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Chapter 1

Geometric Data Analysis of
Individual Differences

1.1 Introduction

The objective of this chapter is to study the multidimensional structure of
the individual differences of an EPGY file (courses of mathematics, grade 3),
by means of Multiple Correspondence Analysis (MCA). MCA is applicable to
an Individuals x Variables table where variables are categorized, that is, have
a finite number of categories. The procedure of MCA is part of Geometric
Data Analysis (GDA) for which multivariate data sets are conceptualized
as clouds of points, and the interpretation of data is essentially based on
these clouds!: See Benzécri & al (1973), Lebart & al. (1984), Greenacre
(1984), Benzécri (1992), Gower & Hand (1995). Benzécri and his colleagues
have developed GDA mostly around Correspondence Analysis (CA), but GDA
also covers Principal Component Analysis (PCA) recast in geometric terms.
Multiple Correspondence Analysis (MCA), which grew up as a special case of
CA, is the analog of PCA for categorized variables. The domain of application
of McA is extremely wide. As far as Educational Research is concerned,
MCA is routinely used by the Evaluation Deparment of the French Ministry
of Education, as reflected in the journal FEducation et Formations. For an

!Geometric Data Analysis is known in France as “Analyse des données”; the name
“Geometric Data Analysis”, which denotes the specificity of the approach, has been sug-
gested by P. Suppes. Cloud of points (“nuage de points”) to designate the set of points in
a Euclidean space, is now a well accepted phrase in English. As we proceed in the chapter,
we will briefly recall the meaning of the words belonging to the specific vocabulary of MCA.
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example of MCA applied to the teaching of Mathematics see Murtagh (1981).

The MCA procedure leads to constructing two clouds of points: a cloud
of categories (or of modalities?), and a cloud of individuals. In the analyses
of the present chapter, we emphasize the study of the cloud of individuals
and Structured Data Analysis, as has been done in Rouanet & Le Roux
(1993), Le Roux & Rouanet (1998), Bourdieu (1999), Chiche & al. (2000),
and Le Roux & Rouanet (forthcoming).

The chapter is organized as follows. After the present introduction
(§1.1), we describe the data set and its coding (§1.2), then we proceed
to MCA (§1.3), we interpret axes (§1.4); we study the cloud of individu-
als (§1.5). As is usual in geometric data analyses, we complement the study
by a Euclidean classification (§1.6). We close the chapter with a discussion
and conclusions (§1.7).

1.2 Data and Coding

The data studied are those of 533 EPGY students in the third grade; they
concern the following 5 strands: Integers, Fractions, Geometry, Logic and
Measurement.

1.2.1 Variables Retained for Analysis

Active variables. The variables that serve to define the distance between
individuals, that is, to construct the cloud of individuals, are called active
variables. For each strand, we have taken three types of variables:

1. Error rates.
2. Latencies for correct answers.
3. Number of exercises to master the concepts of strand3.

Crossing the three types of variables with the five strands, we get fifteen
active variables in all.

2 Response modality (“modalité de réponse”) is often used as a synonym of category, in
the context of questionnaires.

3See Suppes & Tod for a description of how the number of exercises to
mastery is determined.
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Structuring factors of individuals. In addition to the fifteen active
variables, we will study the number of hours spent on the computer, Gender
and Age, as structuring factors of individuals.

1.2.2 Univariate Analyses and Coding of Variables

The distributions of Error rates differ among the strands (see Figures 1.1-a
to 1.1-e). The Integers, Fractions and Measurement distributions are Z—
shaped whereas Geometry and Logic ones are more bell-shaped.

Remark. The numbers of students who make no error are 9 in Integers, 70
in Fractions, 4 in Geometry, 0 in Logic, 49 in Measurement.

57%
51%

.02 .10 .02 .10 .02 .10
Figure 1.1-a. Integers Figure 1.1-b. Fractions Figure 1.1-c. Geometry

36%

.02 .10 .02 .10
Figure 1.1-d. Logic Figure 1.1-e. Measurement

Figure 1.1: Distributions of Error rates and percentages for the 3 grouped
categories.
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The five Latency distributions are more or less bell-shaped (see Figures
1.2-a to 1.2-e ).

A

90 g apd 500X80 1 ®
Figure 1.2-a. Integers Figure 1.2-b. Fractions
(6020 g d 50 (AN
Figure 1.2-c. Geometry Figure 1.2-d. Logic

Al

P
Figure 1.2-e. Measurement

Figure 1.2: Distributions of Latencies

The Number of Ezxercises is a discrete variable (see Table 1.1, p.5).

Given the heterogeneity of variables and of their distributions, the most
appropriate Geometric Data Analysis is Multiple Correspondence Analysis
(McA). We therefore proceed to the coding of variables into a number of
categories (2, 3 or 4) that we describe below. The phase of coding in GDA is
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VG . 7 5 6 7
Integers 180 53 Fractions 32 49 1 1
Ceometey |08 9 10 11 12 13 1f 15 16
Y1 1 19 61 118 203 100 20 7 3
. ] 5 6 7 9 10 M 5 6
Logic ' 4er—=3m 55 9 2 1 Measurement  \—3er—57—>7

Table 1.1: For each strand, absolute frequencies of the Number of exercises
(in italics) to mastery.

always crucial for efficient analyses and must be carefully performed accord-
ing to the specificities of variables in order to attain as much homogeneity
as possible, which is required to define a distance between individuals.

Error rates. We have taken a common coding defined by two cuts at 2%
and 10%, generating 3 categories, namely less than 2 errors per 100 exercises,
between 2 and 10 errors, more than 10 errors.

Category Integers | Fractions | Geometry | Logic | Measurement
1 -<.02 305 274 55 31 192
2 02<-<.10 225 254 382 367 316
3 ->.10 3 5 96 135 25

Table 1.2: Absolute frequencies of error rates

Latencies. Latencies widely differ among strands?. Consequently we have,
for each strand, taken a 4-category coding defined by the inferior quintile
(20%), median (50%), and superior quintile (80%); see Table 1.3 (p.6) and
Figure 1.2 (p.4). Absolute frequencies are 106 for category 1, 160 for cate-
gories 2 and 3, 107 for category 4: For instance, 106 students have a latency
less than 19.84 in Integers, less than 10.06 in Fractions etc. Quintiles have
been taken in order to give more importance to extreme individuals in MCA
(cf. distance definition p. 7). Hence we obtain 4 x 5 = 20 categories.

