, preferred, complete,...

$$Ext_{co}(F) = \{\{a_1, a_4, a_6\}, \{a_1, a_3\}, \{a_1\}\}$$

Revision of AFs

[Coste et al, KR 2014]

- Revision of an AF F by a formula φ which expresses conditions on extensions
- A two-step process:

$$\left. \begin{array}{c} \text{Inputs} & \text{Outputs} \\ F \\ \varphi \end{array} \right\} \quad \Longrightarrow \quad \text{revised extensions} \quad \Longrightarrow \quad \left\{ F_1', \dots, F_k' \right\}$$

Revision of AFs

[Coste et al, KR 2014]

- Revision of an AF F by a formula φ which expresses conditions on extensions
- A two-step process:

$$\left. \begin{array}{c} \text{Inputs} & \text{Outputs} \\ F \\ \varphi \end{array} \right\} \quad \Longrightarrow \quad \text{revised extensions} \quad \Longrightarrow \quad \left\{ F_1', \dots, F_k' \right\}$$

[Diller et al, IJCAI 2015]

 Modification of rationality postulates: result is required to be a single AF [Dunne et al, AlJ 2015]

Outline

Background Notions

Dung's AFs Revising Dung's AFs

Merging Operators for AFs

Extension-based Merging From Extensions to AFs Resolute Merging

Comparison with the Literature

Fusion Operators vs Merging Postulates Merging Operators vs Aggregation Axioms Discussion: Attack-based vs Extension-based Merging

Conclusion

Schematic Explanation

- Merging of a profile of AFs $\langle F_1, \dots, F_n \rangle$, with an integrity constraint μ which expresses conditions on extensions
- A two-step process:

$$\begin{array}{c} \text{Inputs} & \text{Outputs} \\ \langle F_1, \dots, F_n \rangle \\ \mu \end{array} \} \quad \Longrightarrow \quad \text{extensions} \quad \Longrightarrow \quad \{F_1', \dots, F_k'\}$$

Questions:

- How to obtain the extensions?
- ▶ How to obtain the AFs?

Schematic Explanation

- Merging of a profile of AFs $\langle F_1, \dots, F_n \rangle$, with an integrity constraint μ which expresses conditions on extensions
- A two-step process:

$$\begin{array}{c} \text{Inputs} & \text{Outputs} \\ \langle F_1, \dots, F_n \rangle \\ \mu \end{array} \} \quad \Longrightarrow \quad \text{extensions} \quad \Longrightarrow \quad \{F_1', \dots, F_k'\}$$

Questions:

- How to obtain the extensions?
- ▶ How to obtain the AFs?

Schematic Explanation

- Merging of a profile of AFs $\langle F_1, \dots, F_n \rangle$, with an integrity constraint μ which expresses conditions on extensions
- A two-step process:

$$\begin{array}{c} \text{Inputs} & \text{Outputs} \\ \langle F_1, \dots, F_n \rangle \\ \mu \end{array} \} \quad \Longrightarrow \quad \text{extensions} \quad \Longrightarrow \quad \{F_1', \dots, F_k'\}$$

Questions:

- How to obtain the extensions?
- How to obtain the AFs?

Rationality Postulates

Postulates adapted from propositional belief merging [Konieczny and

Pino Pérez, JLC 2002]

(M0)
$$Ext_{\sigma}(\Delta_{\mu}(\mathcal{F})) \subseteq \mathcal{A}_{\mu}^{\sigma}$$

(M1) If
$$\mathcal{A}_{\mu}^{\sigma} \neq \emptyset$$
, then $Ext_{\sigma}(\Delta_{\mu}(\mathcal{F})) \neq \emptyset$

(M2) If
$$Ext_{\sigma}(\bigwedge \backslash \mathcal{F}) \cap \mathcal{A}_{\mu}^{\sigma} \neq \emptyset$$
, then $Ext_{\sigma}(\Delta_{\mu}(\mathcal{F})) = Ext_{\sigma}(\bigwedge \backslash \mathcal{F}) \cap \mathcal{A}_{\mu}^{\sigma}$

