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This paper  reports  tests of several stochastic  learning  models  for  a  continuum 
of responses in a  simple  discrimination  experiment. The  basic  models  are 
formulated  in  Suppes (1959, 1960). The  only  previous  experiment in  the 
literature  directly  testing  these  models,  reported  by  Suppes  and  Frankmann 
(1961), is  concerned  with  a  simple  learning  situation with unimodal  non- 
contingent  determinate  reinforcement. They describe their  experiment as 
follows : 

The subject is told that his task on  each trial is to predict by means of a 
pointer where a spot of light will appear  on the circumference of a circle; the 
subject’s responses are his pointer predictions. At the end of each trial the 
“correct” position of the spot is shown to the subject; this is the reinforcing 
event for the trial. The response x and the reinforcement y vary  continuously 
along the circle from O to Zn. 

The particular  reinforcement distribution used  by Suppes  and  Frankmann 
(1961)-was the triangular  distribution  on the interval O to Zn. 

The present  experiment  used the same  circular  apparatus. The  most  im- 
portant modification was the introduction of a  discrimination  situation  in the 
following manner: A panel of four  lights was placed in  front of the subject. 
At the beginning of each  trial  one of the four  lights  went  on.  Corresponding 
to each light was a  different  probability  distribution  for the reinforcement on 
the circle. The  four reinforcement  distributions were uniform  with half- 
range Z equal  to z/10 radians  for  lights 1 and 3 and  to 7c/5 radians  for  lights 
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2 and 4. The  four reinforcement  regions  were  equally  spaced on  the circle 
with  their relative  positions  identical for all subjects,  although the absolute 
locations of the regions  with  respect  to the horizontal and  the vertical axes 
were  randomized  for  different  subjects. 

In  the previous  experimental study all subjects  were run for 300 trials. 
In  the present  study  that  number was increased to 500 trials in  order  that 
adequate  data on each of the discriminative  stimuli might  be  obtained. 

The  discrimination  situation  is an  admittedly  simple one,  for there is no 
apparent  overlap  among the discriminative  stimuli or among the  four different 
reinforcement  regions, and  in  fact each  region is separated  from the next by a 
significant  zone of nonreinforcement. This simple  situation was selected 
deliberately in  order  to facilitate  detailed analysis of response  data.  Operating 
on  the assumption  that  there is no  overlap in  the stimuli associated with the 
four lights, we are  justified from a  theoretical  standpoint  in analyzing the 
response  data for each of the  four discriminative  lights as a  separate  learning 
process. I n  terms of stimulus-sampling  theory this  assumption  amounts  to 
postulating  that  there  are exactly four  stimuli  (the  four  lights)  and  that 
exactly one of them is sampled on a  given  trial. (For a further discussion of 
this simplified approach  to  discrimination, see Suppes  and Atkinson, 1960, 

The  essential modification of the  theory  for a finite number of responses 
introduced  in  Suppes (1960) for  handling  a  continuum of responses is the 
cdncept of a smearing distribution. In  the finite case the fundamental  assump- 
tion of stimulus-sampling  theory is that each  stimulus  element is conditioned 
to  at  most  one  response;  this  assumption seems unsound  in  the case of a 
continuum. The  introduction of a  smearing  distribution  amounts  to  postulat- 
ing  that  the conditioning of each stimulus is smeared over a  certain  interval 
of responses, possibly the whole  continuum available. The conditioning of 
any  stimulus  is  represented by a  probability  density k ( x ;  y )  for the response 
x. The parameter y is the mean of the K distribution. It is postulated that y 
takes on  the value of the  point of reinforcement  when the stimulus is sampled 
and reinforcement  is effective. The conditioning  parameter c is the prob- 
ability of reinforcement  being effective on any  trial. 

The  smearing  distribution  enters  into the linear  models in a  similar 
fashion, and  the learning  parameter 8 plays essentiaily the same role as the 
conditioning  parameter c. Because the predictions we consider  are  identical 
for  the stimulus-sampling and linear  models, we shall  mainly  consider  linear 
models in  the sequel, in view of their greater  simplicity of formulation. 
However, from  the  standpoint of psychological theory, we consider the 
stimulus-sampling  models to  be  more  fundamental because they postulate 
schemata  for the processes of conditioning and sampling stimuli;  for a 
detailed  statement of their basic  assumptions  the reader  is  referred  to Suppes 
(1960). 

The  exact shape  assumed  for the  smearing  distribution  had little effect on 
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the predicted  response  distributions in  the  Suppes  and  Frankmann (1961) 
study.  The uniform  reinforcement  distributions  used in  the present  experi- 
ment provide  a better  opportunity  to discriminate  between  various  smearing 
distributions. It is  to  be  emphasized that  the smearing  distribution  is a 
theoretical  concept and  must be  inferred  from  the response  histogram. It is 
not possible to make  direct  frequency  observations on  the  smearing  distribu- 
tion itself. Finally,  before we turn  to a  presentation of the theoretical  results 
tested  in  the  experiment,  it  should  be  mentioned  that we also present at a 
grosser level an analysis of the association formed  between the discriminative 
stimuli, i.e., the  four lights, and  the regions of reinforcement. This analysis 
is  performed in  terms of the one-stimulus-element,  two-response  model that 
has  been  much  applied  to  paired-associate  and  simple  concept  learning. A 
brief characterization of the model is given  at the beginning of the discussion 
of the association process. 

1, Summary of theoretical  results 
We will not give here  a general development of the linear  models or 

of the stimulus-sampling  models  for  a  continuum of responses but will 
present only basic  ideas  and  results  actually  used in  the analysis of data. 
Detailed  proofs and derivations  are given in  the Appendix. We also restrict 
ourselves to the case where  for each discriminating  stimulus the reinforce- 
ment  schedule is determinate, i.e., a  reinforcement follows a  response at each 
trial;  and noncontingent, i.e.,  independent of the subject’s  responses. In  this 
section we first  discuss the general  concepts  common to  the different  models; 
then after recalling the  main features of the basic  model  (Model I), we 
investigate  various  extensions of it.  We conclude  with  some  remarks on  the 
estimation of the smearing  distribution. 

The  first  concept to  be discussed  is that of the reinforcement  distribution. 
Letting y be the point of reinforcement, we denote  by f ( y )  the reinforcement 
density. Having in mind the particular  (uniform)  distribution  used in  the 
experiment, we assumef(y)  to be  symmetric  around the origin, and of range 
ZE, i.e., f ( y )  > O for -Z i y I Z, and f ( y )  = O for 1y 1 > Z. Given  an 
interval Y = (a,  b),  we denote by F(  Y )  the integral of f(y) over Y,  i.e., the 
probability of a  reinforcement  inside the interval Y. 

Although the reinforcement densityf(y) is known, the smearing  distribu- 
tion is a  hypothetical  construct. It can be characterized  by  a  function K(x, y ) ,  
which,  when  considered as a  function of x, is a  probability  density,  symmetric 
around the point x y .  In  this  study, we also assume that K(x, y )  has  finite 
range Za and  that a is not  too  large; in  the case of the circle, if we suppose 
a < z - Z, we can  apply  to the circle the formulas valid for  a  linear  con- 
tinuum because there is no  periodicity in  the  functions f and k. As we shall 
see, the data  support  this restriction on a. 

We use x, for  the response  on  trial n andj,(y,xnsn-l) for the  joint density 
on  trial n, where sn-l is the finite sequence of responses and reinforcements 
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from  trial 1 through  trial n-l .  The mean  asymptotic  response  density we 
denote  by Y(.), applying  subscripts I, II, and III, as appropriate,  for the 
various  models we consider.  Using the preceding  concepts, we consider 
different  models:  Model I is the basic  model  already  developed in  Suppes 
(1959). Models II, II’, and III are  extensions of Model I. For  each of these 
extensions, me might consider a !inear model and a stimulus-sampling model. 
Both  lead  to  predictions that agree in certain cases but differ for  some 
sequential  statistics. In  fact, in  the present  experiment, the theoretical  quan- 
tities  actually  checked  against the data coincide for  both  kinds of models; 
therefore we will restrict  ourselves, in  the following presentation,  to the 
linear rnode1s.l 

The basic model (Model I). We  first  summarize the basic  properties of 
Model I. Most proofs  are  given in Suppes (1959). The  basic axiom can  be 
written  considering  densities  instead of distribution  functions : 

(1) j,(. l Y%-1 > %-l, %-J = (1 - 6)jn-1(. I % - z )  i- W x ,  m-l> 

The  basic  feature of this  model is that  the  center of the smearing  density is 
yn-l, i.e., the point of the last  reinforcement. 

The derivation  from Eq. (1) of the asymptotic  response  density, averaged 
over all possible  past  histories, yields the following equation: 

Y I ( 4  = 1 +l %x, Y)f(Y) dY> 
-Z 

where f (  y) is the noncontingent  reinforcement  density ; the asymptotic  prob- 
ability of a  response  inside  any given interval X is given  by 

W X )  = J Y,(.> dx 
x 

a  notation we use  repeatedly. 

ment ynp1 can  be  shown to be 
The  joint asymptotic  density of the response x, following the reinforce- 

j (% ,rn-l) = (1 - 6 )  Yn(.,Jf(rn-l) f Of(Yn-l)N% ,Y,-l> 
Now  taking  intervals X ,  Y ,  we can  obtain the asymptotic  conditional 

probability of a response in  the interval X, given the  preceding reinforcement 
in  the interval : 

where 
c r  

and similarly, we can  obtain the conditional  probability of a response in X ,  

See the Appendix for some corresponding stimulus-sarnpiing mode!s. 
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given the two preceding  reinforcements in Y,-l and Y,-z : 

Models II,  II’, and III. As will be  shown in  the section on empirical 
results, the fit of Model I is not satisfactory  for the two large  reinforcement 
regions  with  half-range  equal to n/S radians. A plausible  hypothesis  to 
account for  this discrepancy  is that  the  strict  independence-of-path assump- 
tion implied by Eq. (1) is violated.  Subjects  may,  for  instance, tend  to average 
the most  recent  reinforcements,  perhaps  using  some  weighting  function, and 
may not simply be affected in changing their response distributions by the 
immediately  preceding  reinforcement. When  the reinforcement  distribution 
is uniform over a  restricted  interval of the continuum of possible responses 
it seems particularly  natural  to  expect  some  piling up of responses  around 
the center of this  distribution. T o  test  this  kind of hypothesis we have devel- 
oped several modifications of Model I that take such  dependency possi- 
bilities into account. For obvious  reasons we have restricted ourselves to 
three models that are  computationally  manageable. 

These models  retain the structure of the recursion axiom (l)> but we 
rewrite this axiom as follows: 

(5 1 jn(x  l ~ n - 1 ,  X,-1 , sn-2) 1 (l - ,Q).in-l(x I sn-2) + O ~ ( X  , Zn> 

where x,, the  center of the smearing  distribution, is not necessarily yn-2 ,  
the point of the last  reinforcement. 