Number of exercises to mastery. For Integers, Fractions, and Mea-
surement, we code two categories: four exercises (1) and more than four

4This discrepancy may be attributable to the differing organizations of exercises among
the strands.
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Category 1 2 3 4
Integers - < 19.84 19.84 < - < 26.18 26.18 < - < 34.35 - > 34.35
Fractions - < 10.06 10.06 < - < 14.64 16.64 < - < 21.79 - > 21.79
Geometry - < 16.55 16.55 < - < 21.95 21.95 < - < 31.92 - > 31.92

Logic - < 14.05 14.05 < - < 18.60 18.60 < - < 25.13 ->25.13
Measurement - < 30.66 30.66 < - < 40.35 40.35 < - < 50.71 - > 50.71

Table 1.3: Categories and Cut values (in seconds) for Latencies coding.

exercises to mastery (2). For Geometry and Logic, we code three categories
each. In Geometry, the categories are less than eleven exercises (1), eleven or
twelve exercises (2), and more than twelve exercises (3)°. In Logic, the cat-
egories are four exercises (1), five exercises (2), and more than five exercises

3).

Category | Integers | Fractions | Geometry | Logic | Measurement
1 480 482 82 165 387

2 53 51 321 301 146

3 130 67

Table 1.4: Absolute frequencies of number of exercises

One thus obtains 47 categories (or modalities).

1.2.3 Response Pat

terns

With each individual, there is associated a response pattern defined by the
individual’s responses to the 15 coded variables.

Ezample. For the first individual in the file, table below gives the raw
responses and the corresponding pattern:

Integers|Fractions|Geometry Logic|Measurement
Raw — Coded Error rates|.014 — 1|.015 — 1| .034 — 2|.054 — 2 .069 — 2
Raw — Coded Latencies [27.2 — 3|13.7 — 2| 26.5 — 3|17.5 — 2 375 = 2
Raw — Coded Exercises 41 41 1252 52 6 — 2

The corresponding response pattern is thus 11222 32322 11222.

®The Number of Exercises in geometry is different from the one in the other strands

because some concept classes in Geometry have no criterion to mastery. This is due to the
fact that in those concept classes the student is given a geometrical construction consisting
of a number of steps, none of which can be omitted.
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The number of possible patterns is equal to
30X 4% x (2x2x3x3x2) =243 x 1024 x 72 = 17915 904.
The number of observed patterns is 520, quite close to 533 (total number
of individuals), which expresses almost the maximum of individual differ-
ences at the level of coded variables®.

1.3 Multiple Correspondence Analysis

1.3.1 Theoretical Sketch of mca

For a general presentation of MCA, it is convenient to adopt the language of
questionnaire in a standard form. On one hand, there is a set () of questions,
question ¢ € () consisting in a set K, of response categories; we let K be
the set of all response categories: K = UgecgKy. On the other hand, there is
a set I of n individuals, and each individual ¢ € I chooses one and only one
response category of each question. Hence the basic Individuals x Questions
data table. We present hereafter MCA as a full-fledged geometric method
for categorized variables”.

Distance between individuals. In any Geometric Data Analysis, the
first step always consists in defining the distance between individuals. The
MCA distance between two individuals is determined by the questions to
which they choose different response categories (i.e. for which they disagree).
Let ng be the number of individuals who choose response category k; let
fr = ng/n be the relative frequency of k. If for question ¢, individuals ¢ and
i’ disagree, i choosing k and 4’ choosing k' # k, the quantity 1/fy + 1/ fx
represents the amount of the square of the distance accounted for by question
q, and the overall distance d(i,4') between individuals ¢ and 7’ is given by

the formula: . . .
Plii) =52 <ﬁ + f_k)

6 As active variables, we could have taken the averages over strands of the three types
of variables; however in doing so, the distance between individuals would only depend on
the three types of variables, and we would lose an important source of variation between
individuals. As a matter of comparison, if we had taken only the three types of variables
as active variables, we would have much fewer possible patterns (say about 3 x 4 x 3 = 36)
than individuals.

"MCA is often presented as a special case of cA applied to the Individualsx Categories
table after the disjunctive encoding of the Individualsx Questions table (see p.8).
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where the sum is taken over the questions for which the two individuals
disagree (denoting the cardinality of @ by the same symbol Q). Observe
that an unfrequent category creates more distance than a frequent one, and
that the distances blow up when the frequencies fi are too small. For this
reason, it is mandatory in MCA to group “unfrequent categories” — less than
5% as a rule of thumb — with other ones. This is what we have done above
Error rates (cf. hereafter p.10).

Cloud of individuals. The n(n—1)/2 distances between individuals define
a set of n points in a multidimensional space, called a cloud of individuals.
The @ responses of an individual can be replaced by a K—ple of {1,0}: 1 if
category is chosen and 0 if not (disjunctive encoding), hence the individual
points lie in a K—dimensional space. Since there is only one category chosen
per question, there are () linear constraints, therefore the cloud of individuals
actually lies in a K — () dimensional subspace.

Cloud of categories. The McA distance d(k, k') between two categories k
and k' is given by the formula:

Ng + Nk — ank/

2 /
(k. K) = Nk Ngr /1
where ny; is the number of individuals who have chosen both k& and &'
These distances define a cloud of K category points, called a cloud of cate-
gories. The categories of question ¢ lie in a K, —1 dimensional subspace (K,
denoting the cardinality of the set K), therefore the cloud of K category
points lies in a K — () dimensional subspace (like the cloud of individuals).

Variance of cloud. The variance of a cloud is the weighted mean of the
square of the distances of the points of the cloud from the mean point of the
cloud. In MCA, the cloud of individuals and the cloud of categories have the
same variance equal to (K — Q)/Q.

Principal axes. The principal axes of a cloud are defined by successively
fitting lines to the cloud by the method of orthogonal least squares. The
orientations of axes are arbitrary. The projections of the points of a cloud
onto the first principal axis provide the best one-dimensional adjustment of
the cloud (in the least square sense), or equivalently provide the maximum
variance one—dimensional approximation of the cloud. The projections onto
the first two principal axes, that is, onto the first principal plane, provide
the best two—dimensional adjustment, and so forth. The usual geometric
representations of the cloud are the orthogonal projections of the cloud onto
the principal planes 1-2, 1-3, 2-3, etc.
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Eigenvalues (denoted )\, A9, etc.). The eigenvalue associated with
an axis is the variance of the projected cloud onto this axis; one also says
variance of the axis or inertia of the axis®. There are K —( eigenvalues. The
sum of the eigenvalues is equal to the variance of the cloud, i.e. (K —Q)/Q,
hence the variance rates (or inertia rates) defined for each axis as the ratio
of the eigenvalue by their sum.