(M3) If
$$\mathcal{F}_1 \equiv \mathcal{F}_2$$
 and $\mu_1 \equiv_{\sigma} \mu_2$, then $Ext_{\sigma}(\Delta_{\mu_1}(\mathcal{F}_1)) = Ext_{\sigma}(\Delta_{\mu_2}(\mathcal{F}_1))$

(M4) If
$$Ext_{\sigma}(F_1) \subseteq \mathcal{A}^{\sigma}_{\mu}$$
 and $Ext_{\sigma}(F_2) \subseteq \mathcal{A}^{\sigma}_{\mu}$, then $Ext_{\sigma}(\Delta_{\mu}(\langle F_1, F_2 \rangle)) \cap Ext_{\sigma}(F_1) \neq \emptyset$ implies $Ext_{\sigma}(\Delta_{\mu}(\langle F_1, F_2 \rangle)) \cap Ext_{\sigma}(F_2) \neq \emptyset$

(M5)
$$Ext_{\sigma}(\Delta_{\mu}(\mathcal{F}_1)) \cap Ext_{\sigma}(\Delta_{\mu}(\mathcal{F}_2)) \subseteq Ext_{\sigma}(\Delta_{\mu}(\mathcal{F}_1 \cup \mathcal{F}_2))$$

(M6) If
$$Ext_{\sigma}(\Delta_{\mu}(\mathcal{F}_{1})) \cap Ext_{\sigma}(\Delta_{\mu}(\mathcal{F}_{2})) \neq \emptyset$$
, then
$$Ext_{\sigma}(\Delta_{\mu}(\mathcal{F}_{1} \cup \mathcal{F}_{2})) \subseteq Ext_{\sigma}(\Delta_{\mu}(\mathcal{F}_{1})) \cap Ext_{\sigma}(\Delta_{\mu}(\mathcal{F}_{2}))$$

(M7)
$$Ext_{\sigma}(\Delta_{\mu_1}(\mathcal{F})) \cap \mathcal{A}^{\sigma}_{\mu_2} \subseteq Ext_{\sigma}(\Delta_{\mu_1 \wedge \mu_2}(\mathcal{F}))$$

$$\textbf{(M8)} \ \ \mathsf{If} \ \mathit{Ext}_{\sigma}(\Delta_{\mu_1}(\mathcal{F})) \cap \mathcal{A}^{\sigma}_{\mu_2} \neq \varnothing, \ \mathsf{then} \ \mathit{Ext}_{\sigma}(\Delta_{\mu_1 \wedge \mu_2}(\mathcal{F})) \subseteq \mathit{Ext}_{\sigma}(\Delta_{\mu_1}(\mathcal{F})) \cap \mathcal{A}^{\sigma}_{\mu_2}$$

Representation Theorem

Syncretic Assignment

Mapping from any profile \mathcal{F} to a total pre-order on extensions $\leq_{\mathcal{F}}$ s.t.

- 1. If $c_1 \in Ext_{\sigma}(N \mathcal{F})$, $c_2 \in Ext_{\sigma}(N \mathcal{F})$, then $c_1 \simeq_{\mathcal{F}} c_2$
- 2. If $c_1 \in Ext_{\sigma}(\bigwedge \mathcal{F})$, $c_2 \notin Ext_{\sigma}(\bigwedge \mathcal{F})$, then $c_1 <_{\mathcal{F}} c_2$
- 3. $\forall c_1 \in Ext_{\sigma}(F_1), \exists c_2 \in Ext_{\sigma}(F_2) \text{ s.t. } c_2 \leqslant_{(F_1,F_2)} c_1$
- 4. If $c_1 \leqslant_{\mathcal{F}_1} c_2$ and $c_1 \leqslant_{\mathcal{F}_2} c_2$, then $c_1 \leqslant_{\mathcal{F}_1 \cup \mathcal{F}_2} c_2$
- 5. If $c_1 <_{\mathcal{F}_1} c_2$ and $c_1 \leqslant_{\mathcal{F}_2} c_2$, then $c_1 <_{\mathcal{F}_1 \cup \mathcal{F}_2} c_2$