Within  this framework there is still  considerable  freedom,  even if we 
restrict x, to  be,  for  instance,  a  weighted  combination of previous  reinforce- 
ments. If we take z, = we get  Model I. -4nother  extreme possibility 
is to take x, = A,, where A, is the over-all average of  al! previous  reinforce- 
ments. In  the noncontingent case, A, converges to  a fixed point, the  mem of 
the reinforcement  distribution  (which we can  take  equal  to O);  in  this case 
the asymptotic  response  distribution  would  be just  the smearing  distribution 
with  its  center  at Q. 

In  this paper we mainly investigate  two  intermediate cases, which we call 
Model I I  and  Model III. Model Il[ is defined by  letting z, = (y,-l + y9t-2)/2; 
i.e., z, is the mean of the two previous  reinforcements.  Model IET is defined by 
letting z, = (y,-l f O)/2 = y,-J2. In  this case x, is  at  asymptote the mean 
of the last  reinforcement and of the over-all average of reinforcements, 
O. Stated  formally, the new recursion axioms corresponding to Eq. (l>9 read: 
MODEL II: 
(6) j,(X IYn-l , %-l ,y,-Z I Xn-2, $,-z) = (1 - 6)jn-1(3 1Yn-2  I x,- 2 > %-d 
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MODEL I I I  : 

In  addition  to  Models II and  III, which  correspond  to the  structure 
described  by Eq. ( 5 ) ,  we have studied  a  model  with  a  recursion axiom going 
back  two  trials  instead of one, and leading to predictions close to  those of 
Model II ; we call it 
MODEL II’: 

(8) in@ I %-l , %-l >y?L-z> %-z, b )  

Its intuitive  idea is essentially the same as that of Model II,  but  it decreases 
the  impact of the reinforcement  on  trial n - 2 on  the response on  trial n. 

We now indicate  for  each  model the asymptotic  response  density  and the 
two  sequential  probabilities  corresponding to  those given for  Model I, i.e., 
the analogues of Eqs. (Z), (3), and (4). 

MODELS II AND II’: 
For  the  asymptotic response  densities, we have 

(9) k ( X )  = 2 j j f(.)f(Zy - u)k(x,  Y) d3’dZL ; 

YIII(4 = 2 j f(2y)k(x, Y )  dY * 

+ z  + z  

- z  - z  
MODEL I I I :  

(10) 
+Z 

-Z 

Notice that  Eq. (9) can be  rewritten in a way formally  identical to Eq. (2). 
If we let 

f ’( y) = 2 j + ES(u)f(2Y - 21) du , 

%(X) = j f ’ ( y ) k ( x ,  Y )  dY.  

- 2  
Eq. (9) becomes 

+ i  

- Z  

The  functionf’(y) is a  density,  corresponding  to the distribution of the 
average of two variables  distributed  according  to the density f ( y ) ;  thus one 
sees that  Model II yields the asymptotic  response  distributions  that  Model I 
would yield if the reinforcement  density f ( y )  were  replaced  by the new 
reinforcement densityf’(y).  For  that reason, f ’ ( y )  may be called a  “pseudo- 
reinforcement  density.”  Similarly,  for  ,l#lodel III, a  pseudoreinforcement 
density  can be defined asf”(y) = 2f(Zy). It should  be  pointed  out, however, 
that by  this change  Models II and III cannot be  reduced  to  Model I, as will 
be seen by considering the sequential  statistics. 

We consider  first the analogues of Eq. (3)) i.e., the probability of a 
response in X,, given the preceding  reinforcement in Y,: 
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MODELS II AND II’: 

where 

where 

We next give the analogues of Eg. (4)’ i.e., the probability of a response in 
X ,  given the two  preceding  reinforcements. Here (for the first time)  Models 
II and II’ differ: 
M O D E L  II: 

where 

M O D E L  II’: 

M O D E L  III : 

Estimation of the  smearing  distribution. The smearing  distribution 
must be  estimated from  the data.  Theoretically, Eq. (1) [or (9) or (10)’ 
according to the model  being  considered]  completely  determines the smearing 
distribution  from the knom-ledge of the  asymptotic response  distribution y(.). 

Previous  results,  however,  suggest that  the  asymptotic response  distribution 
is not  particularly  sensitive  to large differences in  the  form of the smearing 
distributions  (Suppes  and  Frankmann, 1961). We will thus follow the pro- 
cedure of assuming  different  types of smearing  distributions  (such as uniform 
or  beta  distributions)  and  predicting  for  each  type the theoretical  response 
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distribution.  However,  it  is  valuable  to possess a  method of estimzting  im- 
portant characteristics of the  smearing  distribution,  such as the variance, 
before  having  to  assume the distribution  to  be of any  particular  type. For  the 
present  experiment,  such  a  method is a  consequence of the following 
property. 

Additive variance property. For a linear continuum the aariance of the 
asymptotic response distribution is the sum of the variance of the  reinforcement 
(orpseudoreinforcement) distribution and the  aariance ofthe smearing distribution. 
We have used  this variance property  to make a  first  comparison of the  differ- 
ent models on  the basis of individual  data. 

2. Experimental method 
Subjects. The subjects were 31 male and 13 female students  at  Stanford 

University.  Each  subject was paid four dollars  for  participating  in  the  two- 
hour  experimental session. 

Apparatus. The general  apparatus  is  the  one  described  in  Suppes  and 
Frankmann (1961) but of the two circles therein described, only the larger 
(5  feet in diameter) was used in  the  present  study. In  addition,  a  square  panel 
of four  lights was introduced  in  front of the subject  on  the  arm of his  chair. 
The  colors of the lights were green, yellow, blue,  and  red.  One  light  went 
on  at  the beginning of each trial. 

Procedure. The essential part of the  instructions read to  the  subjects 
was as follows: 

In  this experiment we are  studying  how  people  learn  to locate targets 
on radar  screens  and  how this skill can be  developed. The experiment  con- 
sists of a  series of trials. On each  trial  there is a  target  located  at  some 
point on  this screen,  and  your  task is to try  to  predict as accurately as 
possible the location of that target. On each trial  there is a  different  target. 

Now for  the details. Do you see the bar of light  on  the  screen?  That 
bar of light  can  be  rotated by turning  this knob. Try  it. You will find that 
the  light can  be moved around  a large circle. On each trial the target will 
be a point located  somewhere on  the edge of this circle. 

NOVV look at  the  four  lights you have on the arm of your  chair: red, 
blue,  green, and yellow (the  order  in  which  they were named was random- 
ized). These  are signal  lights;  they  announce the beginning of each  trial. 
When  any one  light goes on, make  your  prediction. Take  the  knob  and 
turn  it  to move the  bar of light  to the point  where  you think  the  target lies. 
When  the  bar is at  that  point, release the knob  and say “Mark.”  After  you 
have made  your  prediction,  you will be  shown  the location of the target. 
The  bar of light will move from  your  prediction  point  to the correct posi- 
tion of the target,  and I will say “Target.”  That is the  end of a trial. The 
next  trial  begins  when  any  one of the signal  lights goes on again. Then 
you  take the knob  again and  turn  it  to  predict  the location of a new target. 
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I will briefly  repeat the steps of each trial: 
1. Wait  until any  one of the signal  lights goes on. 
2. Take  the knob, move the  bar of light  to  your  prediction point, 

release the knob,  and say “Mark.” 
3. The  bar of light moves toward the actual  location of the target  and 

I say “Target.” 
Remember that your  task  is  to make as accurate  a  prediction as possible 

on each  trial. Of course,  you will have to guess on  the first  trials, but 
with  practice  you will see that  your predictions  are  improving. 

Qne  last comment: go as quickly as possible. 

As soon as the questions  had  been  answered  by  paraphrasing the instruc- 
tions, 500 trials were run,  with two interruptions of about 6 minutes  each 
after the 200th  trial  and the 350th  trial. The  average rate was 5 trials  per 
minute. . All 44 subjects  were run under the same  experimental  conditions. 
The  50Q-trial  reinforcement  sequences  were  computed on  the basis of the 
uniform  distributions  for  the  four regions as described in the introduction. 
The  order of presentation of the  four  discriminating  lights was random  with 
one  restriction:  no  light was used twice in succession. T h t  physical  location 
of the zero point of the scale on  the circumference of the circle was chosen 
randomly  for each subject. 

We have organized the experimenta! results mder  the following main 
headings:  comparison of reinforcement regions of the same size;  the associa- 
tion process;  learning  curves  for  variance;  individual  asymptotic data; 
asymptotic  response  distribution;  and sequential  statistics. 

Before we turn to  details,  a  general  remark  about the goodness-of-fit tests 
we apply is in  order.  We use x z  tests,  but  the usual  criterion is not completely 
justified  because the Observations we consider  are usually not  independent, 
although specific measures to guarantee  approximate  independence  have 
been  taken in some of the cases reported below. Two remarks  are  to  be  made 
about  this lack of independence.  When  independence  is lacking, the observa- 
tions  are usually positively correlated,  which  may tend  to increase  systemati- 
cally the x 2  values. On  the other  hand, for  most of the analyses given  below, 
the  number of observations is so large that  the absence of independence is 
probably not a major factor affecting the value of the x2. What is at  least as 
important  to observe is that  with  the large number of observations  used  for 
the tests, the application of a  conventional significance level is  not too  mean- 
ingful because the errors of the second  kind have been  reduced essentially 
to  zero. T o  apply x 2  tests in  which  errors of the first and second  kind  have 
been  equated  would  be  more  satisfactory. To  apply the non-central x 2  distri- 
bution in this  fashion  requires that a clearly defined alternative  hypothesis 
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be stated,  and  although  this is feasible for some of the results  reported below 
we have not  made  the additional necessary computations.  From a scientific 
standpoint we believe that a  valuable  comparison of the various  models  con- 
sidered  can  be  adequately  inferred  from the relative value of the different 
x2’s,  and  this  is  the simplified  procedure we have  adopted. 