Principal Coordinates. The coordinates of the points of a cloud along
principal axes with unit—-norm direction vectors are called principal coor-
dinates. In GDA, geometric representations are done from principal coor-
dinates. The coordinate of individual ¢ along a principal axis is denoted
y', and the set (3%);c; defines the principal variable on I, whose variance is
equal to A (variance of axis). Similarly, one defines the principal coordinate
y* of response category k, and the principal variable (y*)rcx on K, whose
variance is also equal to .

Transition Formulas in MCA. Let K; C K be the subset of categories
chosen by individual i; then the coordinate 3 of individual point i on a
principal axis is the mean of the Q coordinates y* of categories k € K;
divided by V/X:

y' =1/ 4/Q)

keEK;

Similarly, let I, C I be the subset of nj individuals having chosen category
k; then the coordinate y* of category k on a principal axis is the mean of
the coordinates y of individuals i € I, divided by v/X:

" = (VN (DY )

i€y,

Subclouds, Category mean—points. Given a category k, the subset
of individuals that have chosen category k defines a subcloud of individuals
with which there is associated its mean point, called a category mean—point.
For a given axis, the principal coordinate of the category mean point is equal
to V¥ (y* being the coordinate of category point k).

8Searching the axis of maximum variance amounts to determining the eigenvalues and
eigenvectors of a symmetric endomorphism, hence the name of eigenvalues for the variances
of axes.
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1.3.2 Application to the EPGY Data Set

For the EPGY data set, we have () = 5x 3 = 15 active variables. For Integers
and Fractions, Category 3 of Error rates has a frequency less than 1% (cf.
Table 1.2, p.5), therefore we have grouped this category with Category 2.
As a result, the total number of categories is K = 47 — 2 = 45.

Distances. The distance between two individuals is the MCA distance de-
fined earlier (p.7).

For example, for the two response patterns 111111111111111 (low error
rates, short latencies, and small number of exercises), and 22333 11111 22332
(high error rates, short latencies, and large numbers of exercises), the square
of the distance is equal to (cf. Tables 1.2 p.5 and 1.4 p.1.4):

533 1 1 1 1 1 1 1 1 1 1
ﬁ(((m+m)+(ﬁ+m)+(§+%)+(3—1+m)+(@+%))+(0+0+

Basic results of MCA. The basic results of MCA are the following: (i) the
eigenvalues; (ii) the principal coordinates of the 45 categories (see Appendix
Table 1.1, p.35) and of the 533 individuals (or of the 520 response patterns);
(iii) the contributions of categories to axes (see Appendix Table 1.2 p.36 and
§1.4.1 p.11); (iv) the geometric representations of the two clouds (categories
and individuals).

Eigenvalues. There are K — () = 45 — 15 = 30 eigenvalues, and the sum
of eigenvalues (K — Q)/Q is equal to 2.

Axis1 Axis2 Axis3 Axis4

Eigenvalues () .3061 .2184 .1460 1199
Raw rates of inertia 15.3%  10.9% 7.3% 6.0%
Modified rates 63.1%  25.4% 6.9% 3.1%
Cumulated modified rates | 63.1% 88.5%  95.4%  98.6%

Table 1.5: Eigenvalues; raw and modified rates

How many axes to interpret? To assess the importance of axes, the
modified rates of inertia (cf. Benzécri, 1992, p.412) give a better assessment
of the importance of axes than the raw rates. Let \,, = 1/@Q) (mean eigen-
value, here .067), and X' = (A — \,;,)2. Then the modified rate is equal to
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MN/3T N, the sum being taken over the eigenvalues greater than \,,°. The
modified rates indicate how the cloud deviates from a spherical cloud (with
all eigenvalues equal to the mean eigenvalue).

Looking at modified rates, it is clear that one axis is not sufficient
(63.1%); whereas taking two axes brings the rate up to 88.5%. The fol-
lowing two axes have eigenvalues near to each other; taking four axes brings
the rate to 99%. We will in any case interpret the first two axes, and attempt
to interpret the next two ones.

1.4 Interpretation of Axes

Benzécri (1992, p.405) gives the following guideline: “Interpreting an axis
amounts to finding out what is similar, on the one hand, between all the
elements figuring on the right of the origin and, on the other hand between
all that is written on the left; and expressing with conciseness and precision,
the contrast (or opposition) between the two extremes”. The Method of
Contribution of Points and Deviations that we have devised (Le Roux &
Rouanet, 1998) offers a guide along this line.

1.4.1 Aids to Interpretation

Contributions of points to the variance of a principal axis (Ctr).
The proportion of the variance of an axis due to a point, denoted Ctr, is
called the contribution of point to axis. This contribution is equal to the
product of weight p by the square of coordinate ¥, divided by the variance A
of axis:  Ctr = py?/\. The weights of categories are proportional to their
frequencies, that is, the weight p of category k is equal to fi,/Q'°.

Contribution of the deviation between two points. Let p and p’
denote the weights of two points, y and 3/’ their coordinates along a principal
axis. The contribution of the deviation is given by the following formula:

pp’
e (y — )%/

9For @ = 2, the modified rates are equal to the rates of the ca of the associated
contingency table.

10The definition of contribution also applies to individuals, but is less interesting in
MCA, because all individuals have the same weight 1/n.
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Contribution of a subset of points of the cloud. The contribution
notions readily extend to a subset of points (subcloud). With a subcloud
there are associated its weight (sum of the weights of its points), its mean
point (with weight equal to the weight of the subcloud) and its variance.
Three types of contribution are accordingly defined: (i) the global contri-
bution of subcloud, which is the sum of the contributions of points; (ii) the
contribution of the mean point of the subcloud; (iii) the within—contribution,
which the product of its weight by its variance divided by A.

Active vs supplementary elements. The individuals and the categories
that have participated in the determination of axes are called active ele-
ments. One can also study supplementary individuals or categories which
have not participated in the determination of principal axes, but whose cor-
responding points are projected on them, and whose coordinates are given
by the transition formula.

1.4.2 First Interpretation of Axes of EPGY Data Set

Contributions of the 3 types of variables. Table 1.6 shows the rela-
tive contributions of the 3 types of variables. For Axis 1, Error rates account
for 43% of the variance, the Number of Exercises for 30%, then the Laten-
cies for 27%. For axis 2, latencies account for 68% of the variance; error
rates and Number of Exercises account for only 18% and 14% respectively.
Therefore the first axis is mainly the axis of error rates, and the second axis
is mainly the axis of latencies. From Table 1.6 (axes 3 and 4), one notices
that latencies account for 92% of the variance of axis 3, and error rates for
67% of the variance of axis 4. The third axis, which is specific of latencies,
is a refinement of the second axis, and the fourth axis a refinement of the
first one (cf. p.13).