Theorem

 Δ satisfies **(M0)-(M8)** iff $\mathit{Ext}_\sigma(\Delta_\mu(\mathcal{F})) = \min(\mathcal{A}^\sigma_\mu, \leqslant_\mathcal{F})$

Distance-based Merging

- d: distance between sets of arguments (e.g. Hamming distance)
- ▶ ⊗: aggregation function (e.g. sum)
- $\mathcal{F} \mapsto \leqslant_{\mathcal{F}}^{\otimes,d}$: syncretic assignment defined by

$$c_1 \leqslant_{\mathcal{F}}^{\otimes,d} c_2 \text{ iff } \otimes_{F \in \mathcal{F}} d(c_1, Ext_{\sigma}(F)) \leqslant \otimes_{F \in \mathcal{F}} d(c_2, Ext_{\sigma}(F))$$

Example of Distance-based Merging

Example of Distance-based Merging

Goal: merging $\mathcal{F} = \langle F_1, F_2, F_3 \rangle$ with constraint $\mu = a_2 \wedge a_4 \wedge (a_1 \vee a_3)$

11.	F_1	F_2	F_3	Σ
~	$\{a_1, a_3, a_4\}$	$\{a_2, a_4\}$	$\{a_1, a_2, a_4\}$	
	$\{a_2, a_3, a_4\}$			
$\{a_1, a_2, a_4\}$	2	1	0	3
$\{a_2, a_3, a_4\}$	0	1	2	3
$\{a_1, a_2, a_3, a_4\}$	1	2	1	4

Example of Distance-based Merging

Goal: merging $\mathcal{F} = \langle F_1, F_2, F_3 \rangle$ with constraint $\mu = a_2 \wedge a_4 \wedge (a_1 \vee a_3)$

μ	F_1	F_2	F_3	Σ
	$\{a_1, a_3, a_4\}$ $\{a_2, a_3, a_4\}$	$\{a_2, a_4\}$	$\{a_1, a_2, a_4\}$	
$\{a_1, a_2, a_4\}$	2	1	0	3
$\{a_2, a_3, a_4\}$	0	1	2	3
$\{a_1, a_2, a_3, a_4\}$	1	2	1	4

Reminder: A Two-Step Process

$$\begin{array}{c} \text{Inputs} & \text{Outputs} \\ \left\langle F_1, \dots, F_n \right\rangle \\ \mu \end{array} \} \quad \Longrightarrow \quad \text{extensions} \quad \Longrightarrow \quad \left\{ F_1', \dots, F_k' \right\}$$

- Postulates, representation theorem: selection of extensions
- Generation operators: obtaiting AFs

Reminder: A Two-Step Process

$$\begin{array}{c} \text{Inputs} & \text{Outputs} \\ \left\langle F_1, \dots, F_n \right\rangle \\ \mu \end{array} \} \quad \Longrightarrow \quad \text{extensions} \quad \Longrightarrow \quad \left\{ F_1', \dots, F_k' \right\}$$

- Postulates, representation theorem: selection of extensions
- Generation operators: obtaiting AFs

Generation of AFs

- mapping \mathcal{AF}_{σ} from a set of extensions \mathcal{C} to a set of AFs \mathcal{F} s.t. $\mathit{Ext}_{\sigma}(\mathcal{F}) = \mathcal{C}$.
- ▶ Full merging operator: $\mathcal{AF}_{\sigma}(\min(\mathcal{A}_{u}^{\sigma}, \leq_{\mathcal{F}}))$
- Two policies to handle minimal change