Comparison of regions of same size. From  the way in which the 
experiment was designed,  with  two  pairs of identical  reinforcement regions 
symmetrically placed on  the circumference of the circle, a  similarity of the 
results within each pair was to  be  expected. The examination of the data, 
including analysis of individual  data,  confirmed that expectation.  Figure 1 
shows the response  variances of the  four regions  for the  entire  group of 
subjects. The  close similarity of the \Tariance curves  for the two  small  regions 
(1 and 3) and  the two  large  regions (Z and 4) is  evident  from  the figure. 
Table 1 presents the detailed  response  histograms of the  four regions  for the 
last 300 trials. The  close similarity  between the two  small  regions on the one 
hand  and  the two large regions on the  other  is also apparent  from  inspection 

I / I I I , , / I  

1 2 3 4 5 6 7 8 9 1 0  

BLOCKSOF 50 TRIALS 

FIG. 1. Observed variances of responses in blocks of 50 trials for all four regions. 
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T A B L E  1 
RESPONSE HISTOGRAMS FOR THE LAST 300 TRIALS FOR THE FOUR REGIONS AND 

THE POOLED REGIOXS S, S’, L, and L’ 
(Twenty-two classes of amplitude ,023 and two tail classes, 1 and 24) 

Class 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Total 

l 3 

34 
13 
18 
20 
42 
65 

111 
186 
264 
281 
283 
307 
311 
319 
277 
240 
210 
121 

81 
38 
25 
25 
13 
26 

30 
11 
11 
16 
49 
62 

107 
202 
233 
266 
278 
338 
311 
325 
314 
251 
179 
107 
49 
37 
23 
17 
8 

31 

3310 3255 

Regions and Pooled Regions 

S s’ 

64 
24 
29 
36 
91 

127 
218 
388 
497 
547 
561 
645 
622 
644 
591 
491 
389 
228 
130 
75 
48 
42 
21 
57 

65 
21 
35 
43 
79 

114 
218 
365 
515 
595 
608 
61 8 
649 
597 
543 
473 
41 2 
228 
143 
87 
41 
36 
24 
56 

6565 6565 

2 4 

48 
17 
51 

104 
140 
114 
145 
184 
179 
204 
184 
20 1 
234 
21 5 
229 
215 
194 
166 
119 
118 
123 
64 
33 
67 

46 
30 
46 
74 

128 
117 
144 
151 
191 
203 
182 
23 1 
208 
192 
205 
207 
208 
163 
159 
122 
107 
77 
38 
58 

3348 3287 

L L‘ 

94 
47 
97 

178 
268 
23 1 
289 
335 
370 
407 
366 
432 
442 
407 
434 
422 
402 
329 
278 
240 
230 
141 
71 

125 

106 
55 

128 
21 1 
262 
273 
308 
392 
386 
409 
376 
409 
465 
397 
432 
406 
345 
310 
236 
246 
197 
110 
63 

113 

6635 6635 

of this  table.  For a more  detailed  comparison of the data  in  Table 1, it may 
be observed  first that  there  are two  different ways to  compare  the  two small 
regions  or the two  large regions. For two  regions of the same kind  the observa- 
tions  can  be  counted  in  the  same  direction,  for  example clockwise for  both 
regions,  or in opposite  directions,  for  example clockwise for region 1 and 
counter-clockwise  for  region 3. We first report  the  results of x 2  tests of 
homogeneity of the data  from the two  regions of the same  kind  when the 
observations  are  counted in  the same  direction.  These  tests were  performed on 
every other observation in order  to  approximate  independence  more closely 
than is possible  with the successive observations. Classes of small  frequency 
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(less than 10  observations) were pooled, and as a  result  there were 20 class 
intervals in each histogram.2 For  the small regions 1 and 3, = 16.3,  which 
for 20 classes and  thus  19 df is  not significant. For  the large  regions  2 and 4, 

= 20.8, which  for the same number of classes is also not significant. When 
opposite  directions  are  used  for  combining the two  regions of a  given  kind for 
the two  small regions, x 2  == 17.7, and  for  the two  large  regions x 2  = 39.4. The  
last x 2  for the large  regions is statistically significant at the .O1 level. It seems 
very likely that  the explanation of this significance is that subjects followed 
a clockwise stereotype  by  turning a  knob  in  the same  direction, but  this dis- 
crepancy  is not large and will not  be  further analyzed. Its existence, however, 
is  one reason for  adding  to  the  subsequent analysis data  for the regions com- 
bined in opposite  directions,  because this combination tends  to eliminate the 
clockwise stereotype  and  to produce  more  symmetrical  response  distributions 
for  the  combined small region or combined large region. 

The  combination of regions 1 and 3  taken in  the same  direction  is desig- 
nated  region S, and  the combination of regions  2 and 4 taken in  the same 
direction is called region L. When  the regions  are  combined by taking them 
in opposite  directions, we use  primes  and  designate the regions S’ and L’, 
respectively. I n  view of the close identity of the responses  for regions 1 and 3 
on  the one hand  and regions  2 and 4 on  the other,  most of the subsequent 
analysis will be  in  terms of the combined regions S and L. 

Association  process. Before analyzing the experimental  data in detail in 
terms of the  continuum of responses, it  is  appropriate  to  consider the data 
from a  grosser  standpoint in  terms of the subject’s  establishing an association 
between  each of the  four reinforcement regions of the circle and  the corres- 
ponding  discriminating  light.  For  the  purposes of this gross analysis we apply 
the all-or-none  conditioning  model  with  two  responses,  which  has  been 
successfully applied in recent years to paired-associate and concept-formation 
experiments  (Bower,  1961;  Estes,  1961;  Suppes  and  Ginsberg, 1961, 1962). 
The  essential nature of this model  may be described  in very simple  terms. It 
is  postulated that  there is a single stimulus  element. Until  this single element 
is  conditioned, i.e., until  the association between the stimulus  and response is 
established, there  is a  constant  guessing  probability p of a  correct response. 
When a stimulus  element  is conditioned, the correct  response is made  with 
probability 1 . Secondly, on each  trial  before  conditioning  there is a  constant 
probability c that  the single  stimulus  element will be conditioned  to the 
correct  response. 

T o  perform  a  statistical analysis of the data  from  the  standpoint of this 
all-or-none  model, it  is necessary to choose a  criterion of “complete”  learning. 
This choice is  somewhat  arbitrary  because  some  subjects gave occasional 
responses  outside the appropriate  reinforcement  region during  the  entire 
experiment. Also, the definition of a  correct  response  creates  a  problem,  for if 

Because the  data of Table 1 are  based on every  observation,  this  table  does  not  show  which  classes 
had  frequency  less  than 10. 
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we accept as correct only those  responses that fall inside the reinforcement 
region, then we have too strict  a  definition for  the small regions, and  most 
subjects  meet no reasonable criterion of learning.  Solving the two  problems 
jointly, we have chosen  for each kind of region, large and small, two different 
definitions of the  correct response and of the criterion  for  learning.  For  region 
S with  the reinforcement  interval of length .207d, we have analyzed the data 
according  to the following  two  definitions. In  definition S,, we require the 
response  to  be in  the interval  length of .24z and  the  learning  criterion  to  be 
three successive correct  responses. The alternative  definition S, is  more 
liberal,  permitting the response  interval to have a  length of . 3 2 ~  and  the 
learning  criterion again to  be three successive correct  responses. 

For  the large  region,  definition L, requires  the response  interval to be of 
length .44z and  the learning  criterion  to  be  four successive correct  responses. 
The alternative  definition L, requires  the response  interval to be of length 
.40z and  the  learning  criterion  to be three successive correct responses. It 
should  be  noted  that  the  criterion of three  or  four successive correct  responses 
is fairly stringent.  For  it is reasonable to assume that  before  the association is 
established,  subjects have a  roughly  uniform  response  distribution on the 
circle and  thus even the probability of making three correct  responses  with 
criterion L, is only ( .40n2/2~)~ = .OOS . 

Using  these  criteria, we analyze the results in  terms of the statistics 
introduced  in  Suppes  and  Ginsberg (1961); for  details of the statistical  tests 
see their article. The most important observation  for the application of their 
statistics is that if the response  data are restricted to responses  prior  to the 
last error,  then  what  should be  obtained is a  sequence of Bernoulli  trials  with 
constant  binomial  parameter p .  

On  this  assumption  there  should be no increase in  proportion of correct 
responses  prior to the last  error  (where of course the last error is defined in 
terms of the  criteria  stated above). A very sensitive  test of this  null hypothesis 
of the  all-or-none model  concerning  stationarity  for  responses  prior  to the last 
error is provided by the  construction of Vincent  pre-criterion  learning  curves. 
Curves  for  the two regions and  for the two criteria of each region  are  shown 
in Fig. 2 in  terms of the proportion of errors  in each quartile  prior  to  the  last 
error. The proportion  for each quartile is obtained by summing  the  number 
of correct  responses  for each subject  in  that  quartile of his  responses and  then 
dividing the total  correct  responses by the  total  number of responses  for all 
subjects. The curves in  Fig. 2 indicate that  the  null  hypothesis of stationarity 
is approximately  confirmed,  although there is a  slight  tendency  for the pro- 
portion of errors to decrease as the  criterion  is  approached. The correspond- 
ing x 2  tests  for  stationarity  are as follows: x2(S , )  = 3.67, x'(S,) = 2.46, 
x2(L,) = 1.75, and %'(L,) = .17. With  three degrees of freedom,  none of 
these  chi-squares  are  significant. 

Similar  stationarity  results  are  obtained  from  a  trial-by-trial analysis. I n  
Table 2, x 2  tests  for  stationarity,  order,  and  binomial  distribution  are  shown 
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ERROR RESPONSES 

O 
1 2 3 4 

PUARTILES 

FIG. 2. Vincent  learning  curves in  quartiles  for  proportion of errors  prior  to  last 
error  for  both regions S and L under  two different  criteria of learning. 

for S,,  S,, L,, and L,. The  stationarity  tests  are  for blocks of four trials, and 
again the null  hypothesis is that prior  to the last  error, the learning  curve  is 
horizontal. The  null  hypothesis of the order  tests is that  the responses  prior 
to  the last error  are  independent. The  x 2  test  used  here is for the hypothesis 
of independence vs. that of first-order  dependence.  Finally, the  test  for  the 
binomial  distribution  is in terms of blocks of four  trials,  More exactly, the 
binomial-distribution  test is constructed  in  the following fashion.  We  con- 

TABLE 2 
RESULTS OF CHI-SQUARE TESTS OF STATIOKARITY, ORDER, ASD BINOMIAL 

DISTRIBUTION FOR ASSOCIATION PROCESS 
(Degrees of freedom  are  shown  in parentheses) 

I Region 

Stationarity 

0.25 (1) 0.11 (1) I 1.14  (2) 0.76 (1) Binomial distr. 
3.65 (1)  1.27  (1) 0.02 (1) 0.05 (1) Order 
1.05 (6) 3.12 (9) 1 1.84  (8) 3.06 (10) 
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TABLE 3 

OBSERVED AND PREDICTED FREQUEKCY DISTRIBUTIONS OF SEQUENCES OF ERRORS AND 

SCCCESSES OVER BLOCKS OF FOVR TRIALS, POOLED REGIONS S1, S Z ,  L1, 
AKD L,, WITH 1 = SCCCESS, O = ERROR. ESTIMATED and x 2  RESULTS 

Sequence 
Response 

O000 
1000 
O100 
001 o 
O001 
1100 
1010 
1001 
o1 10 
0101 
O01 1 
1110 
1101 
101 1 
o111 
1111 

Total 

x 2  

- 

! 
SHOWN 

Region 

Obt. 
Freq. 

73 
20 
21 
20 
17 
5 
8 
7 
8 
8 
3 
O 
3 
6 
O 
O 

199 

Pred. 
Freq. 

69.99 
20.89 
20.89 
20.89 
20.89 
6.24 
6.24 
6.24 
6.24 
6.24 
6.24 
1.86 
1.86 
1.86 
1.86 
0.56 

198.99 

0.97 , 6 df 

Obt. 
Freq. 

57 
17 
20 
20 
12 
4 
6 
4 
6 
8 
3 
O 
O 
3 
O 
O 

160 

Pred. 
Freq. 