Axis1 | Axis 2 | Axis 3 | Axis 4
Error rate 433 184 .029 671
Latency 271 677 916 .053
Exercises .296 .139 .055 .276
Total 1. 1. 1. 1.

Table 1.6: Contributions of the 3 types of variables
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Contributions of 5 strands. Table 1.7 shows the contributions of the 5
strands. For the first 3 axes, the 5 strand contributions range from 12% to
26%, whereas for Axis 4, the contribution of Logic predominates (49%)'!.

Axis1 | Axis 2 | Axis 3 | Axis 4
Integers .196 .225 191 .045
Fractions 122 219 .209 .020
Geometry .186 182 .254 287
Logic .259 228 .208 493
Measurement 237 146 138 155
Total 1. 1. 1. 1.

Table 1.7: Contributions of the 5 strands

Contributions of 15 variables. If one looks at the contributions of the
15 variables (Table 1.8, p.14) in detail, one sees that the Number of Exercises
in Fractions and in Geometry hardly contribute (3% and 2%) to axis 1, that
latencies of the 5 strands contribute almost equally to axis 2. If one now
examines Figures 1.3-a, 1.3-b, 1.3c¢ (p.15), corresponding to the 3 types
of variables in plane 1-2, one notes that for each type variable there is a
coherence between strands except for the Number of Exercises in Geometry
(Figure 1.3-c).

If one examines plane 2-3 (Figure 1.4-b, p.16), one observes a Guttman
effect for latencies, that is, the horizontal axis (axis 2) orders categories from
right to left according to decreasing latencies; and axis 3 opposes medium
categories (2 and 3) to extreme ones (1 and 4)'2. Similarly, one observes a
Guttman effect of error rates in plane 1-4 (Figure 1.4-a). These Guttman
effects observed in planes 2-3 (latencies) and 1-4 (error rates) show that the
data are essentially articulated around 2 scales: one of error rates (axis 1)
and one of latencies (axis 2). We will now interpret axes 1 and 2 in detail.

1.4.3 Interpretation of Axis 1 (\; = .3061)

The number of categories whose contributions to axis 1 are greater than
average (1/Q = 1/45 = .022 = 2.2%) is equal to 20 (cf. Appendix Table

HThe specificity of Logic appears also on the data about tests (see
Andrew) .

128trictly speaking, there is a Guttman effect if for axes £ and £’ one has the following
relation between the principal variables Vi € I : yi = a((y}f)2 — )\[) (Benzécri, 1992, p.
94). Finding a Guttman effect reveals that there is an ordinal scale underlying the data.
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Axis1 | Axis 2 | Axis 3 | Axis 4
Integers .083 .043 .002 .004
Fraction .051 .034 .013 .001
Error Rate  Geometry .104 .035 .003 273
Logic .096 .053 .005 251
Measuremt .098 .018 .006 142
Integers .048 .159 .189 .004
Fraction .043 157 .196 .013
Latency Geometry .059 123 .199 .008
Logic .066 131 .200 .015
Measuremt .054 .106 132 .012
Integers .065 .022 .000 .037
Fraction .028 .028 .000 .005
Exercises Geometry .023 .023 .051 .006
Logic .097 .044 .003 227
Measuremt .084 .022 .000 .000
Total 1. 1. 1. 1.

Table 1.8: Contributions of the 15 variables

1.2, p.36); to which we will add the low error rate category for Logic, hence
21 categories, depicted on Figure 1.5 (p.17). On one side of axis (left on
Figure 1.5), one finds the 5 low error rate categories (circles), and the small
number of exercises categories in Logic and Measurement (squares). On the
other side (right), one finds the 5 high error rate categories, the large Num-
ber of Exercises categories (except in Geometry), and the 5 short latencies
categories (diamonds).

The interpretation of axis 1 will be based on these 21 categories, which
account for 81% of the variance of axis. The opposition between high and
low error rates is very important, and accounts for 35% of the variance of
axis 1 (out of the 43% accounted for by all error rate categories). The
contributions of short latency categories for the 5 strands are greater than
average contribution (see Appendix, Table 1.2, p.36). These 5 categories are
located on the right of origin (cf. Figure 1.5 and Table 1 in Appendix); which
shows a link between high error rates and short latencies. The opposition
between low error rates and short latencies accounts for 28% of the variance
of axis 1, and the one between small and large numbers of exercises for 24%.
The opposition between the 7 categories on the left of origin and the 14 on
the right of origin accounts for 67% of the variance of axis 1.

The first azis is the axis of error rates and numbers of exercises.
It opposes on one side low error rates and small numbers of
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Figure 1.3-c. Number of exercises to mastery (plane 1-2).

Figure 1.3: Clouds of modalities (3 types of variables) in plane 1- 2

exercises and on the other side high error rates and large numbers
of exercises, the latter being associated with short latencies.

1.4.4 Interpretation of Axis 2 ((\y = .2184)

On Figure 1.6 (p.17), the 15 categories whose contributions to axis 2 are
greater than average are depicted. At the top of the figure, one finds the
5 short latency categories. At the bottom of the figure, one finds the 5
long latency categories, the 3 high error rate categories in Integers, Logic
and Geometry and the two large Number of Exercises categories in Fractions
and Logic. These 15 categories account for 72% of the variance of axis 2. The
interpretation of axis 2 will be based on these 15 categories. The opposition
between short and long latency categories account for 55% of the variance
of axis 2 (out of the 68% accounted for by all latency categories). The
opposition between the 5 short latency categories and the 3 high error rate
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Figure 1.4: Guttman effects in cloud of categories in planes 2-3 (left) and
1-4 (right).

categories in Integers, Geometry and Logic accounts for 35% of axis 2; the
opposition between the 5 short latency categories and the 2 large Number of
Exercises in Fractions and Logic accounts for 21% of the variance of axis 2.
More generally, the opposition between the 5 short latency categories and
the 10 aforementioned categories accounts for 65% of the variance of axis 2.

The second azis is the axis of latencies. It opposes short latencies
and long latencies, the latter being associated with high error
rates and large numbers of exercises.