Generation of AFs

- mapping \mathcal{AF}_{σ} from a set of extensions \mathcal{C} to a set of AFs \mathcal{F} s.t. $Ext_{\sigma}(\mathcal{F}) = \mathcal{C}$.
- ▶ Full merging operator: $\mathcal{AF}_{\sigma}(\min(\mathcal{A}_{\mu}^{\sigma}, \leqslant_{\mathcal{F}}))$
- Two policies to handle minimal change

Minimal change of attack, then minimal cardinality

Minimal cardinality, then minimal change of attack

Example of Generation

Reminder: at the first step, we obtained

$$Ext_{st}(\Delta_{\mu}^{\sum,d_{H}}(\langle F_{1},F_{2},F_{3}\rangle)) = \{\{a_{1},a_{2},a_{4}\},\{a_{2},a_{3},a_{4}\}\}$$

Attack, then cardinality F_1' F_2' F_3' F_3

Resolute Merging: Schematic Explanation

- Is it possible to represent the group's beliefs by a single AF?
- A two-step process:

$$\begin{array}{c} \text{Inputs} & \text{Outputs} \\ \left\langle F_1, \dots, F_n \right\rangle \\ \mu \end{array} \} \quad \Longrightarrow \quad \text{realizable extensions} \quad \Longrightarrow \quad F'$$

Question:

Adaption of the first step to obtain realizable extensions?

Resolute Merging: Schematic Explanation

- Is it possible to represent the group's beliefs by a single AF?
- A two-step process:

$$\begin{array}{c} \text{Inputs} & \text{Outputs} \\ \langle F_1, \dots, F_n \rangle \\ \mu \end{array} \} \quad \Longrightarrow \quad \text{realizable extensions} \quad \Longrightarrow \quad F'$$

Question:

Adaption of the first step to obtain realizable extensions?

Resolute Merging

• σ -compliant assignment [Diller et al, IJCAI 2015]: pre-order \leqslant s.t. for any formula μ , $\min(A_{\mu}^{\sigma}, \leqslant)$ is σ -realizable

Good News

A resolute merging operator satisfies the postulates iff there is a σ -compliant syncretic assignment s.t. $\textit{Ext}_{\sigma}(\Delta_{\mu}(\mathcal{F})) = \min(A^{\sigma}_{\mu}, \leqslant)$

Resolute Merging

• σ -compliant assignment [Diller et al, IJCAI 2015]: pre-order \leqslant s.t. for any formula μ , $\min(A_{\mu}^{\sigma}, \leqslant)$ is σ -realizable

Good News

A resolute merging operator satisfies the postulates iff there is a σ -compliant syncretic assignment s.t. $Ext_{\sigma}(\Delta_{\mu}(\mathcal{F})) = \min(A_{\mu}^{\sigma}, \leqslant)$

Bad News

There are no resolute merging operators for stable, preferred, grounded and complete semantics.

Outline¹

Background Notions

Dung's AFs Revising Dung's AFs

Merging Operators for AFs

Extension-based Merging From Extensions to AFs Resolute Merging

Comparison with the Literature

Fusion Operators vs Merging Postulates Merging Operators vs Aggregation Axioms Discussion: Attack-based vs Extension-based Merging

Conclusion

FUS_{AII} , FUS_{AIINT} , FUS_{MajNT} [Delobelle et al, IJCAI 2015]

$$\begin{array}{ccc} \text{Inputs} & \text{Outputs} \\ \langle \mathit{F}_1, \dots, \mathit{F}_\mathit{n} \rangle & \Longrightarrow & \text{Weighted AF} & \Longrightarrow & \text{extensions} \end{array}$$

• no integrity constraint (i.e. $\mu = \top$): **(M0)**,**(M7)**,**(M8)** trivially satisfied