59.60 
16.69 
16.69 
16.69 
16.69 
4.67 
4.67 
4.67 
4.67 
4.67 
4.67 
1.31 
1.31 
1.31 
1.31 
0.37 

159.99 

2.74 , 6 df 

L,($ = ,332)  

Obt. 
Freq. 

31 
7 

13 
14 
20 

5 
8 
4 

12 
9 
2 
4 
3 
8 
4 
O 

144 

Pred. 
Freq. 

28.74 
14.26 
14.26 
14.26 
14.26 
7.07 
7.07 
7.07 
7.07 
7.07 
7.07 
3.51 
3.51 
3.51 
3.51 
1.74 

143.98 

7.99 , 6 df 

L,(6 = 279) 

Obt. 
Freq. 

32 
9 
9 

12 
18 

3 
7 
4 

11 
8 
1 
O 
3 
3 
O 
O 

120 

Pred. 
Freq. 

32.40 
12.55 
12.55 
12.55 
12.55 
4.86 
4.86 
4.86 
4.86 
4.86 
4.86 
1.88 
1.88 
1.88 
1.88 
0.73 

120.01 

7.85 , 6 df 

sider blocks of trials of length 4 and for  each  subject use the  highest  multiple 
of a block equal  to  or less than  the total number of responses  prior  to the last 
error.  Summing over  subjects, we construct the histogram of the response 
distribution  for  this block length. The  number of degrees of freedom  for  each 
of the x 2 ' s  in  Table 2 is indicated in  the  subscript; none of the values obtained 
approaches significance. 

In  addition  to  considering the distribution of responses, we can analyze the 
data in a  still  more  detailed way by considering the  distribution of sequences 
of responses.  Distributions of the 16 sequences of responses  for blocks of four 
trials  are  shown in  Table 3. If we consider the relative frequency of each 
sequence of responses of length 4, a x 2  test may be applied. It is  worth  noting 
that  the goodness of fit of the  distribution of these  sequences  provides  a test 
for the kind of run statistics much  studied  in  the  literature of learning  theory. 
The  x 2  values and  the indicated degrees of freedom  shown  at the bottom of 



332 PATRICK  SUPPES  Ah-D  HENRY  ROUANET 

Table 3 indicate  that  for none of the four cases is there a significant deviation 
from  the  null  hypothesis of a  binomial  distribution. The  number of degrees 
of freedom  is  reduced because of the small number of observations in some 
cells. The  results of these  various  tests support  the hypothesis that  the 
association process in  the  present  experiment was established on an  approxi- 
mate  all-or-none basis. In  this respect the results  may be regarded as support- 
ing  and  extending  those  obtained  in paired-associate and concept-learning 
experiments. 

Learning curves for variance. The evolution of the group  response 
characteristics over trials is summarized  in  Table 4, which gives means and 
variances of regions S and L for blocks of 50 trials. For each region, the mid- 
point is set  equal  to zero. The closeness of the means to zero shows that  the 
symmetry of the reinforcement  distribution  for  each  region is rapidly 
reflected in  the response  distribution. 

Plotting  the variances against trials, we get the empirical  curves of Fig. 3. 
In  the  Suppes  and  Frankmann  study (1961) where  Model I was used, an 

estimate of 8 was obtained  from the rate of decrease of the experimental 
response  variance 5:. In fact,  it can  be  shown that  the recursion  formula 

Y I I + l ( X )  = (1 - Q?%(.) f V.) 
.t+, = (1 - e p ;  + w 

as well as the approximate  recursion  formula 

(where oz is  the asymptotic variance) holds  for all models  investigated  in this 
paper. Therefore,  the  latter  formula provides an over-all estimate of 6, valid 
for all models. By using the  method already  used in  the  Suppes  and  Frank- 

T A B L E  4 
OBSERVED MEAKS AND VARIANCES OF RESPONSES OVER ALL TRIALS IN BLOCKS OF 50 

FOR POOLED  REGIOKS S AND L 
(Means have been  divided by .-c and variances by zz) 

Region S Region L 
Blocks 

Mean Variance Mean  Variance 

1 

.O1296 ,0099 .O0733  -.O036 9 

.O1388 ,0039 .O0700 - .O035 8 

.O1496  .O049  .O0770 - .O007 7 

.O1509 ,0029 .O0904 .O013 6 

.O1357  .O038 .O1267 .o010 5 

.O2893  .O086 ,02604 .O013 4 

.O2899 .o002 .O4026  .O030 3 

.O6945 .O003  .O6156 .o021 2 

.l4694 .O134 .l5417 .O009 

10 - .O036 .O0746 .o021 .O1320 
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. OM2 

. Q252 

- - - -  Predicted fœ Region L 

Observed fœ Region L 
Redicted  fœ Region S - Observed f a  Region S 

I I I  I I I  I I  I /  

1 2 3 4 5 6 7 8 9 1 Q  

BLOCKS OF M TRIALS 

- - - -  Predicted fœ Region L 

Observed fœ Region L 
Redicted  fœ Region S - Observed f a  Region S 

FIG. 3. Observed variances of responses in blocks of 50 trials and predicted  curves 
for regions S and L. 

mann  study (1961) and averaging over blocks of 50 trials, we fitted the 
experimental  curve  by  a  least-squares method  and  obtained  the following 
estimates of O :  

For region S, O* = .015, 
For region L, O* = -017. 

These values are  notably  smaller than  those  obtained  in  the  Suppes  and 
Frankmann (1961) study (.O65 and ,033). The  corresponding  theoretical 
curves  are  plotted in Fig. 3 together  with the empirical  curves. 

Some  different methods of estimating O are  considered below. 
Individual  asymptotic  data. This section, as well as the two  immediately 

following, is devoted  to the asymptotic  predictions of the various models. The  
corresponding  asymptotic  data will be defined as the data  relative to  the last 
300 trials. The results  shown in Fig. 3 justify the choice of the cutoff point, 
which also coincides with the first interruption in the experiment. 

Starting  with  individual  data, we computed  the means,  variances, and 



T A B L E  5 
INDIVIDUAL OBSERVED MEANS, VARIAKCES, AND THIRD MOMEKTS FOR 

LAST 300 TRIALS FOR POOLED REGIONS S AND L 
(Means have been divided by x ,  variances by z2, and third moments by d )  

Subject 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

Region S 

Mean Variance Third Moment 

.O126 
-.O033 

.O028 
- ,0390 

.O123 
-.o101 

.O115 

.O019 
,0030 
.O229 

- .O084 
.O264 

-.O115 
- .O237 
-.O228 
- .o1  20 
- ,001 2 
- .O091 
- .O063 

.O163 
- .O410 

.O268 
- .O708 
- ,0065 
- ,0012 
-.O103 
- .O047 
-.O003 

.O137 

.O037 

.O224 
- .O088 

.o001 
-.O176 
-.O043 
- .O1 36 

.O312 

.O145 
-.o110 
- .O243 

,0386 
.o151 
.o111 
,0191 

.O0399 
,00983 
.O0569 
.O0684 
.O0468 
.O0861 
.O0611 
.O0797 
.00285" 
.O0454 
.O0355 
.O1427 
.O1587 
.00295a 
.O0883 
.00224O 
.O0432 
.O0662 
.O0370 
.O2933 
.O0872 
.O0770 
,01901 
,00662 
.O041 8 
.O0583 
.O0690 
.O0405 
.O1092 
,00523 
.O1147 
.O1312 
.O0422 
.O0820 
.o101 1 
.O1446 
.O0804 
.O1158 
.00290" 
.O0705 
.O1538 
.O0502 
.O0812 
.O0537 

.o0010 

.o0001 

.O0036 
- .00@01 

,00064 
.O0028 
.O0067 
.O0017 
.O0058 
.O0073 
.O0006 
,00317 
.O0047 
.o0012 

-.00010 
.o0002 

--.O0003 
- ,00048 
-.O0027 

.O1914 
- .O001 9' 

,00024 
- .O0070 

.O0015 

.O0005 

.O0034 

.O0067 

.O0051 
--.o0052 

,00484 

- ,00027 

-.O0559 
.o0001 

- .o0010 
- .O0243 
- .O0528 

.O0027 
-.O0471 
- .O0008 
- .O0025 

.o0110 
-.o0025 

.Q001 6 

.o0001 

Renion L 

Mean Variance Third Moment 

,0073 
- .O045 
-.O176 
- .O004 
- ,0001 

.O280 

.O055 

.O193 

.o010 
,0573 
.O575 
.O251 

- ,0209 
.O065 
.o001 
,0101 
.o001 
,0073 
.O081 
.o1 11 

-.O158 
.O403 

- ,0742 
,0011 

- .O008 
- .O1 28 
-.O234 
- .O21 7 

.O140 
- .O088 

,0305 
- .O033 

.O116 
- .o020 
- ,0072 
-.O332 
--.O131 

.O148 

.O256 

.O130 

.O187 

.O330 
-.O028 

.O155 

.01142" 

.O1358 

.O1607 

.08175a 
,01213" 
.O1766 
.00792" 
.01146" 
.00550b 
.01014n 
.O1389 
,01061 
.O1739 
,01241" 
.00570k 
.O1517 
,01769 
,01397 
,02178 
.O2903 
.O1818 
.0O63Sb 
.O1996 
.01155" 
.01048" 
.01204a 
.01295" 
.O1791 
,01531 
.O1492 
,01861 
.O1489 
.O1320 
.O0706 
.01040" 
.01030" 
.O1602 
.00827" 
.01262" 
.O1273 
,02138 
.010354 
.01017" 
.O1426 

- .ooooo 
..O0006 
.O0078 
.o0015 
.o0121 
,00182 

- .O001 3 
,00114 

- ,00091 
--.O0036 
- .o0021 

.O0028 
,00513 

- .O0050 
- .ooooo 

.O0586 

.O0007 
- ,0001 1 
- .O0594 
- ,00301 

.o0052 
- ,00006 
- .O01 66 

,00032 
- .O0008 

.O0034 
,00041 
.O0232 
.O0051 

-.O0522 
,00177 
.O0009 
.O0036 
.O0004 

- .O01 15 
- .O0075 

.O0013 

.o0001 
--.O0019 
--.O0093 
- .O0292 
- .O0078 
- .O0008 

,00104 

Not  consistent ~ i t h  Xlodel I. b S o t  consistent with Model I or Model !I. 
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third central moments of each subject  for  regions S and L, as  indicated in 
Table 5.  Inspection of the means  makes  it apparent  that all individual  means 
are close to the reinforcement  means. This fact is consistent with all models. 
The  third moments  exhibit  a  considerable  dispersion, but are  equally  divided 
into positive and negative values. 