1.4.5 Typical Response Patterns Emerging from Analysis

From the interpretations of axes and the distribution of categories in plane
1-2, the following response patterns emerge as typical patterns:

pattern 1111111111 11111 (point A) (low error rates, short latencies, small
number of exercises); pattern 1111144444 11111 (point B) (Low error rates,
long latencies, small number of exercises); pattern 2233211111 22332 (point
D) (high error rates, short latencies, large number of exercises); and Pattern
2233244444 22332 (point C) (high error rates, long latencies, large number
of exercises). Notice that none of the 533 individuals matches any one of
these typical patterns.
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1.5 Cloud of Individuals
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Figure 1.7: Cloud of individuals (patterns) with typical patterns.

Cloud in plane 1-2 (Figure 1.7). The cloud of individuals (533 stu-
dents) is represented on Figure 1.7; it consists in 520 observed response
patterns, to which we add the 4 typical response patterns. The individuals
are roughly scattered inside the quadrilateral ABCD defined by the 4 typical
patterns, with a high density of points along the side AB and a low density
along the opposed side. This shows there are many students who make few
errors whatever their latencies. On the other hand, students with high error
rates are less numerous and very dispersed. The Table 1.9 (p.19) gives the
variances of subclouds of individuals with low and high error rates in plane
1-2.
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Error rates | Integers Fractions Geometry Logic Measurement
low 0.307 0.362 0.211 0.204 0.257
high 0.469 0.500 0.387 0.399 0.360

Table 1.9: Variances of subgroups of individuals with low and high error
rates in plane 1-2

Figure 1.8-a: Error ratesxLatencies for Figure 1.8-b: Error ratesxLatencies for
Integers and . and Logic.

Figure 1.8-c Error ratesxLatencies for Measurement

Figure 1.8: Cloud of individuals. Error ratesxLatencies in plane 1-2.

If for each strand, we cross error rate and latency categories, with each
composite category there is associated a subcloud of individuals with its
mean point. Figure 1.8-a shows the 2 x 4 mean points for Integers and also
the 2 x 4 mean points for Fractions; the marker sizes are proportional to
the frequencies of subgroups. One notices, on Figure 1.8-a, that the 8 mean
points for Integers are very close to the 8 mean points for Fractions, and that
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these points are closer to side AB than to side CD of the quadrilateral; this
means that error rates are globally low. Similarly, Figure 1.8-b shows the
3 x4 mean points for Geometry and also for Logic. One notices the proximity
of homologous points, with some mean points of small groups quite close to
side AB, that is, corresponding to students with globally low error rates.
Similarly, Figure 1.8-c shows the 3 x 4 mean points for Measurement. There
are very few individuals with high error rates whose mean points are close
to side CD, that is, corresponding to students with globally high error rates.

These three figures show well that quadrilateral ABCD is a frame that
brings forth the following geometric model. When one goes down along the
AB direction, latencies increase, while error rates remain constant; when
one goes down along the AD direction, error rates increase, while latencies
remain constant.

More on Guttman Effects. Guttman effects can be investigated in the
cloud of individuals. Figure 1.9-a shows for Error rates in plane 1-4 the
45 observed category mean points (among the possible 2 x 2 x 3 x 3 x 3 =
108 category mean points). The error rate scale appears very distinctly,
showing a strong homogeneity across strands. Similarly Figure 1.9-b shows,
for Latencies in plane 2-3, the 214 (among 4% = 1024) observed category
mean points (labels are written for patterns with frequency > 9). The scale
of latencies is not so sharply distinct, as some subjects have both short and
long latencies across strands (for example 43441 and 34124).

Comparing Integers and Geometry. Is there any difference in stu-
dents’ behavior in Integers vs Geometry?

Among the 55 students who have a low error rate in Geometry, 52 have
also a low error rate in Integers. More than half of these 52 students have
long latencies (categories 3 and 4) both in Integers and in Geometry.

We have depicted in Figure 1.10 (plane 1-2) the category mean points
associated with the observed combinations of latencies in Integers and Ge-
ometry (15 observed out of 4 x 4 = 16 possible). If, for each latency category
in Integers, one joins category points 1, 2, 3, 4 in Geometry (lines 11 through
14, 21 through 24, 31 through 34, 42 through 44 on graph on the left), the
segments are roughly parallel to axis 1, that is, error rates decrease and
latencies weakly increase; whereas if we do a similar construction for each
error rate category (graph on the right), the segments are roughly parallel
to axis 2, that is, latencies increase and error rates remain about steady.
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Figure 1.9-b: 214 latency patterns in plane 2-3

Figure 1.9: Guttman effects in cloud of individuals.

Such findings lead one to conclude that in order to improve performance in
Geometry, some increase in latency is needed.
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11G1

14G4

Figure 1.10: Comparing Integer and Geometry latencies.

1.5.2 Structured Data Analysis

Structuring factors. Inan Individualsx Variables table, there are usually
variables, such as individual identification variables (age, gender etc.), that
are not used to construct the geometric space, but have a status similar to
factors in a designed experiment. We call such variables Structuring Factors,
and by Structured Data Analysis, we mean the integration, in Geometric
Data Analysis, of the major procedures of analysis of variance (sources of
variation, between—within decomposition, main effects, interaction effects,
etc.), while allowing for the features specific to observational data, in the
first place the fact that structuring factors are non—orthogonal, as a rule.

Subclouds, Category mean—point. The class of individuals that are in
category k of a structuring factor defines a subcloud of individuals, with its
mean point (category mean—point), its variance, its principal axes etc. For
a given axis, the principal coordinate of the category mean—point is equal to
VA yF, where y* is the coordinate of category k in the cloud of categories.

Concentration Ellipses. The concept of concentration ellipse stems from
classical statistics (Cramér, 1946)'3. The concentration ellipse of a subcloud
in a principal plane provides a geometric summary of the subcloud; its center

13For a bivariate normal distribution, the concentration ellipse contains 86% of the
distribution.
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is the mean point of the subcloud; the axes of the ellipse are the principal
axes of the subcloud, each half-axis has for length 2 standard deviations of
the subcloud in this direction.

Between and Within Variances. Given a partition of a cloud of indi-
viduals, the mean points of the classes of the partition defines a cloud whose
variance is called between—variance of the partition. The weighted average
of the variances of subclouds is called within—variance of the partition. The
overall variance of cloud decomposes itself additively in between—variance
plus within—variance.

Double decomposition of Variance. Given a set of sources of variation
and the set of principal axes, the double decomposition consists in calculat-
ing the part of variance of each source of variation on each principal axis
(for example, between and within).

1.5.3 Structured Analysis of EpGY Data Set

We now study the following structuring factors: Time spent on computer,
Age and Gender, allowing for missing data (133, 57, 46 respectively).