	FUS_{AII}	FUS _{AIINT}	FUS_{MajNT}
(M1)	×	✓	✓
(M2)	×	×	×
(M3)	✓	✓	✓
(M4)	×	×	×
(M5)	×	×	×
(M6)	×	×	×

Aggregation Axioms [Dunne et al, COMMA 2012; Delobelle et al, IJCAI 2015]

- ▶ **Anonymity** aggregation is not sensible to permutations of the profile
- Non-triviality the result has at least one non-empty extension
- Decisiveness the result has exactly one non-empty extension
- Unanimity when agents agree on something, it belongs to the result
- Majority when most of the agents agree on something, it belongs to the result
- Closure everything in the result is in some part of the input
- Identity if all AFs are identical, the result is the initial AF

Merging Operators vs Aggregation Axioms

Properties	Σ , dg	Σ , card	Lex, dg	Lex, card
ANON	✓	√	√	✓
σ -SNT/ σ -WNT	×	×	×	×
σ -SD $/ \sigma$ -WD	×	×	×	×
UA	×	×	×	×
σ -U $/$ sa_{σ} -U	✓	√	✓	√
ca_{σ} -U	√gr	√ ^{gr}	√gr	√ gr
MAJ-A	×	×	×	×
σ -MAJ $/$ ca_{σ} -MAJ	√gr	√ ^{gr}	×	×
sa _σ -MAJ	✓	✓	×	×
CLO / AC / σ-C	×	×	×	×
ca _σ -C	✓	✓	✓	✓
sa_{σ} -C	√gr	√ gr	√gr	√ gr
ID	✓	✓	✓	✓

Discussion: Two Different Philosophies of AF Merging

It is not surprising that

- ► FUS_{AII}, FUS_{AIINT}, FUS_{MaiNT} do not satisfy many IC-merging postulates
- our merging operators do not satisfy many aggregation axioms Both approaches follow different intuitions

Operators Properties Information FUS_{AII} , FUS_{AIINT} , FUS_{MaiNT} Aggregation axioms IC-Merging Postulates Attacks

 Δ_{μ} -family Extensions

Attack-based Merging [Coste-Marquis et al 2007, Tohmé et al 2008, Delobelle et al 2015]

- $F = \langle F_1, F_2, F_3, F_4, F_5 \rangle$
- ▶ Only $c \rightarrow b$ belongs to all AFs

Attack-based Merging [Coste-Marquis et al 2007, Tohmé et al 2008, Delobelle et al 2015]

- $F = \langle F_1, F_2, F_3, F_4, F_5 \rangle$
- Only $c \rightarrow b$ belongs to all AFs
- Result of merging is F₆

Extension-based Merging

- $F = \langle F_1, F_2, F_3, F_4, F_5 \rangle$
- $\{a_1, a_2, a_3, a_4, b\}$ is the single extension for all AFs: must be selected at first step of merging

Extension-based Merging

- $F = \langle F_1, F_2, F_3, F_4, F_5 \rangle$
- $\{a_1, a_2, a_3, a_4, b\}$ is the single extension for all AFs: must be selected at first step of merging
- Result of merging is F₁

Outline

Background Notions

Dung's AFs Revising Dung's AFs

Merging Operators for AFs

Extension-based Merging From Extensions to AFs Resolute Merging

Comparison with the Literature

Fusion Operators vs Merging Postulates
Merging Operators vs Aggregation Axioms
Discussion: Attack-based vs Extension-based Merging

Conclusion

Conclusion

Summary

- New family of AF merging operators, inspired by extension-based revision [Coste et al, KR 2014]
 - Axiomatic characterization + representation theorem
 - Concrete operators: distance-based merging
- New philosophy of AF merging, orthogonal to attack-based merging

Future works

- Determine resolute merging operators similar to resolute revision operators [Diller et al, IJCAI 2015]
- Study other attack-based approaches [Coste-Marquis et al 2007, Tohmé et al 2008]
- Computational aspects and algorithms design