T A B L E  6 
VARIAKCES OF THE REINFORCEMENT (OR PSEEDOREIXFORCEMENT) DISTRIBUTIONS, i.e., 

LOWER BOUNDS FOR THE VARIANCES OF THE ASYMPTOTIC RESPONSE 

(Ail entries have been  divided by n2) 
DISTRIBUTIONS IN THE DIFFERENT MODELS AND REGIOKS 

Model 

Bound 
I III II 

Lower  bound  for region S 

.O033 .O067 ,0133 Lower  bound for region L 

.O008 .O017 .O033 
(Z = .10n) 

( I  = .20a) 

The most revealing characteristic,  however,  is the variance. By means of 
the variance property described in Sec. 1, we can  compute  a  priori,  for  each 
of the different  models,  a lower bound  for  the variance  provided  by the 
reinforcement or pseudoreinforcement  distribution.  Lower bounds  for 
regions S and L corresponding  to Models I, II (and  II’),  and III are  exhibited 
in  Table 6. The  table  makes it clear that  to go from  Model I to  Model III is 
to go from the strictest  model  to the weakest,  since  a  variance  consistent 
with  Model I is consistent with  Models II and  III, a  variance not consistent 
with  Model II is not consistent  with  Model I,  and so on. In  Table 5, the 
response variances not  consistent  with Model I are labeled a, and  the  results 
not consistent  with  either  Model I or RiIodel II are labeled b. In  terms of 
percentages, in  the case of region S, 92 per  cent of the individual  variances  are 
consistent  with  Model I and 100 per  cent  with  Models I I  and III. In  the case 
of region L only 52 per  cent of the individual variances are  consistent with 
Model I, 93 per  cent  with RiIodel II and 1GO per  cent  with  Model III .   From 
these  results it  can  be anticipated that  the over-all fit of Model I will be  far 
from satisfactory  for  region L. 

Asymptotic response distribution. The histograms  for the last 300 
trials in class intervals of .02z for regions S and L as well as those  for  regions 
S’ and L’ are  shown  in  Table 1. Table 7 gives the empirical  means  and 
variances for the regions S, L, S’, and L’, and also the  third  and  fourth 
moments  for regions S and L. 

Using  the empirical  variances  shown in  Table 7 and  the additive  variance 
property  mentioned in  the discussion of theoretical  results above, we may 
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T A B L E  7 
CHARACTERISTICS OF THE EMPIRICAL RESPONSE DISTRIBUTION FOR LAST 300 TRIALS 

(Means have been divided by ,z, variances by ,z2, third moments by z3, and 
fourth moments by n4) 

l Region 
Property 

S S' 

Mean 

-u .O0162628 Fourth moment 
-a +.O0032956 Third moment 

.O08547  .O08546 Variance 
+ .O008 -.O015 

Number of observations 6565 

a Not obtained. 

T A B L E  8 

L L' 

+ .O045 

f .O0010241 -n 

- .o020 
.O13957 

.O0152945 

.O13974 

I -= 

6635 

VARIANCES OF THE SMEARING  DISTRIBUTIONS 
(All entries have been divided by n2) 

Region 
Model 

S L' L S' 

I 

.O11064 .O10624 .O07714 .O0771 2 III  

.O07307 .O07291 .O06881  .O06879 II,  II' 

.O00640 .O00624 .O05214  .O05212 

derive at once the variance of the smearing  distribution  for  each of the models 
and  for  each of the  four regions S, S' L, and L'. The  results  are  shown in 
Table 8. 

The  next  step  is  to make specific assumptions  about  the  smearing  distri- 
butions  in  order  to derive the theoretical  response  distributions.  Following 
the approach  made in  the  Suppes  and  Frankmann (1961) study, we have 
investigated the uniform  and  symmetric  beta  distributions  as possible smear- 
ing  distributions. 

The  uniform  smearing  distribution  is  characterized  by  one  parameter,  its 
range 2a. The variance of the uniform  distribution  with  parameter a is a2/3.  
The  symmetric  beta  smearing  distribution is characterized  by  two  param- 
eters, the range 2b and  the  exponent n. The  form of the  density  is as 
follows : 
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where B(" + l ,  4) is the usual  beta coefficient. The  variance of the beta 
distribution  with  parameters b and n is b2/(2n + 3 ) .  

The estimation of the single  parameter  for the uniform  distribution 
presents  no  problem,  for  it  may  be  estimated  directly  from the difference 
between the empirical  variance and  the variance of the reinforcement  distri- 
bution. The  results  for the  three  types of models and  the  four  types of regions 
are  listed in  Table 9. 

T A B L E  9 
ESTIMATED HALF-RANGE a OF THE UKIFORM SMEARING  DISTRIBUTION AND EXPONENT 

n OF THE BETA SMEARIKG DISTRIBUTION 
(Entries have been  divided by z) 

Region 

Model 
S L' L S' 

a n a n a n a n 

I 

10 .l787  10 .l785 15 .l521 15 .l521 III 
15  .l481 15 .l479  15  .l437 15  .l437 II, II' 
49 .O439 49 .O433 22 .l251 22 .l251 

For  the beta  distribution  the  problem of estimating  the two  parameters is 
more  complicated. A direct  application of the method of moments would 
entail  using the empirical fourth  moment  but, as is well known, the empirical 
fourth  moment is subject to large fluctuations. If we use the expression  for the 
variance of the beta  smearing  distribution, i.e., b2/(2n f 3 ) ,  as a  constraint 
between b and n, we may study  the different  theoretical  response  densities 
corresponding  to the different  combinations of b and n that yield the given 
numerical  variance  for  the  distribution. It happens  that  these densities are 
very close to each other ; in  fact,  they  are  practically  indistinguishable as soon 
as n 2 3 .  We have therefore  chosen z/2 as a fixed value for b, which  pro- 
vides  a sufficiently wide  range  for  any  reasonable  smearing effect. We have 
then  determined n from the variance. The  a  priori selection of b has the 
further advantage of putting  the  uniform  and  beta  smearing  distributions 
on  the same basis, i.e.,  one  parameter is estimated  for  each, The  estimates for 
regions S and L are  shown  in Table 9. 

By using the estimated values of the parameters,  theoretical  response 
densities can be  computed. The  analytical expressions  for  these  densities  are 
rather  involved;  they  are  shown  in the Appendix  in  Tables C and D. The  
corresponding  curves  are  shown in Figs. 4 and 5. The qualitative  facts  to be 
inferred  from  these  figures  are  fairly  direct. In  the case of region S, when a 
uniform  smearing  distribution is used, we see from Fig. 4 that  Models I, II, 
and III can  be clearly discriminated  from  each  other  even  at the gross level 
of the asymptotic  response  distribution. This is  not  true  when  beta  smearing 
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FIG. 4. Predicted  asymptotic  response  densities 
derived  from  the  various  models  and  smearing 

distributions  for  region S. 
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FIG. 5. Predicted  asymptotic  response  densities 
derived  from  the  various  models  and  smearing 

distributions  for  region L. 
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FIG. 6. Response  histogram  for  last 300 trials  for  region 
S and  two  predicted  densities  derived  from  Model I. 

l 

-a LOR o am 
FIG. 7 .  Response  histogram  for  last 300 trials  for  region 
S and  two  predicted  densities  derived  from  Model II. 
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FIG. 8. Response  histogram for last 300 trials for region L and two predicted densities 
derived from  Model II. 

distributions  are  used, as may also be seen  from  Fig. 4. Only  one  response 
curve  with  a  beta  smearing  distribution  is  shown  for  Models II and III 
because of the near  identity of the response  distributions  for  these models. 
On  the  other  hand,  when  the  parameters are  estimated  for  region L, a clear 
discrimination  between  Model I and  either  Model II or  Model I I I  is 
obtained, as may be  seen  from  Fig. 5 ,  even though  beta  smearing  distributions 
are  used.  However, the curves  for  Models II and I I I  are too nearly  identical 
to  be  drawn  separately in Fig. 5 .  The theoretical  response  distributions for 
region L based on a  uniform  smearing  distribution  are  shown in Fig. 5 ,  and 
as in  the case of those  shown  in  Fig. 4 for  region S, a clear discrimination 
between  models  is possible. 

Figures 6, 7, and 8 provide  a  direct  comparison of the empirical  histo- 
grams  and various  fitted  densities.  Inspection of Fig. 6 indicates that  Model 7 
fits the empirical  histogram of region S fairly well regardless of whether I 
uniform  or  a  beta  smearing  distribution is used. It is apparent  from  Fig,  a 
that  the beta  smearing  distribution yields a  better fit to  the empirical  histo- 
gram  than does the uniform  when  Model II is applied  to  region S. This is 
also true,  but  to  a lesser extent,  when  Model II is applied to region L, as map 
be seen in Fig. 8. 

When we consider goodness-of-fit tests  for the asymptotic  response 
distributions, the question of which  observations  should be  taken arises. I t  is 
precisely  a  feature of the models we consider to predict  dependencies  between 
successive  responses.  Dividing each of the  four regions into  four classes and 
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computing the x 2  for  the  test of independence  between successive responses 
for each region, we obtain  for  region S a x 2  of 89.1 with 9 df, and  for region 
L a 2% of 84.3 with 9 df. Both  results  are  highly  significant and indicate  strong 
dependency  between successive responses. When we take every other response 
and  compute  the  corresponding x 2 ’ s  we obtain  a x 2  of 74.4 for region S and 
a x 2  of 52.2 for  region L. As is evident,  there  has  been a  considerable  reduction 
in dependency of responses  when  only every other  response is used, but  these 
~ 2 ’ s  are  still  significant.  However, we shall  perform goodness-of-fit tests  using 
every  other  observation;  some  inflation of the x2’ s  obtained  may  result  from 
the remaining  dependencies in  the observation. The  results  are  shown in 
Table 10. The first thing we note  is  that  the fit of Models I, II, and III for 
the small  region  is quite different  from the fit of these  models for  the large 
region. In  the case of region S, Model I fits better  than  Model II or III 
regardless of the smearing  distribution  used,  although the difference is  small 
(218.2 vs. 223.0) when  a  beta  distribution is used. On  the  other  hand,  Model I 
was not  used  for region L, because it could  account  for such a  small  percentage 
of individual  subjects’  variances, as mentioned earlier. 

We conjecture that  this difference between  models for  the  two regions 
may be explained along the following lines. Because of the small  physical 
size of region S, the sequence of exact positions of the reinforcements  has  a 
negligible effect when the subjects have formed the association  between the 
general  reinforcement  region and  the  discriminating  stimuli.  For region L 
the converse holds.  We find further  support of this conjecture in  the sequen- 
tial  statistics  presented below. 

In  the  Suppes  and  Frankmann (1961) study,  it was impossible to dis- 
tinguish  between the assumptions of a  uniform  or  a  beta  smearing  distribu- 
tion. As earlier  remarks have indicated,  this  is  not  the case for  the  present 
study (see, for  example, the remarks  about  Figs. 4 and 5 ) .  On the  other  hand, 
the difference is not large, as may be seen from  Table 10. For  Model I and 

TABLE 10 
CHI-SQUARE  GOODNESS OF FIT OF PREDICTED ASYMPTOTIC RESPONSE DISTRIBUTIONS. 