Number of hours spent on computer. The number of hours spent
on computer ranges from 6h30 through 248h, the median being equal to
21h20. For about 20% of students, time is less than 15h, and for about 20%
it is greater than 34h. Eight students spent between 70h and 122h30, one
student spent 248h.

The number of hours is correlated with the second axis (—.731, Spear-
man); globally, the shorter the latencies, the smaller the number of hours,
as would be expected. If we code the number of hours into 4 classes (cuts
at inferior quintile, median and superior quintile), one sees, on the table
of double decomposition of the variance, that for the first axis, the within
variance is much larger than the between one, and that for the second axis,
the between variance is almost equal to the within variance.

variances | Axis 1 | Axis 2
between .0176 .1009
within 2748 .1087

Table 1.10: Between and within Variances for Number of Hours.
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Age and Gender. The ages of students, at the end of the course, range
from 5 years to 11% years with a mode between 8 and 9 years. If one codes
the age in 4 classes from the quartiles (7.76, 8.415 and 9.05), one observes an
age effect with the 4 age categories ordered on axes 1 and 2. The deviation
between the extreme age classes (85% of the variance of the age on the axis 1
and 78% on the axis 2) is equal to 0.89 SD of axis 1 (an important deviation)
but only to 0.46 SD of axis 2 (a medium deviation). One can therefore say
that, when age increases, error rates definitely increase and latencies slightly
decrease (cf. Figure 1.11).

Figure 1.11: Mean points of the 4 age categories.

Nevertheless, within each age class, students are very scattered as shown
in Table 1.11 of double decomposition of variance.

variances | Axis 1 | Axis 2
between .0317 .0065
within .2684 .2102

Table 1.11: Between and within Variances for Age.

The students are composed of 283 boys and 204 girls. There is virtually
no difference between boys and girls as shown in Table 1.12.

If we cross Age and Gender, generating 4 x 2 = 8 classes, one notices the
large dispersion within the 8 classes in plane 1-2 — the within variance is
equal to .4738, with a between—variance only equal to .0368. The interaction
between Age and Gender is very low (see Table 1.13).
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variances | Axis 1 | Axis 2
between .0001 .0012
within .2927 2112

Table 1.12: Between and within Variances for Gender.

Axis 1 | Axis 2

AgexGender .0306 .0099
Age .0301 .0067
Gender .0000 .0012
Interaction .0006 .0016

Within (Agex Gender) .2683 | .2055
Total variance (n = 468) | .2989 | .2154

Table 1.13: Double decomposition of variances for the crossing Agex Gender.

For each axis, the sum of the variances of Age and Gender factors and of
their interaction is almost equal to the one of their crossing, which reflects
that the crossing is nearly orthogonal (see Table 1.14).

Boys Girls
- < 7.76 68 49 | 117

7.76 < - < 8.415 74 46 | 120
8.415 < - < 9.05 66 51 | 117
->9.05 60 54 | 114

Total 268 200 | 468

Table 1.14: Absolute frequencies for the crossing AgexGender (468 stu-
dents).

1.6 Euclidean Classification

1.6.1 Theoretical Sketch of Euclidean Classification

Purpose of Classification. The methods of classification — also called
cluster analysis — consist in constructing classes (or clusters) of a set of
objects, so that the objects within a same class are as close together as
possible (compactness) whereas those belonging to different classes are as
remote from one another as possible (separability). In GDA, the objects to
be classified are the points of a cloud, and the classes of a classification are
subclouds of the cloud. Cf. Benzécri (1992).
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Hierarchical classification. It is a system of nested classes, represented
by a hierarchical tree (after the pattern of natural science).

Agglomerative (or ascending) Hierarchical Classification (AHC).
One starts with one—element classes, from which one proceeds to successive
aggregations, until all objects are grouped within a single class. At each
step of the construction, one starts with a partition and groups two classes
of this partition.

Variance index. Given two classes ¢ and ¢/, the variance index is defined
by 8(c,d) = (fefe /(fe+ fo))d?(c,d), where d?(c, ) denotes the Euclidean
distance between the centers of classes ¢ and ¢/. When two classes ¢ and ¢/
of a partition are grouped together, the between—variance decreases from an
amount equal to d(c, ).

Euclidean classification. It is the AHC method performed on a Euclidean
cloud and taking the variance index as aggregation index.

Level index. In a Fuclidean classification, at each step £, one starts with
a partition, and the aggregated classes are those for which the variance index
is minimum. The value of this minimum is called level index &y. Thus at
each step, the construction process leads to the minimal decrease of the
between-variance of the partition (or equivalently to the minimal increase
of the within— variance). As one ascends the construction, the level indices
form an increasing sequence; the higher in the hierarchy, the higher the
heterogeneity level where aggregation is made. The sum of the successive
level indices is equal to the total variance. One thus gets a decomposition of
variance according to the hierarchy of classes.

1.6.2 Classification of the EPGY Data Set

We have made a Euclidean classification of individuals. Figure 1.12 shows
the superior tree resulting in the partition in 6 classes (cel, ... ce6) as well as
the sequence of level indices. Clearly, two partitions emerge: a three—class
partition generated by 2 successive dichotomies, and a six—class partition
generated by 5 dichotomies.

We will comment on the successive dichotomies leading to these two
partitions; then, we amend the partition in 6 classes of the AHC to get a



1.6. EUCLIDEAN CLASSIFICATION 27

Level Index
0.176+

ca2

0.122+

3 classes

0.77L
0.747
0.65+
6 classe

0,,

Figure 1.12: Superior hierarchical tree resulting in six-class partition.

partition in 5 classes that we will retain as a final summary. The 5 successive
partitions of AHC will be designated by CA (2 classes cal and ca2), oB (3
classes cbl, c¢b2 and cb3), cc (4 classes ccl, ... ccd), ¢D (5 classes) and CE
(6 classes), the final partition in 5 classes will be designated by c.

Partition in 3 classes

The first dichotomy (level index .176, partition CA) separates the students
in 2 classes cal of 255 students and ca2 of 278 students (cf. Figure 1.13- a),
and is characterized as follows:

Error rates are twice as small in class cal as in class ca2. The students
that have low error rates are a large majority in class cal: they are 196/305
for Integers, 169/274 for Fractions, 48/55 for Geometry, 28/31 for Logic and
160/192 for Measurement.