DATA BASED ON EVERY OTHER RESPONSE FOR LAST 300 TRIALS 
(U = uniform  smearing  distribution, B = beta smearing distribution, degrees of 

freedom of each test shown in parentheses) 

Region 

hfodel 
S L’ L S’ 

IU 
103.8 (18) 118.2 (18) 435.4 (16) 431.2 (16) IIU 

-a -a 196.1 (16) 189.5  (16) 

IB 
116.3 (18) 125.4 (18) 212.0 (16) 223.0 (18) I I  & IIIB 

- a  -a 208.1 (16) 218.2 (IS) 

a Not obtained. 
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region S, as well as  for  Model II and region L, there  is  an insignificant 
difference  between the fits of the two  kinds of smearing  distributions. The  
only  significant difference occurs in  the application of Model II to region S, 
for  which  the  uniform  smearing  distribution leads to a  response  distribution 
that fits badly. The  bad fit that arises from  the use of the uniform  smearing 
distribution  seems  to  be  explained  by the following considerations. In Model 
II the pseudoreinforcement  distribution  is  a  sharp  triangular  distribution. 
For region S many of the responses at asymptote fall outside the range of this 
distribution. The  flat  uniform  smearing  distribution  is  not  as  able  as the beta 
distribution  to  account simultaneously  for the  sharp peak in  the  middle of the 
response  histogram  and the relatively large  tails. 

It is clear from  Table 10 that  the same sort of results  are  obtained for 
regions S' and L' as  far S and L, respectively. 

Sequential  statisties. The sequential  statistics have been  tabulated  on 
the basis of classifying the responses  for  a  given  region  into  one of four 
intervals. This small number of classes has  been  chosen  in  order  to  obtain 
sufficiently large  conditional  frequencies in each cell. The  cutoff points were 
obtained  from  equal divisions of the reinforcement  distribution. On  that basis, 
two  kinds of sequential  statistics  were  obtained for regions S, S', L ,  and 
L': the probability of a  response  given the last  reinforcement P ( X ,  I Y n - J ,  
and  the  probability of a  response  given the last  two  reinforcements 

-1 9 

The corresponding  theoretical  statistics have been  investigated  only in  the 
case of a  hypothetical uniform smearing  distribution, because of the con- 
siderable difficulty involved in  computing  these statistics when a beta 
distribution  is used. 

Calculation of the theoretical  statistics  requires the knowledge of the 
learning  parameter O. The  values of O that we used  were  not  those  obtained 
from  the  learning curves, but were  those  values  yielding  for  each  model the 
minimum x 2  for the statistic P(X,, j Y,-l). Although the values obtained 
from  the  learning curves  are around .016, the values  estimated  from the 
sequential  statistics  range  from .l2 to .66. Such a  discrepancy  cannot be 
attributed  to  random fluctuations. I t  has  been  found  in  other  learning experi- 
ments.  How x 2  varies  as  a  function of 0 can  be  inferred  from  Fig. 9, which 
gives x y  = f ( O )  for the fit of Model II to the data  for  region L. 

In  Table 11  are  shown the observed and  predicted probabilities of a 
response  given the last  reinforcement  for  regions S and L. In most cases, the 
predicted  probabilities  are of the right  order of magnitude,  but  in  terms of the 
large number of observations on which the observed  frequencies  are  based, 
the discrepancies  are  large  enough  to  yield sizable x 2  's in  the goodness-of-fit 
test. The  test  for  .each model  has ten degrees of freedom. The  results for 
region S are  as  follows: x2(I) = 185.9, ~ ~ ( 1 1 )  = 418.3, and  ;c2(III) = 575.2, 
with O; = 260, O;, = .600, and = .660. Evidently  Model I fits the 
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FIG. 9. Chi-square as a function of 0 for the  fit to region L of P(X,  1 Yn-J derived 
from Model II. 

observed  frequencies  by  far the  best of the  three models we have considered 
here.  Essentially the same  results  are  obtained for region S’: ;d2(I) = 187.2, 
~ ~ ( 1 1 )  = 419.3, and ~~(111) = 576.0. One “ay to express the difference 
between  Models I, II, and III is to say that as we progress  from  Model I to 
Model III, increasing  account is taken of past  reinforcements. The question 
of what  results we obtain  for the small regions if  we completely  ignore 
information  about the preceding  reinforcement  naturally arises. If we con- 
sider as a fourth model  (Model IV  in  Table 11) the one  for  which the proba- 
bilities  are independent of the reinforcements-simply determined  from  the 
asymptotic  response distribution-we somewhat  surprisingly  obtain  a 
smaller x 2  (with  one  more  degree of freedom)  than  for  Model  I, namely, 
;dz(IV) = 147.3 for region S, and  x2(IV) = 152.0 for  region S’, which con- 
firms  our  earlier  conjecture  about the negligible effect of the exact position of 
reinforcements for region S. 

The situation  is  considerably  different  when we turn to region L. Intuitive 
psychological reasons for expecting  a difference are  obvious, namely, the 
much larger  reinforcement  region  can easily lead to subjects’  discriminating 
between  different  reinforcement  positions  within that region. The  goodness- 
of-fit tests  for the observed and  predicted probabilities  shown in  Table f 1 are 
as follows: for region L, ~ ~ ( 1 )  = 383.9, ~ ~ ( 1 1 )  = 67.8, and  ;d2(III) = 179.4. 
For region L’ the results  are  quite  similar: ;d2(I) = 367.3, ~ ~ ( 1 1 )  = 46.7, and 
~ ~ ( 1 1 1 )  = 161.4. From these  results it is at once  evident that Model II yields 
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T A B L E  11 
PREDICTIOK OF RESPONSE QCARTILES FOR REGIOKS S AND L, GIVEK QUXRTILE OF 

PRECEDING REINFORCEMENT 

(The first number  in each group is the observed proportion based on last 300 
trials, the second the  prediction of Model I, the  third  that of Models II  and II', the 

fourth  that of Model III, and  the fifth that of Model SV) 

\\ 
1 

2 

3 

4 

Region S 

1 2 3 4 

.335 
.383 
.404 
.417 
.269 

.299 

.331 

.352 

.363 

.269 

.229 

.279 

.300 

.309 

.269 

.215 

.233 

.248 

.255 

.269 
- 

.232 

. l95 

. l74 

. l64 

.224 

.248 

. l95 

. l74 
,164 
.224 

.221 

. l95 

. l74 

.l 64 
,224 

. l93 

. l89 

. l74 

. l64 

.224 

.221 

. l89 

. l74 

. l64 

.240 

.226 

. l95 

. l74 

. l64 

.240 

.266 

. l95 

.l74 

. l64 

.240 

.245 

. l95 

. l74 

. l64 

.240 

.212 

.233 

.248 

.255 

.267 

.227 

.279 

.300 

.309 

.267 

.284 

.331 

.352 

.363 

.267 

.347 

.383 

.404 

.417 
,267 

Region L 

1 2 3 4 

.274 

.327 

.305 

.306 
,182 

. l90 

.233 

.231 

.250 

. l82 

. l52 

.220 

.,l 74 

. l94 

. l82 

. l27 

.220 

. l36 

. l43 
,182 

,311 
.233 
.308 
.278 
.288 

.332 

.314 

.308 

.278 

.Z88 

.283 

.233 

.287 

.278 

.288 

.227 

.220 

.251 

.273 

.288 

.252 

.220 

.251 

.273 

.317 

.320 
,233 
.287 
.278 
.317 

.358 

.314 

.308 

.278 

.317 

.328 

.233 

.308 

.278 

.317 

,163 
,220 
.136 
,143 
.213 

.158 

.220 

.174 

.l 94 

.2!3 

.207 

.233 

.231 

.250 

.213 

.318 

.327 

.305 

.306 

.213 

the best  predictions  for  region L and is in fact  considerably better  than any 
of the predictions  for  region S, a result  that  corresponds  to  those given above 
for. the asymptotic  fesponse  distributions. Also, as would be expected  from 
the fact that  Model I is not as good as Model II, the model that ignores the 
effects of reinforcement  entirely  (Model  IV) yields x*(IV) = 300.0 for  region 
L, and x2(IV) = 305.8 for region L'. It may be  noted that  the qualitative 
ordering of the conditional  probabilities in all four rows for region L in 
Table 11 is the same  for lLlodel II and  the observed  data. A similar  relation 
does not  hold  for any of the models as applied to region S. 

Tables 12 and 13 present the observed and  predicted sequential  statistics 
P ( X ,  1 Y,-J. Again me observe that  the  predicted probabilities  are 
usually of the  right  order of magnitude  but  that significant  discrepancies do 
exist. The goodness-of-fit tests  (with 46 df)  support  these observations. In  the 
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T A B L E  1 2  
PREDICTION OF RESPONSE  QUARTILE FOR REGIOX S, GIVEN QUARTILES OF Two 

PRECEDING REINFORCEMENTS 

(The first number is the observed proportion,  the second the  prediction of Model I, 
and  the  third  that of Model III) 

11 

12 

13 

14 

21 

22 

23 

24 

1 2 3 

.321 

.439 

.445 

.273 

.401 

.426 

.Z29 

.362 

.408 

.234 

.328 
,391 

.367 

.387 

.391 

.282 

.349 

.372 

,227 
.31Q 
.354 

.Z27 
,277 
.336 

.206 

.l97 

.l64 

.Z35 

.l96 

. l64 

.Z39 

.l97 
,164 

.l98 

.l92 

.l64 

.218 

.l96 

.l64 

.263 

.l97 

.l64 

.232 

.l96 

.l64 

.235 

.l92 

.l64 

.232 

.l85 

.l 64 

.255 

.l90 

.l64 

.257 

.l90 

.l64 

.237 

.l90 

.l64 

.238 

.l92 

.l64 

,215 
.l96 
.l64 

.248 

.l97 

.l64 

.226 

.l96 

.l64 

.Z41 

.l79 
,227 

.237 

.213 

.246 

.Z75 

.251 

.264 

.329 

.290 

.281 

.l77 

.224 

.281 

.240 

.258 

.300 

.293 

.297 

.318 

.312 

.335 

.336 

31 

32 

33 

34 

41 

42 

43 

44 

1 2 3 4 

.351 .244 .210 .l95 

.335 .l96 .l92 .277 

.336 .l64 .l64 .336 

.313 .244 201  .242 

.Z97 .l97 .l96 .310 

.318 .l64 .l64 .354 

.236 .Z13 .Z84 .267 

.25S .l96 .l97 .349 

.300 .l64 .l64 .372 

.l87 .l95 .Z45 ,373 

.Z25 . l92 .l96 .387 

.281 .l64 .l64 .391 

.301 .Z56 .209 .234 

.290 .l90 .l92 .328 

.281 .l64 .l64 .391 

.330 .249 .238 .l83 

.251 .l90 .l97 .362 

.264 .l64 .l64 .408 

.Z17 .l95 .279 .309 

.213 .l90 .l96 .401 
,246 .l64 ,164 .426 

.224 .l41 .272 .363 

.l79 .l85 .l97 .439 

.Z27 .l64 .l64 .445 

case of region S, ~ ~ ( 1 )  = 336.7 and ~ ~ ( 1 1 1 )  = 743.1. Because of the earlier 
results  obtained  for the statistic P ( X ,  I Yn-l), we did  not  apply  Model II to 
region S, but  restricted ourselves to  Models I and III. The  comparisons of 
Models I and III for the two  sequential  statistics  are  consistent  with each 
other. The  same  results  obtain for region S’, for  which ~ ~ ( 1 )  = 326.8, 
and xZ(II1) = 730.1. 