The latencies are almost all superior to the first quintile for class cal
and inferior to the last quintile the class ca2. The students that have long
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Figure 1.13-c: four—class partition (cc). Figure 1.13-d: five—class partition (CD).
o e
APAGE RS

.,"\

Figure 1.13-e: six—class partition (CE). Figure 1.13-f: Final five—class partition (c).

Figure 1.13: Ellipses of classes of successive partitions.
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latencies (superior to the fourth Quintile) are about 80% in class cal. More
than 70% of the students in class cal have latencies above median in all
strands.

The average number of erercises for class cal is always inferior to the
one for class ca2. Among the student that need more than 4 exercises, in
class cal, there are 2/53 for Integer, 2/51 for Fractions, 18/146 in Logic; and
38/130 need more than 12 exercises in Geometry and 6/61 do more than
5 exercises in Logic. Class cal is characterized by students with low error
rate; it includes almost all students with long latencies and who need few
exercises to mastery. An extreme pattern of this class is 1111144444 11111
(point B).

The second dichotomy (level index .122) generates the three—class par-
tition CB. It comprises class cbl (alias cal) and splits class ca2 into two
classes cb2 of 111 students and cb3 of 167 students (Figure 1.13-b, p.28).
It separates out class cb2. Class cb2 is rather compact; its first character-
istic is that almost all students of this class (except 3 in Fractions and in
Measurement, 9 in Geometry and 15 in Logic) have latencies below median.
The average error rates are situated around the median; 2/3 of students
have error rates inferior to .02 in Integers and Fractions, and are between
.02 and .10 in the 3 other strands for almost all (respectively for 104, 100
and 85). Except in Geometry, the students of this group need few exercises
for mastery: none does more than 4 in Integers and Fractions; 22 more than
4 in Measurement; in Logic 86 do 5 and 24 do less of 5; in Geometry, almost
all (except 7) do more than 11 exercises. This class is therefore character-
ized by short latencies, medium error rates, and small numbers of exercises
except in Geometry. For class cb3, the distribution of latencies is for each
strand near the overall distribution, with under-representation of long laten-
cies. The between and within variances of partition CB on the first 2 axes
are given in Table 1.15.

Axis 1 | Axis 2
Between: CB 1813 .0993
Within: I(cB) 1248 1191

Table 1.15: Between and within variances for the three—class partition CB.

The between—variance is very superior to the within—variance for axis 1
and slightly inferior for axis 2.

To sum up (cf. Table 1.16): The partition in 3 classes contains
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a class (cbl) with low error rates (and rather long latencies), a
class (cb2) with short latencies and small numbers of exercises
to mastery and a class (cb3) with high error rates.

Frequencies | Error rates latencies Exercises
cbl 255 low rather long rather small
cb2 111 short small except in Geometry
cb3 167 high medium rather large

Table 1.16: Synopsis of three—class partition CB.

The subsequent dichotomies lead to refining the partition in 3 classes by
subdividing the classes of low and high error rates and with large dispersion
of latencies.

Partition in 6 classes

The third dichotomy (level index .077 < .122) generates the four—class par-
tition cc. It splits up class cb3 into two classes ccd with 25 students and
ccd with 142 students; both classes are very dispersed (cf. Figure 1.13-c,
p.28). Class cc3 is characterized by students who have almost all high error
rates and who do large numbers of exercises; latencies are scattered on all
categories with a weak majority with latencies inferior to the median.

Class cc4 is characterized by high error rates but on the average inferior
to those of class cc3, the proportions of students with extreme latencies are
comprised between 10% and 18% (< 20%), except for short latencies in Logic
and Measurement (23%). The students who need many exercises to master
a notion are mostly in this class (34/53 in Integers, 43/51 in Fractions, 48/67
in Logic and 81/146 in Measurement).

The fourth dichotomy (level index .074) generates the five—class partition
¢D. Tt splits class ccl (alias cal, cbl) in class cd4 (227 students) and class
cd5 (28 students) (cf. Figure 1.13-d, p.28). The class c¢d5 is composed
of students who have, in large majority, low error rates (they are 21 in
fractions, 28 in Logic, 17 in Geometry, and for no strand the error rate is
greater than .10); with medium latencies (between the first quintile and the
fourth quintile), and not very large numbers of exercises (27 or 28 do only 4
exercises, except in Geometry where 22 students do 11 or 12 exercises and
only 5 students do less thanll).

The fifth dichotomy (level index .065) generates the six—class parti-
tion CE. It divides class cd4 in two classes ce5 (150 students) and ce6
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(77 students) (cf. Figure 1.13-e, p.28). For class ceb, one has low error
rates, medium latencies (proportions of short latencies vary between 5%
and 11% < 20% and the long ones between 15% and 19%). This class is
very close to class ce4, with nevertheless error rates slightly greater than
average. Class ce6 is the one of the long latencies (above median for all the
students), and with proportions of small numbers of exercises superior to
the proportion over the 533 students except in Logic: cf. Table 1.17 (p.31).

Class ce6 All

Strands (n=77) (n=533)
Integer < 4 exercises 97% 90%
Fractions < 4 exercises 99% 90%
Geometry < 11 exercises 34% 14%
Logic < 5 exercises 29% 31%
Measurement < 4 exercises 83% 73%

Table 1.17: Class ce6 of the six—class partition.

Amendment: Final partition in 5 classes

The concentration ellipses of classes ce4 and ceb in the plane 1-2 appear to be
quite near to each other, which invites grouping these two classes together
(Figure 1.13-f, p.28). The partition in 5 classes (cl, ¢2, ¢3, ¢4, ¢5) thus
obtained has a between-variance on the 4 first axes equal to 0.3863, which
is greater than the variance of the partition in 5 classes of the hierarchical
classification (= 0.3676). The between-variance and the within—variance of
this partition in 5 classes on the two first axes are given in the table 1.18.

Axis 1 | Axis2
Between—Variance | .1964 | .1277
Within—Variance 1097 | .0907

Table 1.18: Between and within variances for the final five—class partition.

The between—variance is greater than the within—variance. We will sum-
marize the data with this partition in 5 classes: see Table 1.19.

There are two compact classes of well-performing students; one class is
close to point A (class cl) with short latencies and medium error rates, and
the other one is close to point B (class ¢4) with rather low error rates and
medium to long latencies. Class c4 includes students with low error rates,
especially in Geometry (46/55) and in Logic (28/31).
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frequencies | Error rates Latencies Exercises
cl 111 short small except in Geometry
c2 25 high rather large
c3 142 high
c4 178 low rather small
cd 7 long rather small

Table 1.19: Synopsis of final five—class partition.