All three models  were  applied  to the statistic P ( X ,  I Yn-l,  Yn-J for 
regions L and L’. The  goodness-of-fit results  are as follows:  for  region L, 
~ ~ ( 1 )  = 550.5, ~ ~ ( 1 1 )  = 788.3, xZ(I1’) = 366.3, and ~ ~ ( 1 1 1 )  = 387.8. The  
most  interesting  thing  about  these  results  is that whereas in  the case of the 



T A B L E  1 3  
PREDICTIONS OF RESPOXSE QUARTILE FOR REGIOX L GIWN QUARTILES OF Two 

PRECEDIKG REIKFORCEMENTS 

(The first number is the observed proportion, the second the prediction of Model II, 
the  third  the prediction of Model II’, and  the fourth the prediction of Model III) 

11 

12 

13 

14 

21 

22 

23 

24 

l 2 3 I l k  
- 

.251 

.4í3 

.422 

.356 

.206 

.395 

.344 

.322 

.l 62 

.31í 

.266 

.288 

.l53 

.239 

.l89 

.258 

.301 

.355 

.344 

.229 

. l í 2  

.277 

.266 

.266 

.l69 

.l 99 

.l89 

.232 

.l27 

.l36 
,126 
.202 

.323 

.3Oí 
,297 
.2í9 

.334 

.322 

.312 

.2í9 

.2í1 

.322 

.311 

.2í9 

.l97 

.322 

.311 

.2í6 

.301 

.322 

.312 

.2í9 

.322 

.322 

.311 

.2í9 

.284 

.322 

.311 

.2í9 

.228 

.307 

.29í 
,276 

.252 . l í 4  

.l47 .O73 

.l67 .l14 

.270 .O95 

.321 .l39 

.210 .Oí3 

.230 .l14 

.2í4 .l25 

.343 .224 

.277 .O85 

.29í .l26 

.2í4 .l59 

.323 .32í 

.291 .l48 

.311 .l89 

.2í3 .l93 

,247 ,151 
.229 .O94 
.230 .l14 
.2í6 .l46 

.359 .l47 

.296 .l05 
i311 .l89 
.2í9 . l í 6  

.336 .211 

.311 .l68 

.311 .l89 

.2í9 .210 

.318 .327 

.311 .246 

.311 .266 

.2í9 .243 

31 

32 

33 

34 

41 

42 

43 

44 

1 2 3 

278 .318 .254 
246 .311 .307 
266 .311 .297 
243 .279 .2í6 

203 .33í .286 
,168 .311 .322 
.l89 .311 .311 
,210 .279 .279 

,146 .270 .379 
.l05 ,296 .322 
.l26 .29í .311 
. l í 6  .279 .279 

.l09 .269 .321 

.O94 .229 .322 

.l44 .230 .312 
,146 .276 .279 

.266 .306 .250 

.l48 .291 .322 

.l89 .311 :311 

.l93 .273 .276 

,180 .338 .312 
.O85 .277 .322 
.l26 .29í .311 
.l59 .274 .279 

.l29 .303 .371 

.O73 .210 .322 

.l14 .230 .312 
,125 .274 .279 

.l23 .204 .351 

.Oí3 .l47 .307 

.l44 .l67 .297 

.O95 .2íO .279 

- 
4 

.l50 

.l36 

.l26 

.202 

.l74 

.l99 
,189 
.232 

.205 

. 2 í í  

.266 

.266 

.301 

.355 

.344 

.229 

.l78 
,239 
.l89 
.258 

.lí0 

.317 

.266 

.288 

.l97 

.395 

.344 

.322 

.322 

.4í3 

.422 

.356 
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previous  statistic  Models II and  II’ make precisely the same  predictions, in 
the present case Model II’ is very much  superior  to  filodel II.  An examina- 
tion of the two models, as shown  by Eqs. (13) and (14), shows that  Model I I  
assigns less weight  to the mean  response  distribution on trial n and  includes 
an additional term involving the reinforcement on  trial n - 1. The difference 
between the predictions of Models II and  II’ is given  by the expression 

We may also note  that  the goodness-of-fit results  for region L’ reflect pre- 
cisely the same  qualitative  conclusions: ~ ~ ( 1 )  = 542.9, ~ ~ ( 1 1 )  = 777.1, 
~ ~ ( 1 1 ’ )  = 352.5, and ~ ~ ( 1 1 1 )  = 377.7. 

It may also be  noted  that in the case of both L and L’, the relative fits of 
Models II’ and III are essentially the same. These results  suggest that even for 
the large regions subjects’  responses  are not strongly affected by the second 
preceding  reinforcement,  for it will be  remembered  that  Model III replaces 
the second  preceding  reinforcement Y,,-z by the mean of the reinforcement 
distribution. 

Several general  remarks  can be made about  these  sequential statistics. In  
the first place, they  constitute a crucial test of the theory. As the reinforce- 
ment dependencies  are  increased,  these  statistics  approach  a sufficient 
statistic  for  the stochastic process defined by the theory.  Moreover, it is the 
consideration of the sequential  statistics that  sharply distinguishes  between 
different  kinds of models. It is possible to  describe  a  wide  variety of models 
that will lead  to the same  asymptotic  response  distributions but  that differ 
significantly in sequential  predictions. The results  obtained  are  not as good 
as we had  hoped  for, but  they  do differ sufficiently for the different  models in 
order clearly to  discriminate  between them. As a a s  stated  in  the beginning of 
this  paper,  the  obtained values of x 2  are magnified both  by  the very large 
number of observations on which  they  are  based  and  by the fact that  the 
sequential  dependencies  used  here  are  not of sufficient length  to  make the 
responses themselves  statistically  independent. On  the other  hand,  these  two 
observations  are not sufficient to explain the large values reported. There is 
clearly a significant gap  between  theory and observation, and  it  appears  that 
it will be necessary to revise the theory  proposed in  this  paper  in  order  to 
close this gap  adequately. 

(References follow Appendix, p .  357.) 

Appendix 

The main  purpose of this  Appendix is to derive the results  presented 
in  the section on  the theoretical  results. The  material in  the Appendix  is 
also organized  to  make  explicit the mathematical  details  involved in mak- 
ing  an application of the general  formulas  given in  the body of the paper to 
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experimental  data.  These details  are  elementary but  quite tedious  to work out. 
We hope that  their inclusion will encourage  other  investigators  to  conduct 
additional  experiments. 

We consider the two following probability  densities, defined on  the real 
line : 

i. A  densityf(y),  which we interpret as a noncontingent  reinforcement  or 
pseudoreinforcement  density, as the case may be. 

ii. A  smearing  density k ( x ;  y). The  number y is  a  location  parameter, that 
we can  take to be  for  example, the mean. MTe further assume k ( x ;  y )  to  be 
translation  invariant, i.e., we suppose that 

k@; y) = k(% + y’ - y ;  Y’) 
for all y, y’,  which  implies that K ( x ;  y) = k(x  - y ;  O ) .  

As a  result, all derivations  can be  made  using only the density k ( t ;  O), 
which we write k ( t )  for simplicity. In  fact we use in  the sequel the same 
symbol k for both  the  function of two  variables previously considered and 
the functions of one  variable just defined;  they  are related  by 

(*-l) k ( x ;  y) = k ( x  -y ) .  
All results in  this  Appendix are  given in  terms of f and k. 
The results  are  organized  into five categories:  additive  variance  property 

and  moment  relations;  asymptotic response  distribution  when f and k are 
constrained ; reinforcement-dependent  statistics ; linear  models and  stimulus- 
sampling  models ; and calculation of sequential  statistics. 

A-l. Additive variance property and moment relations 

for all models  [f(y)  being  properly  interpreted]  by the formula 
We  are first  concerned  with the asymptotic  response  density ~(x),  given 

(A-2) 
(The limits of integration  here  and  in  what follows are always from - W  to 
co unless  explicitly  counterindicated.) In  probability  terms, Eq. (A-Z) 
expresses that  the density Y is the convolution of the  two densities k and f. 
It is classical (Robbins,  1948)  that  this fact is equivalent  to  a  relation  between 
characteristic  functions,  or else to a sequence of relations  between the moments 
of the distributions (see, e.g., Cramér, 1946, p. 191). If ,ui is the central 
moment of order i, we have 

(A-3) ,&(Y) = ,u.@) + P d f )  9 

(A-4) / ¿ Z W  = ,uu,(k) f P.z(f) , 
(A-5) ,u&) = P@) f , u 3 ( f >  , 
(A-6) r u 4 W  = ru&) + Pdf) + 6 ,u4(k)P4(f) 3 
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and so on. Eq. (A-5) implies that  the  asymptotic response  distribution is 
symmetrical if the smearing  distribution  and the reinforcement  distribution 
are,  Equation (4-6) could be applied practically if the sample fourth  moment 
offered more  statistical  stability.  Equation (A-4) is the additive  variance 
property. Of course the variance  property  can be proved in a direct and  more 
elementary way. Assuming that  the mean of the smearing  distribution 
k(x; y )  is x = y ,  i.e., 

s xk(x; y )  dx = y ,  

we first  prove that  the mean of the distribution y(.) coincides with the mean 
of the reinforcement  distribution : 

This mean  can  be  taken  to  be O without loss of generality. We  then have 

var (f) = sy?f (y )  dy and  var (k) = x2k(x;  y )  dx - y 2 ,  

5 x 2 k x  ( ; y )  dx = var (k) + y 2 .  

5 
or 

Now 

var (Y) = x z ~ ( x )  dx = s 
r,. 

A-2. Asymptotic  response density with  constraints on the  distributions 
In this  paragraph we specialize Eq. (A-2) by introducing  additional  con- 

straints onf  and k. We first  assume that (i), f(y) is symmetric  around O, and 
that (ii), k(x; y )  is symmetric  around x = y.  

One  can easily check that (ii)  implies: k(x; y )  = k ( y ;  x) = k( - x;  - y )  
- - k( - y ;  - x). A consequence of (i)  and (ii) is that  the density Y(%) is also 
symmetric  around O. We  further assume that (iii), f ( y )  = O .outside the 
interval (-Z, + Z), and  that (iv), k ( t )  = O outside the interval (-a,  + a). It 
follows from  (iii) and (iv) that y(.) = O outside ( -a  - Z, a + Z). The assump- 
tion of (i)-(il-) yields  different  formulas  for y(.) according to  the different 

t 



T A B L E  A - l  
ASYMPTOTIC RESPONSE DISTRIBUTION WITH f AND k SATISFYING 

CONDITIONS (i)-(iv) 

I. General  formula: r (x)  = s:: k( t ) f (x  - t )  dt  

II. Assume t h a t f b )  has  range 21 and  that k ( t )  has  range 2a. T h e  formulas for Y ( X )  are as 
follows : 

r (x )  = O 

r (x )  = s::: 
L 
s:: 
L 

.(x) = 

r(x)  = 

+ a  
r(x)  = 

III. Assume  further: 

f o r x 2  a - l  

k ( t ) f ( x  - t ) &  for O I x I a - I ,  a 2  I ;  

k( t ) f (x  - t )  dt fora - I 5  x l a + I ,  a 2 I; 

k( t ) f (x  - t ) d t  for O I x 5 Z - a, a 5  l ;  

k( t ) f (x  - t )  dt for I - a 5 x I I + a, a I 1. 

r when y 2 O, k t ( t )  when t 2 O,  

f-b) when y < O k - ( t )  when t < O. 
fb) = and k ( t )  = 

In the  formulas k + ,   k - , f + , f -  stand  for k + ( t ) ,   k - ( t ) , f + ( x  - f ) , / - ( %  - f ) .  The integrals  are 
taken  over t .  