1.7 Conclusions

Starting from the three types of variables (Error Rates, Latencies, Num-
ber of Exercises) and from the five strands (Integers, Fractions, Geometry,
Logic, Measurement), we have used MCA to construct a geometric space of
individual differences for the gifted students of grade 3. The geometric anal-
ysis shows a good homogeneity of strands for each type of variable. It also
shows that the individual differences are articulated around two scales: one
of error rates and number of exercises and one of latencies. The error rate
scale is clear—cut showing strong homogeneity; the one of latencies is not so
sharp as some subjects have both short and long latencies across strands.

MCA provides a geometric summary of data. The individual points are
scattered within a quadrilateral ABCD: When going down along the AB
direction, latencies increase, while error rates remain constant; when going
down along the AD direction, error rates increase, while latencies remain
constant. The scattering of points within the quadrilateral is not uniform,
showing a low density along side CD and a high density along AB.

A Euclidean classification of individuals has been performed leading to
a five—class partition. There are two compact classes of well-performing
students; one class is close to point A (class ¢1) with short latencies and
medium error rates, and the other one is close to point B (class c¢4) with
rather low error rates and medium to long latencies (a profile little encour-
aged by current standards of educational testing).

Once the geometric space is constructed, one can study in detail the
cloud of individuals by means of structuring factors. In the present study,
we have investigated Age and Gender. There is an effect of Age; when
age increases, error rates increase and latencies slightly decrease. There
is virtually no difference between boys and girls. One could enrich these
analyses by introducing further structuring factors, such as the scores on
final tests.
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Software

To analyze this data set we have used: spPsS for coding and elementary
statistics, ADDAD for MCA, and EyeLID for structured data analyses. An
extensive (though limited in data table size) version of ADDAD (Association
pour le Développement et la Diffusion de ’Analyse des Données) and a DOS—
version of EyeLID (a program for graphical inspection of multivariate data)
are available on the following ftp:

ftp.math-info.univ-paris5.fr/pub/MathPsy/AGD
ADDAD, EyeLID and ellipse programs can be download from the Brigitte
Le Roux’s homepage:

http://www.math-info.univ-paris5.fr/ lerb

(under the “Logiciels” heading).
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APPENDIX
Awisl | Axis2 | Axis3 | Axisd
Error Integers I1 —.535 326 | —.054 .071
12 715 | —.436 073 | —.095
Fractions F1 —.469 322 | —.165 .045
F2 496 | —.341 174 | —.048
Geometry G1 | —1.160 194 | —.191 | 1.826
G2 —.167 .155 .049 | —.384
G3 1.331 | —.727 | —.084 .482
Logic L1 | —1.128 .356 .332 | 2.513
L2 —.307 234 | —.063 | —.309
L3 1.094 | —.717 .095 .264
Measure— M1 | —.780 215 | —.093 458
ment M2 323 | —.058 .084 | —.388
M3 1.905 | —.926 | —.349 | 1.389
Latency  Integers I1 .728 1.168 | —.794 .043
12 .199 .283 .660 105
13 —.242 | —.448 374 | —.105
14 —.657 | —.912 | —.759 | —.042
Fractions F1 .769 1.107 | —.779 163
F2 .109 .342 715 | —.033
F3 —.256 | —.451 .325 .108
F4 —.542 | —933 | —.784 | —.274
Geometry G1 905 960 | —.737 211
G2 137 .292 679 | —.059
G3 —.348 | —.325 .380 .015
G4 —.582 | —.902 | —.854 | —.143
Logic L1 913 925 | —.695 .180
L2 218 311 .630 | —.047
L3 —.484 | —.237 .437 118
L4 —.506 | —1.026 | —.906 | —.284
Measure— M1 197 .804 | —.744 .218
ment M2 .188 .395 495 | —.201
M3 | —.265| —.401 .375 .023
M4 | —.674| —.787 | —.564 .050
Exercises Integers I1 —.181 .089 | —.002 | —.086
12 1.640 | —.810 .022 779
Fractions F1 —.117 .099 | —.009 | —.032
F2 1.104 | —.934 .084 .304
Geometry G1 —.456 | —.457 | —.723 | —.068
G2 —.095 | —.051 .223 .078
G3 .522 414 | —.095 | —.151
Logic L1 —.816 .263 071 .736
L2 .149 .074 | —.071 | —.561
L3 1.340 | —.979 .146 .710
Measure— M1 | —.382 .164 .004 | —.013
ment M2 1.012 | —.436 | —.011 .035

Table 1.1: coordinates of the 45 categories.
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Axisl | Axis2 | Axis3 | Axisd

Error Integers 11 .036 .019 .001 .002
12 .048 .025 .001 .002

Fractions F1 | .025 .016 .006 .001
F2 | .026 .017 | .007 .001

Geometry G1 | .030 .001 .002 191
G2 | .004 .005 .001 .059

G3 | .069 .029 .001 .023

Logic L1 .016 .002 .003 204
L2 | 014 .011 .001 .037

L3 | .066 .040 .001 .010

Measure— M1 | .048 .005 .001 .042
ment M2 | .013 .001 .002 .050
M3 | .037 .012 .003 .050

Latency Integers 11 .023 .083 .057 .000
12 .003 .007 | .060 .002

13 .004 .018 .019 .002

14 .019 .051 .053 .000

Fractions F1 | .026 .074 .055 .003
F2 | .001 .011 .070 .000

F3 | .004 .019 .015 .002

F4 | 013 .053 .056 .008

Geometry G1 | .036 .056 .049 .005
G2 | .001 .008 .063 .001

G3 | .008 .010 .020 .000

G4 | .015 .050 .067 .002

Logic L1 .036 .052 .044 .004
L2 | .003 .009 .054 .000

L3 | .015 .005 .026 .002

L4 | 011 .065 .075 .009

Measure— M1 | .028 .039 .050 .005
ment M2 | .002 .014 .034 .007
M3 | .005 .015 .019 .000

M4 | .020 .038 .029 .000

Exercises Integers 11 .006 .002 .000 .004
12 .058 .020 .000 .034

Fractions F1 | .003 .003 .000 .001
F2 | 025 .025 .000 .005

Geometry G1 | .007 | .010 | .037 | .000
G2 | .001 .000 .014 .002

G3 | .014 .013 .001 .003

Logic L1 .045 .007 | .001 .093
L2 | .003 .001 .001 .099

L3 | .049 .037 | .001 .035

Measure— M1 | .023 .006 .000 .000
ment M2 | .061 .016 .000 .000

Table 1.2: Contributions of the 45 categories.