Case I 
(a  2 21) 

0 1 x 5 1  

I l x I a - l  

a - I l x l a  

a l x f ; a + l  

Case 3 
(a  I 1 5  2a) 

0 5 x 2 1 - a  

I - a l x l a  

[Cases I and Z coincide  when k+ = k - . ]  

lp-, k - f +  + s '  k t f ,  -k 1:' k+/-  

j" k+f+ f 1 k+f-  

j:-, k-f+  +j" kaf+ + j a  k+f-  

x + l  

.T - 1 t 

O t 

k f +  + J a  k-f -  
.z-z X 

j a  k+f+ 
2-1 

'[Cases 3 and 4 coincide whenf+ = j - . ]  

k - f ;  + kLf+ f j: k-f -  
l o a  

j' k-f+'+  I a  k + f +  

lo k - f t  + 1'' k+f+ f 

JI-, k - f -  + 

--a O 

.r - 1 O 

k + / -  

Case 2 
( l  I a 2 21) 

0 5 s l a - l  

1 5 x s ; a  

a S x l a + l  

Case 4 
(l 2 2a) 

O l x i a  

a l x i l - a  

l - a l x l l  

l i x l a + l  

! 
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values of U and Z. Table A-l presents  the different cases. Table A-1 also 
presents the formulas  to  apply  when  f(y)  and k ( t )  have different  analytical 
formulations  according to the sign of the  argument.  Thus f+ means that 
y 2 O inf(y), f- means  that  y 2 O, k+ means  that t 2 O in k ( t )  and k- that 
t 1 0 .  Because the analytical expressions coincide for  various cases under 
Part III of the table,  conditions on a, Z, and x are  shown to both  the  left  and 
the right. Thus  the first  expression in  Part III holds  for case 1 when O 5 x 5 Z 
and  for case 2 when O 5 x 5 a - Z. In  the second  line no condition on x is 
shown  under case 2, and  then  this expression  does not  apply  to case 2. It is 
understood  that each expression gives y(.) for the restriction  indicated. 

Tables A-2, A-3, and A-4 are specifications of Table A-l using the rein- 
forcement  (or  pseudoreinforcement)  density f(y) corresponding  to  Models I, 
II, III, and  a  uniform  or  beta  smearing  distribution.  Table A-2 gives the 
asymptotic  response  distribution  for  Models I and II with the smearing 
distribution  arbitrary  except  for the satisfaction of conditions (;)-(;v) and  the 
assumption  that a > 21. The density y(.) has three  distinct expressions for 
Model I, and  four  for  Model  II,  depending  on  the relation  holding  between 
a, Z, and x. For notational convenience the expression for 2Zr(x) rather  than 
Y(.) is shown  for  Model I. and Z"(x) is shown  for  Model I I .  

T A B L E  A-2 
ASYMPTOTIC RESPONSE DISTRIBUTION FOR  ARBITRARY  SMEARING DISTRIBUTION AND 

UNIFORM REIKFORCEMENT DISTRIBUTION 

>IODEL I : f ( y )  is uniform density  over (- 1 + 4 ,  f l  > 21; 

2Zr(x) = I'-' k( t )  dt f 1'" k( t )  dt  for O I x i l ;  

2Zr(x) = jx-L k ( t )  dt for l i x i a - l ;  

21r(x) = 

O O 
x+l 

j":-, d t  f o r a - l I x i a + l .  

~ ~ O D E L  I I  : Pseudoreinforcement  is  triangular  density over (- 1 f l ) ;  

P r ( x )  = k(t)(Z - x - t )  dt f k(t)(L - X i t )  dt II: 
+I, Z f l  

k(t)( l  + X - t )  dt for O 2 x i l ,  

Z%(x) = r" k( t ) ( l  - x + t )  dt $. i'" k(t)(1 + x - t )  dt f o r Z 9 x i a - l ,  
J 2-1 J %  

12r(x) = k( t ) ( l  - X + t )  dt + k(t)(Z + X - t )  dt i: f o r a - l l i x i a ,  

P T ( X )  = r" k(t)(Z - X + t )  d t  f o r a i  x 9  1 + a .  
J .r-' 
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T A B L E  A-3 

ASYMPTOTIC RESPONSE DISTRIBUTION FOR UMFORM SMEARING DISTRIBUTION ON 

IKTERVAL (-a,a) AXD UXIFORM REIKFORCEMENT DISTRIBUTION ON INTERVAL ( -Z,Z) 

MODEL I: 
Case 1.  a 2 l .(x) = - 1 

2a 
a f l - x  

4al 

f o r O i x i a - l ,  

f o r a - l I x < a + + ,  r(x)  = 

.(x) = O for x 2 a + 1. 

Case 2. a < l .(x) = '' 21 
a + l - x  

4nl 

f o r O 5 ~ I Z - u ~  

f o r l - a S x ~ l + a ,  r(x)  = 

T ( X )  = o for x 2 l + a. 

MODEL II: 
Case 1.  a 2 1 r (x)  = 2 2a 

1 [x - (a  - l)]' 
2a 4a1' 
1 

4al 

f o r 0 5  x <  a - l ,  

.(x) = - - f o r a - l l x x a ,  

r (x )  = -[x -- ( a  + 1 ) 1 2  for a 5 x 2 a + I ,  
.(x) = o for x 2 a + 1. 

- *P  
Case 2. a < l < 2a .(x) = + D 

21 - a 
2al 21- f o r O S x i l - a ,  

2a 4a12 f o r l - a l  x i  a, r (x )  = 1 - [x + 1 - al' 

Table A-3 gives the asymptotic  response  distribution  when  a  uniform 
smearing  distribution is assumed.  Results for  Model III may be  obtained 
from  those  for  Model I by  replacing Z with 112. 

Table A-4 corresponds  to Table ,4-3 with  a  symmetric  beta  smearing 
distribution  now  assumed. The formulas  given in  the  table have been 
simplified by  using the following abbreviations  for terms  that arise naturally 
with the beta  smearing  distribution  with  exponent n: 
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(Here we have used a rather  than b for  the half-range of the  beta  distribution.) 
The  abbreyiations  are : 

1 
B = B(4, n +- 1) = B(n + 1, i) = loe,-1/2(1 - a)% dv,  

and 

For O < u < 1, 

I(0) = O and I(1) = 1 . 
For application of the results we also note the useful relations for O < c( < 1 : 

T A B L E  A-4 
ASYMPTOTIC RESPONSE DISTRIBUTION FOR SYMMETRIC BETA SMEARING DISTRIBUTION 

ON INTERVAL ( -a ,a )  AXD UNIFORM  REINFORCEMENT DISTRIBUTIOP’; ON 

IKTERVAL ( -Z&) 

M O D E L  I :  

f o r a - l I x < a + f ,  

r ( x )  = O for x 2 a f Z. 
M O D E L  I I :  

. (X )  = &[(Z - x ) I r + j  - 2 4 : )  + ( I  + x)I(l+) 

.(x) = O, x > a + 1 .  
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A-3. Reinforcement-dependent  statistics 
We use the  term  “reinforcement-dependent”  to refer  to  those  sequential 

statistics that depend only on past  reinforcements and  not  on preceding 
responses. The  two  examples  considered in  the  main  body of the paper  are 
P(X ,  j Yawl) and P ( X n  j Y,-l, Y,-z). We have already  observed that  these 
two  statistics are  the same  for all models in either the linear  or the stimulus- 
sampling  formulation,  and it is possible to  prove this observation as a  general 
result  for  all  reinforcement-dependent  statistics  in the noncontingent case. 
T o  illustrate the  methods of proof we derive  here the expression for 
P ( X ,  I Ya-l, Y,,-2) for  Model II in  the two  formulations. 

Linear  Model II. The basic axiom for  this model is given as Eq. (6) in 
Sec. 1 of the paper. By simple  iteration we obtain  at  once the recursion: 

L(% I Yn-17 Yn-2 > Yn-3 ,  L - 4 )  = (1 - w % - z ( %  I Ya-3 9 %-J 

Integrating  out,  noting  that  the first term  on  the  right  is simply Y ~ [ , ~ ( X ) ,  and 
taking the limit  at  asymptote, we obtain 

(A-7) 

n+ m 

where 
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Integrating now over the appropriate  intervals,  and  dividing  by 

we get Eq. (13) of Sec. 1. 
Stimulus-sampling one-element Model PI. The axioms for  the 

stimulus-sampling  models  are given in  Suppes (1960). A modification in  the 
conditioning axiom (C2) concerning the mode of the smearing is required  to 
take  account of the two preceding  reinforcements. The  new axiom C2‘ reads 
as follows: “If a  stimulus  is  sampled  on  a  trial, the mode of its  smearing 
distribution becomes, with  probability c, the mean of the two  preceding 
reinforcements;  with  probability 1 - c the mode  remains  unchanged.” The 
other axioms need no modification to  accommodate the intuitive  idea of 
Mod.el II. 

T o  represent the discontinuous Conditioning process described  by Axiom 
C2’ we use the  Dirac delta  function. Thus if f is a  continuous  function, 

~(Yn- lFV7Z-2) ,  

j+ - Y ) f ( Y )  dY =f(4 * 
Use of this  function  permits a  simple  algorithmic  derivation of complicated 
expressions.  (We  omit  subscripts n and n - 1 on j . )  

i(% 7 Yn-1, m - 2 )  

= jjA% z, Yn-1, % - l ,  Yn-2) d,“&,-, 

= j j j ( x n !  zn,YTL--l,  Xn-1,Yn-2>i(zn  iYTL-1,  zn-lyYn-p)j(Yn-1) 

a j(zn-1, ~ v - 2 )  dZndza-1 

l 
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divide the parallelogram  into three regions, over  which the limits of integra- 
tion differ. If we now specialize to  uniform  distributions  for k and f, we 
obtain K’(x, y )  for each of the  three regions of the parallelogram. We  then 
compute W ( X ,  Y>  as the double  integral of K’(x, y ) f ( y ) .  Since we consider 
four intervals  for X and  four  for Y ,  we must calculate H’(X, Y )  for 16 
regions in  the parallelogram on which k’(x,  y )  is nonvanishing. By arguments 
from  symmetry  this  number may be  reduced  to 8. Unfortunately,  different 
cases arise according  to the relative values of a. and 1. 
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